1
|
Kanda T, Saiki K, Kurumi H, Yoshida A, Ikebuchi Y, Sakaguchi T, Urabe S, Minami H, Yamaguchi N, Nakao K, Inoue H, Isomoto H. Docking Proteins Upregulate IL-1β Expression in Lower Esophageal Sphincter Muscle in Esophageal Achalasia. J Clin Med 2024; 13:3004. [PMID: 38792545 PMCID: PMC11122009 DOI: 10.3390/jcm13103004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/27/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Background/Objectives: Esophageal achalasia is an archetypal esophageal motility disorder characterized by abnormal peristalsis of the esophageal body and impaired lower esophageal sphincter (LES) relaxation. Methods: In this study, the mRNA expression of docking proteins 1 and 2 (DOK1 and DOK2, respectively) were analyzed and the mechanisms underlying achalasia onset were investigated. Results:DOK1 and DOK2 mRNA levels significantly increased in the LES of patients with achalasia. Moreover, significant correlations were observed between IL-1β and DOK1, IL-1β and DOK2, ATG16L1 and DOK1, and HSV1-miR-H1-3p and DOK2 expression levels. However, a correlation between ATG16L1 and DOK2 or between HSV-miR-H1-3p and DOK1 expression was not observed. In addition, a positive correlation was observed between patient age and DOK1 expression. Microarray analysis revealed a significant decrease in the expression of hsa-miR-377-3p and miR-376a-3p in the LES muscle of patients with achalasia. Conclusions: These miRNAs possessed sequences targeting DOK. The upregulation of DOK1 and DOK2 expression induces IL-1β expression in the LES of achalasia patients, which may contribute to the development of esophageal motility disorder.
Collapse
Affiliation(s)
- Tsutomu Kanda
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Karen Saiki
- Division of Immunology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Hiroki Kurumi
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Akira Yoshida
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yuichiