1
|
Sun J, Ruiz Daniels R, Balic A, Andresen AMS, Bjørgen H, Dobie R, Henderson NC, Koppang EO, Martin SAM, Fosse JH, Taylor RS, Macqueen DJ. Cell atlas of the Atlantic salmon spleen reveals immune cell heterogeneity and cell-specific responses to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109358. [PMID: 38176627 DOI: 10.1016/j.fsi.2024.109358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
The spleen is a conserved secondary lymphoid organ that emerged in parallel to adaptive immunity in early jawed vertebrates. Recent studies have applied single cell transcriptomics to reveal the cellular composition of spleen in several species, cataloguing diverse immune cell types and subpopulations. In this study, 51,119 spleen nuclei transcriptomes were comprehensively investigated in the commercially important teleost Atlantic salmon (Salmo salar L.), contrasting control animals with those challenged with the bacterial pathogen Aeromonas salmonicida. We identified clusters of nuclei representing the expected major cell types, namely T cells, B cells, natural killer-like cells, granulocytes, mononuclear phagocytes, endothelial cells, mesenchymal cells, erythrocytes and thrombocytes. We discovered heterogeneity within several immune lineages, providing evidence for resident macrophages and melanomacrophages, infiltrating monocytes, several candidate dendritic cell subpopulations, and B cells at distinct stages of differentiation, including plasma cells and an igt + subset. We provide evidence for twelve candidate T cell subsets, including cd4+ T helper and regulatory T cells, one cd8+ subset, three γδT subsets, and populations double negative for cd4 and cd8. The number of genes showing differential expression during the early stages of Aeromonas infection was highly variable across immune cell types, with the largest changes observed in macrophages and infiltrating monocytes, followed by resting mature B cells. Our analysis provides evidence for a local inflammatory response to infection alongside B cell maturation in the spleen, and upregulation of ccr9 genes in igt + B cells, T helper and cd8+ cells, and monocytes, consistent with the recruitment of immune cell populations to the gut to deal with Aeromonas infection. Overall, this study provides a new cell-resolved perspective of the immune actions of Atlantic salmon spleen, highlighting extensive heterogeneity hidden to bulk transcriptomics. We further provide a large catalogue of cell-specific marker genes that can be leveraged to further explore the function and structural organization of the salmonid immune system.
Collapse
Affiliation(s)
- Jianxuan Sun
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Adam Balic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Håvard Bjørgen
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Ross Dobie
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Erling Olaf Koppang
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Richard S Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK.
| |
Collapse
|
2
|
Ávila-Flores A, Sánchez-Cabezón JJ, Ochoa-Echeverría A, Checa AI, Rosas-García J, Téllez-Araiza M, Casado S, Liébana R, Santos-Mendoza T, Mérida I. Identification of Host PDZ-Based Interactions with the SARS-CoV-2 E Protein in Human Monocytes. Int J Mol Sci 2023; 24:12793. [PMID: 37628973 PMCID: PMC10454406 DOI: 10.3390/ijms241612793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Proteins containing PDZ (post-synaptic density, PSD-95/disc large, Dlg/zonula occludens, ZO-1) domains assemble signaling complexes that orchestrate cell responses. Viral pathogens target host PDZ proteins by coding proteins containing a PDZ-binding motif (PBM). The presence of a PBM in the SARS-CoV-2 E protein contributes to the virus's pathogenicity. SARS-CoV-2 infects epithelia, but also cells from the innate immune response, including monocytes and alveolar macrophages. This process is critical for alterations of the immune response that are related to the deaths caused by SARS-CoV-2. Identification of E-protein targets in immune cells might offer clues to understanding how SARS-CoV-2 alters the immune response. We analyzed the interactome of the SARS-CoV-2 E protein in human monocytes. The E protein was expressed fused to a GFP tag at the amino terminal in THP-1 monocytes, and associated proteins were identified using a proteomic approach. The E-protein interactome provided 372 partners; only 8 of these harbored PDZ domains, including the cell polarity protein ZO-2, the chemoattractant IL-16, and syntenin. We addressed the expression and localization of the identified PDZ proteins along the differentiation of primary and THP-1 monocytes towards macrophages and dendritic cells. Our data highlight the importance of identifying the functions of PDZ proteins in the maintenance of immune fitness and the viral alteration of inflammatory response.
Collapse
Affiliation(s)
- Antonia Ávila-Flores
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, 28049 Madrid, Spain; (J.J.S.-C.); (A.O.-E.); (A.I.C.); (S.C.); (R.L.)
| | - Juan José Sánchez-Cabezón
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, 28049 Madrid, Spain; (J.J.S.-C.); (A.O.-E.); (A.I.C.); (S.C.); (R.L.)
| | - Ane Ochoa-Echeverría
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, 28049 Madrid, Spain; (J.J.S.-C.); (A.O.-E.); (A.I.C.); (S.C.); (R.L.)
| | - Ana I. Checa
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, 28049 Madrid, Spain; (J.J.S.-C.); (A.O.-E.); (A.I.C.); (S.C.); (R.L.)
| | - Jorge Rosas-García
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.R.-G.); (M.T.-A.); (T.S.-M.)
| | - Mariana Téllez-Araiza
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.R.-G.); (M.T.-A.); (T.S.-M.)
| | - Sara Casado
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, 28049 Madrid, Spain; (J.J.S.-C.); (A.O.-E.); (A.I.C.); (S.C.); (R.L.)
| | - Rosa Liébana
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, 28049 Madrid, Spain; (J.J.S.-C.); (A.O.-E.); (A.I.C.); (S.C.); (R.L.)
| | - Teresa Santos-Mendoza
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.R.-G.); (M.T.-A.); (T.S.-M.)
| | - Isabel Mérida
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, 28049 Madrid, Spain; (J.J.S.-C.); (A.O.-E.); (A.I.C.); (S.C.); (R.L.)
| |
Collapse
|
3
|
Guo M, Lu Z, Xiong Y. Enhancer RNA-based modeling of adverse events and objective responses of cancer immunotherapy reveals associated key enhancers and target genes. Front Oncol 2023; 12:1048127. [PMID: 36741695 PMCID: PMC9893284 DOI: 10.3389/fonc.2022.1048127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/26/2022] [Indexed: 01/20/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) targeting PD-1/PD-L1 or CTLA-4 are emerging and effective immunotherapy strategies. However, ICI-treated patients present heterogeneous responses and adverse events, thus demanding effective ways to assess benefit over risk before treatment. Here, by integrating pan-cancer clinical and molecular data, we tried to predict immune-related adverse events (irAEs, risk) and objective response rates (ORRs, benefit) based on enhancer RNAs (eRNAs) expression among patients receiving anti-PD-1/PD-L1 therapies. We built two tri-variate (eRNAs) regression models, one (with ENSR00000326714, ENSR00000148786, and ENSR00000005553) explaining 71% variance (R=0.84) of irAEs and the other (with ENSR00000164478, ENSR00000035913, and ENSR00000167231) explaining 79% (R=0.89) of ORRs. Interestingly, target genes of irAE-related enhancers, including upstream regulators of MYC, were involved in metabolism, inflammation, and immune activation, while ORR-related enhancers target PAK2 and DLG1 which participate in T cell activation. More importantly, we found that ENSR00000148786 probably enhanced TMEM43/LUMA expression mainly in B cells to induce irAEs in ICI-treated patients. Our study provides references for the identification of immunotherapy-related biomarkers and potential therapeutic targets during immunotherapy.
Collapse
Affiliation(s)
- Mengbiao Guo
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiya Lu
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China,*Correspondence: Yuanyan Xiong,
| |
Collapse
|
4
|
Mastrogiovanni M, Di Bartolo V, Alcover A. Cell Polarity Regulators, Multifunctional Organizers of Lymphocyte Activation and Function. Biomed J 2021; 45:299-309. [PMID: 34626864 PMCID: PMC9250085 DOI: 10.1016/j.bj.2021.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/01/2021] [Accepted: 10/01/2021] [Indexed: 11/27/2022] Open
Abstract
Cell polarity regulators are ubiquitous, evolutionary conserved multifunctional proteins. They contain a variety of protein–protein interaction domains endowing them the capacity to interact with cytoskeleton structures, membrane components and multiple regulatory proteins. In this way, they act in complexes and are pivotal for cell growth and differentiation, tissue formation, stability and turnover, cell migration, wound healing, and others. Hence some of these proteins are tumor suppressors. These cellular processes rely on the establishment of cell polarity characterized by the asymmetric localization of proteins, RNAs, membrane domains, or organelles that together condition cell shape and function. Whether apparently stable, as in epithelia or neurons, or very dynamic, as in immune cells, cell polarity is an active process. It involves cytoskeleton reorganization and targeted intracellular traffic, and results in cellular events such as protein synthesis, secretion and assembly taking place at defined cell poles. Multiple polarity regulators orchestrate these processes. Immune cells are particularly versatile in rapidly polarizing and assuming different shapes, so to swiftly adopt specialized behaviors and functions. Polarity regulators act in various ways in different immune cell types and at their distinct differentiation states. Here we review how cell polarity regulators control different processes and functions along T lymphocyte physiology, including cell migration through different tissues, immunological synapse formation and effector functions.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Lymphocyte Cell Biology Unit, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, Department of Immunology, Institut Pasteur, INSERM-U1224. F-75015 Paris, France; Sorbonne Université, Collège Doctoral, F-75005 Paris. France
| | - Vincenzo Di Bartolo
- Lymphocyte Cell Biology Unit, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, Department of Immunology, Institut Pasteur, INSERM-U1224. F-75015 Paris, France
| | - Andrés Alcover
- Lymphocyte Cell Biology Unit, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, Department of Immunology, Institut Pasteur, INSERM-U1224. F-75015 Paris, France.
| |
Collapse
|
5
|
Barreda D, Ramón-Luing LA, Duran-Luis O, Bobadilla K, Chacón-Salinas R, Santos-Mendoza T. Scrib and Dlg1 polarity proteins regulate Ag presentation in human dendritic cells. J Leukoc Biol 2020; 108:883-893. [PMID: 32293058 DOI: 10.1002/jlb.4ma0320-544rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/27/2022] Open
Abstract
We recently reported, for the first time, the expression and regulation of the PDZ polarity proteins Scrib and Dlg1 in human APCs, and also described the viral targeting of these proteins by NS1 of influenza A virus in human dendritic cells (DCs). Scrib plays an important role in reactive oxygen species (ROS) production in Mϕs and uropod formation and migration in T cells, while Dlg1 is important for T cell downstream activation after Ag recognition. Nevertheless, the functions of these proteins in human DCs remain unknown. Here, we knocked-down the expression of both Scrib and Dlg1 in human DCs and then evaluated the expression of co-stimulatory molecules and cytokine production during maturation. We demonstrated that Scrib is necessary for adequate CD86 expression, while Dlg1 is important for CD83 up-regulation and IL-6 production upon maturation, suggesting that Scrib and Dlg1 participate in separate pathways in DCs. Additionally, both proteins are required for adequate IL-12 production after maturation. Furthermore, we showed that the inefficient maturation of DCs induced by Scrib or Dlg1 depletion leads to impaired T cell activation. Our results revealed the previously unknown contribution of Scrib and Dlg1 in human DCs pivotal functions, which may be able to impact innate and adaptive immune response.
Collapse
Affiliation(s)
- Dante Barreda
- Laboratory of Autoimmunity, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Ciudad de México, México
| | - Lucero A Ramón-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Olivia Duran-Luis
- Laboratory of Autoimmunity, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Karen Bobadilla
- Department of Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Ciudad de México, México
| | - Teresa Santos-Mendoza
- Laboratory of Autoimmunity, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
6
|
The Scribble Complex PDZ Proteins in Immune Cell Polarities. J Immunol Res 2020; 2020:5649790. [PMID: 32411799 PMCID: PMC7210543 DOI: 10.1155/2020/5649790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
hScrib and hDlg belong to the PDZ family of proteins. Since the identification of these highly phylogenetically conserved scaffolds, an increasing amount of experiments has elucidated the roles of hScrib and hDlg in a variety of cell functions. Remarkably, their participation during the establishment of polarity in epithelial cells is well documented. Although the role of both proteins in the immune system is scantly known, it has become a growing field of investigation. Here, we summarize the interactions and functions of hScrib and hDlg1, which participate in diverse functions involving cell polarization in immune cells, and discuss their relevance in the immune cell biology. The fundamental role of hScrib and hDlg1 during the establishment of the immunological synapse, hence T cell activation, and the recently described role of hScrib in reactive oxygen species production in macrophages and of hDlg1 in cytokine production by dendritic cells highlight the importance of both proteins in immune cell biology. The expression of these proteins in other leukocytes can be anticipated and needs to be confirmed. Due to their multiple interaction domains, there is a wide range of possible interactions of hScrib and hDlg1 that remains to be explored in the immune system.
Collapse
|
7
|
Dong X, Li X, Liu C, Xu K, Shi Y, Liu W. Discs large homolog 1 regulates B-cell proliferation and antibody production. Int Immunol 2020; 31:759-770. [PMID: 31169885 DOI: 10.1093/intimm/dxz046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Antibody production results from B-cell activation and proliferation upon antigen binding. Discs large homolog 1 (Dlg1), a scaffold protein from the membrane-associated guanylate kinase family, has been shown to regulate the antigen receptor signaling and cell polarity in lymphocytes; however, the physiological function of Dlg1 in humoral responses is not completely clear. Here, we addressed this question using a conditional knockout (KO) mouse model with Dlg1 deficiency in different B-cell subsets by crossing dlg1fl/fl mice with either mb1cre/+ or aicdacre/+ mice, respectively. In both mouse models, we observed that Dlg1 deficiency in B cells (Dlg1-KO B cells) led to obvious hyper-antibody responses upon immunization, the effect of which was more obvious in antigen-recall responses. Mechanistically, we found that Dlg1-KO B cells exhibited hyper-proliferation compared with wild-type B cells upon antigen stimulation, suggesting that the hyper-antibody responses are likely induced by the hyper-proliferation of Dlg1-KO B cells. Indeed, further studies demonstrated that Dlg1 deficiency in B cells led to the down-regulation of a tumor suppressor, FoxO1. Thus, all these results reveal an unexpected function of Dlg1 in restraining hyper-antibody responses through the inhibition of FoxO1 and thus antigen-binding-induced proliferation in B cells.
Collapse
Affiliation(s)
- Xuejiao Dong
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, China
| | - Xinxin Li
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, China
| | - Ce Liu
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, China
| | - Kun Xu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Gutiérrez-González LH, Santos-Mendoza T. Viral targeting of PDZ polarity proteins in the immune system as a potential evasion mechanism. FASEB J 2019; 33:10607-10617. [PMID: 31336050 DOI: 10.1096/fj.201900518r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PDZ proteins are highly conserved through evolution; the principal function of this large family of proteins is to assemble protein complexes that are involved in many cellular processes, such as cell-cell junctions, cell polarity, recycling, or trafficking. Many PDZ proteins that have been identified as targets of viral pathogens by promoting viral replication and spread are also involved in epithelial cell polarity. Here, we briefly review the PDZ polarity proteins in cells of the immune system to subsequently focus on our hypothesis that the viral PDZ-dependent targeting of PDZ polarity proteins in these cells may alter the cellular fitness of the host to favor that of the virus; we further hypothesize that this modification of the cellular fitness landscape occurs as a common and widespread mechanism for immune evasion by viruses and possibly other pathogens.-Gutiérrez-González, L. H., Santos-Mendoza, T. Viral targeting of PDZ polarity proteins in the immune system as a potential evasion mechanism.
Collapse
Affiliation(s)
- Luis H Gutiérrez-González
- Department of Virology and Mycology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Teresa Santos-Mendoza
- Laboratory of Autoimmunity, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
9
|
Saito Y, Desai RR, Muthuswamy SK. Reinterpreting polarity and cancer: The changing landscape from tumor suppression to tumor promotion. Biochim Biophys Acta Rev Cancer 2018; 1869:103-116. [DOI: 10.1016/j.bbcan.2017.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
|
10
|
Barreda D, Sánchez-Galindo M, López-Flores J, Nava-Castro KE, Bobadilla K, Salgado-Aguayo A, Santos-Mendoza T. PDZ proteins are expressed and regulated in antigen-presenting cells and are targets of influenza A virus. J Leukoc Biol 2017; 103:731-738. [PMID: 29345359 DOI: 10.1002/jlb.4ab0517-184r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/27/2017] [Accepted: 11/20/2017] [Indexed: 11/08/2022] Open
Abstract
In this work, we identified the expression, regulation, and viral targeting of Scribble and Dlg1 in antigen-presenting cells. Scribble and Dlg1 belong to the family of PDZ (postsynaptic density (PSD95), disc large (Dlg), and zonula occludens (ZO-1)) proteins involved in cell polarity. The relevance of PDZ proteins in cellular functions is reinforced by the fact that many viruses interfere with host PDZ-dependent interactions affecting cellular mechanisms thus favoring viral replication. The functions of Scribble and Dlg have been widely studied in polarized cells such as epithelial and neuron cells. However, within the cells of the immune system, their functions have been described only in T and B lymphocytes. Here we demonstrated that Scribble and Dlg1 are differentially expressed during antigen-presenting cell differentiation and dendritic cell maturation. While both Scribble and Dlg1 seem to participate in distinct dendritic cell functions, both are targeted by the viral protein NS1 of influenza A in a PDZ-dependent manner in dendritic cells. Our findings suggest that these proteins might be involved in the mechanisms of innate immunity and/or antigen processing and presentation that can be hijacked by viral pathogens.
Collapse
Affiliation(s)
- Dante Barreda
- Department of Immunology. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.,Department of Immunology, ENCB-IPN, Mexico City, Mexico
| | - Marisa Sánchez-Galindo
- Department of Immunology. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.,Department of Genetics and Molecular Biology, Center of Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - Jessica López-Flores
- Department of Immunology. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Karen E Nava-Castro
- Department of Immunology. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.,Cátedras CONACYT, Mexico City, Mexico
| | - Karen Bobadilla
- Department of Immunology. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alfonso Salgado-Aguayo
- Department of Research in Pulmonary Fibrosis. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Teresa Santos-Mendoza
- Department of Immunology. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
11
|
Gang X, Sun Y, Li F, Yu T, Jiang Z, Zhu X, Jiang Q, Wang Y. Identification of key genes associated with rheumatoid arthritis with bioinformatics approach. Medicine (Baltimore) 2017; 96:e7673. [PMID: 28767591 PMCID: PMC5626145 DOI: 10.1097/md.0000000000007673] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We aimed to identify key genes associated with rheumatoid arthritis (RA).The microarray datasets of GSE1919, GSE12021, and GSE21959 (35 RA samples and 32 normal controls) were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) in RA samples were identified using the t test in limma package. Functional enrichment analysis was performed using clusterProfiler package. A protein-protein interaction (PPI) network of selected DEGs was constructed based on the Human Protein Reference Database. Active modules were explored using the jActiveModules plug-in in the Cytoscape Network Modeling package.In total, 537 DEGs in RA samples were identified, including 241 upregulated and 296 downregulated genes. A total of 24,451 PPI pairs were collected, and 5 active modules were screened. Furthermore, 19 submodules were acquired from the 5 active modules. Discs large homolog 1 (DLG1) and related DEGs such as guanylate cyclase 1, soluble, alpha 2 (GUCY1A2), N-methyl d-aspartate receptor 2A subunit (GRIN2A), and potassium voltage-gated channel member 1 (KCNA1) were identified in 8 submodules. Plasminogen (PLG) and related DEGs such as chemokine (C-X-C motif) ligand 2 (CXCL2), laminin, alpha 3 (LAMA3), complement component 7 (C7), and coagulation factor X (F10) were identified in 4 submodules.Our results indicate that DLG1, GUCY1A2, GRIN2A, KCNA1, PLG, CXCL2, LAMA3, C7, and F10 may play key roles in the progression of RA and may serve as putative therapeutic targets for treating RA.
Collapse
Affiliation(s)
- Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University
| | - Yan Sun
- Department of Hematology and oncology, The Second Hospital of Jilin University, Changchun, Jilin Province 130041, China
| | - Fei Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University
| | - Tong Yu
- Department of Orthopedics, The Second Hospital of Jilin University
| | - Zhende Jiang
- Department of Orthopedics, The Second Hospital of Jilin University
| | - Xiujie Zhu
- Department of Orthopedics, The Second Hospital of Jilin University
| | - Qiyao Jiang
- Department of Orthopedics, The Second Hospital of Jilin University
| | - Yao Wang
- Department of Orthopedics, The Second Hospital of Jilin University
| |
Collapse
|
12
|
Polarity and asymmetric cell division in the control of lymphocyte fate decisions and function. Curr Opin Immunol 2016; 39:143-9. [PMID: 26945468 DOI: 10.1016/j.coi.2016.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 01/12/2023]
Abstract
Polarity is important in several lymphocyte processes including lymphocyte migration, formation of the immunological synapse, and asymmetric cell division (ACD). While lymphocyte migration and immunological synapse formation are relatively well understood, the role of lymphocyte ACD is less clear. Recent advances in measuring polarity enable more robust analyses of asymmetric cell division. Use of these new methods has produced crucial quantification of ACD at precise phases of lymphocyte development and activation. These developments are leading to a better understanding of the drivers of fate choice during lymphocyte activation and provide a context within which to explain the effects of ACD.
Collapse
|
13
|
Arsenio J, Metz PJ, Chang JT. Asymmetric Cell Division in T Lymphocyte Fate Diversification. Trends Immunol 2015; 36:670-683. [PMID: 26474675 DOI: 10.1016/j.it.2015.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022]
Abstract
Immunological protection against microbial pathogens is dependent on robust generation of functionally diverse T lymphocyte subsets. Upon microbial infection, naïve CD4(+) or CD8(+) T lymphocytes can give rise to effector- and memory-fated progeny that together mediate a potent immune response. Recent advances in single-cell immunological and genomic profiling technologies have helped elucidate early and late diversification mechanisms that enable the generation of heterogeneity from single T lymphocytes. We discuss these findings here and argue that one such mechanism, asymmetric cell division, creates an early divergence in T lymphocyte fates by giving rise to daughter cells with a propensity towards the terminally differentiated effector or self-renewing memory lineages, with cell-intrinsic and -extrinsic cues from the microenvironment driving the final maturation steps.
Collapse
Affiliation(s)
- Janilyn Arsenio
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Patrick J Metz
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - John T Chang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Ramsbottom KM, Sacirbegovic F, Hawkins ED, Kallies A, Belz GT, Van Ham V, Haynes NM, Durrant MJ, Humbert PO, Russell SM, Oliaro J. Lethal giant larvae-1 deficiency enhances the CD8(+) effector T-cell response to antigen challenge in vivo. Immunol Cell Biol 2015; 94:306-11. [PMID: 26391810 DOI: 10.1038/icb.2015.82] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 07/20/2015] [Accepted: 08/18/2015] [Indexed: 01/31/2023]
Abstract
Lethal giant larvae-1 (Lgl-1) is an evolutionary conserved protein that regulates cell polarity in diverse lineages; however, the role of Lgl-1 in the polarity and function of immune cells remains to be elucidated. To assess the role of Lgl-1 in T cells, we generated chimeric mice with a hematopoietic system deficient for Lgl-1. Lgl-1 deficiency did not impair the activation or function of peripheral CD8(+) T cells in response to antigen presentation in vitro, but did skew effector and memory T-cell differentiation. When challenged with antigen-expressing virus or tumor, Lgl-1-deficient mice displayed altered T-cell responses. This manifested in a stronger antiviral and antitumor effector CD8(+) T-cell response, the latter resulting in enhanced control of MC38-OVA tumors. These results reveal a novel role for Lgl-1 in the regulation of virus-specific T-cell responses and antitumor immunity.
Collapse
Affiliation(s)
- Kelly M Ramsbottom
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Faruk Sacirbegovic
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Edwin D Hawkins
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.,Lo Celso Laboratory, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Axel Kallies
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Gabrielle T Belz
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Vanessa Van Ham
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Nicole M Haynes
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Michael J Durrant
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Patrick O Humbert
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah M Russell
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia.,Centre for Micro-photonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Jane Oliaro
- Cancer Immunology Laboratory, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Richner JM, Gmyrek GB, Govero J, Tu Y, van der Windt GJW, Metcalf TU, Haddad EK, Textor J, Miller MJ, Diamond MS. Age-Dependent Cell Trafficking Defects in Draining Lymph Nodes Impair Adaptive Immunity and Control of West Nile Virus Infection. PLoS Pathog 2015. [PMID: 26204259 PMCID: PMC4512688 DOI: 10.1371/journal.ppat.1005027] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Impaired immune responses in the elderly lead to reduced vaccine efficacy and increased susceptibility to viral infections. Although several groups have documented age-dependent defects in adaptive immune priming, the deficits that occur prior to antigen encounter remain largely unexplored. Herein, we identify novel mechanisms for compromised adaptive immunity that occurs with aging in the context of infection with West Nile virus (WNV), an encephalitic flavivirus that preferentially causes disease in the elderly. An impaired IgM and IgG response and enhanced vulnerability to WNV infection during aging was linked to delayed germinal center formation in the draining lymph node (DLN). Adoptive transfer studies and two-photon intravital microscopy revealed a decreased trafficking capacity of donor naïve CD4+ T cells from old mice, which manifested as impaired T cell diapedesis at high endothelial venules and reduced cell motility within DLN prior to antigen encounter. Furthermore, leukocyte accumulation in the DLN within the first few days of WNV infection or antigen-adjuvant administration was diminished more generally in old mice and associated with a second aging-related defect in local cytokine and chemokine production. Thus, age-dependent cell-intrinsic and environmental defects in the DLN result in delayed immune cell recruitment and antigen recognition. These deficits compromise priming of early adaptive immune responses and likely contribute to the susceptibility of old animals to acute WNV infection.
Collapse
Affiliation(s)
- Justin M. Richner
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Grzegorz B. Gmyrek
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jennifer Govero
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yizheng Tu
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gerritje J. W. van der Windt
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Talibah U. Metcalf
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Elias K. Haddad
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Johannes Textor
- Department of Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Mark J. Miller
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
16
|
Silva O, Crocetti J, Humphries LA, Burkhardt JK, Miceli MC. Discs Large Homolog 1 Splice Variants Regulate p38-Dependent and -Independent Effector Functions in CD8+ T Cells. PLoS One 2015; 10:e0133353. [PMID: 26186728 PMCID: PMC4505885 DOI: 10.1371/journal.pone.0133353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/02/2015] [Indexed: 11/22/2022] Open
Abstract
Functionally diverse CD8+ T cells develop in response to antigenic stimulation with differing capacities to couple TCR engagement to downstream signals and functions. However, mechanisms of diversifying TCR signaling are largely uncharacterized. Here we identified two alternative splice variants of scaffold protein Dlg1, Dlg1AB and Dlg1B, that diversify signaling to regulate p38 –dependent and –independent effector functions in CD8+ T cells. Dlg1AB, but not Dlg1B associated with Lck, coupling TCR stimulation to p38 activation and proinflammatory cytokine production. Conversely, both Dlg1AB and Dlg1B mediated p38-independent degranulation. Degranulation depended on a Dlg1 fragment containing an intact Dlg1SH3-domain and required the SH3-ligand WASp. Further, Dlg1 controlled WASp activation by promoting TCR-triggered conformational opening of WASp. Collectively, our data support a model where Dlg1 regulates p38-dependent proinflammatory cytokine production and p38-independent cytotoxic granule release through the utilization of alternative splice variants, providing a mechanism whereby TCR engagement couples downstream signals to unique effector functions in CD8+ T cells.
Collapse
Affiliation(s)
- Oscar Silva
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jillian Crocetti
- Molecular Biology Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lisa A. Humphries
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Janis K. Burkhardt
- Department of Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - M. Carrie Miceli
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Crocetti J, Silva O, Humphries LA, Tibbs MD, Miceli MC. Selective phosphorylation of the Dlg1AB variant is critical for TCR-induced p38 activation and induction of proinflammatory cytokines in CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:2651-60. [PMID: 25098293 DOI: 10.4049/jimmunol.1401196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
CD8(+) T cells respond to TCR stimulation by producing proinflammatory cytokines, and destroying infected or malignant cells through the production and release of cytotoxic granules. Scaffold protein Discs large homolog 1 (Dlg1) specifies TCR-dependent functions by channeling proximal signals toward the activation of p38-dependent proinflammatory cytokine gene expression and/or p38-independent cytotoxic granule release. Two Dlg1 variants are expressed in CD8(+) T cells via alternative splicing, Dlg1AB and Dlg1B, which have differing abilities coordinate TCR-dependent functions. Although both variants facilitate p38-independent cytotoxicity, only Dlg1AB coordinates p38-dependent proinflammatory cytokine expression. In this study, we identify TCR-induced Dlg1 tyrosine phosphorylation as a key regulatory step required for Dlg1AB-mediated p38-dependent functions, including proinflammatory cytokine expression. We find that Dlg1AB but not Dlg1B is tyrosine phosphorylated by proximal tyrosine kinase Lck in response to TCR stimulation. Furthermore, we identify Dlg1 tyrosine 222 (Y222) as a major site of Dlg1 phosphorylation required for TCR-triggered p38 activation and NFAT-dependent expression of proinflammatory cytokines, but not for p38-independent cytotoxicity. Taken together, our data support a model where TCR-induced phosphorylation of Dlg1 Y222 is a key point of control that endows Dlg1AB with the ability to coordinate p38 activation and proinflammatory cytokine production. We propose blocking Dlg1AB phosphorylation as a novel therapeutic target to specifically block proinflammatory cytokine production but not cytotoxicity.
Collapse
Affiliation(s)
- Jillian Crocetti
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Oscar Silva
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Lisa A Humphries
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095; Amgen, Thousand Oaks, CA 91320; and
| | - Michelle D Tibbs
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095
| | - M Carrie Miceli
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095;
| |
Collapse
|
18
|
Xu S, Zhou F, Tao J, Song L, NG SC, Wang X, Chen L, Yi F, Ran Z, Zhou R, Xia B. Exome sequencing identifies DLG1 as a novel gene for potential susceptibility to Crohn's disease in a Chinese family study. PLoS One 2014; 9:e99807. [PMID: 24937328 PMCID: PMC4061034 DOI: 10.1371/journal.pone.0099807] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/08/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Genetic variants make some contributions to inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC). More than 100 susceptibility loci were identified in Western IBD studies, but susceptibility gene has not been found in Chinese IBD patients till now. Sequencing of individuals with an IBD family history is a powerful approach toward our understanding of the genetics and pathogenesis of IBD. The aim of this study, which focuses on a Han Chinese CD family, is to identify high-risk variants and potentially novel loci using whole exome sequencing technique. METHODS Exome sequence data from 4 individuals belonging to a same family were analyzed using bioinformatics methods to narrow down the variants associated with CD. The potential risk genes were further analyzed by genotyping and Sanger sequencing in family members, additional 401 healthy controls (HC), 278 sporadic CD patients, 123 UC cases, a pair of monozygotic CD twins and another Chinese CD family. RESULTS From the CD family in which the father and daughter were affected, we identified a novel single nucleotide variant (SNV) c.374T>C (p.I125T) in exon 4 of discs large homolog 1 (DLG1), a gene has been reported to play multiple roles in cell proliferation, T cell polarity and T cell receptor signaling. After genotyping among case and controls, a PLINK analysis showed the variant was of significance (P<0.05). 4 CD patients of the other Chinese family bore another non-synonymous variant c.833G>A (p.R278Q) in exon 9 of DLG1. CONCLUSIONS We have discovered novel genetic variants in the coding regions of DLG1 gene, the results support that DLG1 is a novel potential susceptibility gene for CD in Chinese patients.
Collapse
Affiliation(s)
- Shufang Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Feng Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan, People’s Republic of China
- Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, and Hubei Key Laboratory of Immune Related Diseases, Wuhan, People’s Republic of China
| | - Jinsheng Tao
- BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, People’s Republic of China
| | - Lu Song
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Siew Chien NG
- Institute of Digestive Disease, Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| | - Xiaobing Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Liping Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan, People’s Republic of China
- Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, and Hubei Key Laboratory of Immune Related Diseases, Wuhan, People’s Republic of China
| | - Fengming Yi
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Zhihua Ran
- Department of Gastroenterology, Renji Hospital, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Rui Zhou
- Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, and Hubei Key Laboratory of Immune Related Diseases, Wuhan, People’s Republic of China
| | - Bing Xia
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan, People’s Republic of China
- Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, and Hubei Key Laboratory of Immune Related Diseases, Wuhan, People’s Republic of China
- * E-mail:
| |
Collapse
|
19
|
Pham K, Sacirbegovic F, Russell SM. Polarized cells, polarized views: asymmetric cell division in hematopoietic cells. Front Immunol 2014; 5:26. [PMID: 24550912 PMCID: PMC3909886 DOI: 10.3389/fimmu.2014.00026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/16/2014] [Indexed: 11/17/2022] Open
Abstract
It has long been recognized that alterations in cell shape and polarity play important roles in coordinating lymphocyte functions. In the last decade, a new aspect of lymphocyte polarity has attracted much attention, termed asymmetric cell division (ACD). ACD has previously been shown to dictate or influence many aspects of development in model organisms such as the worm and the fly, and to be disrupted in disease. Recent observations that ACD also occurs in lymphocytes led to exciting speculations that ACD might influence lymphocyte differentiation and function, and leukemia. Dissecting the role that ACD might play in these activities has not been straightforward, and the evidence to date for a functional role in lymphocyte fate determination has been controversial. In this review, we discuss the evidence to date for ACD in lymphocytes, and how it might influence lymphocyte fate. We also discuss current gaps in our knowledge, and suggest approaches to definitively test the physiological role of ACD in lymphocytes.
Collapse
Affiliation(s)
- Kim Pham
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre , East Melbourne, VIC , Australia ; Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology , Hawthorn, VIC , Australia
| | - Faruk Sacirbegovic
- Department of Pathology, University of Melbourne , Melbourne, VIC , Australia
| | - Sarah M Russell
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre , East Melbourne, VIC , Australia ; Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology , Hawthorn, VIC , Australia ; Department of Pathology, University of Melbourne , Melbourne, VIC , Australia ; Sir Peter MacCallum Department of Oncology, University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
20
|
Loss of DAP12 and FcRγ drives exaggerated IL-12 production and CD8(+) T cell response by CCR2(+) Mo-DCs. PLoS One 2013; 8:e76145. [PMID: 24155889 PMCID: PMC3796521 DOI: 10.1371/journal.pone.0076145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/19/2013] [Indexed: 11/24/2022] Open
Abstract
Dap12 and FcRγ, the two transmembrane ITAM-containing signaling adaptors expressed in dendritic cells (DC), are implicated in the regulation of DC function. Several activating and adhesion receptors including integrins require these chains for their function in triggering downstream signaling and effector pathways, however the exact role(s) for Dap12 and FcRγ remains elusive as their loss can lead to both attenuating and enhancing effects. Here, we report that mice congenitally lacking both Dap12 and FcRγ chains (DF) show a massively enhanced effector CD8+ T cell response to protein antigen immunization or West Nile Virus (WNV) infection. Thus, immunization of DF mice with MHCI-restricted OVA peptide leads to accumulation of IL-12-producing monocyte-derived dendritic cells (Mo-DC) in draining lymph nodes, followed by vastly enhanced generation of antigen-specific IFNγ-producing CD8+ T cells. Moreover, DF mice show increased viral clearance in the WNV infection model. Depletion of CCR2+ monocytes/macrophages in vivo by administration anti-CCR2 antibodies or clodronate liposomes completely prevents the exaggerated CD8+ T cell response in DF mice. Mechanistically, we show that the loss of Dap12 and FcRγ-mediated signals in Mo-DC leads to a disruption of GM-CSF receptor-induced STAT5 activation resulting in upregulation of expression of IRF8, a transcription factor. Consequently, Dap12- and FcRγ-deficiency exacerbates GM-CSF-driven monocyte differentiation and production of inflammatory Mo-DC. Our data suggest a novel cross-talk between DC-ITAM and GM-CSF signaling pathways, which controls Mo-DC differentiation, IL-12 production, and CD8+ T cell responses.
Collapse
|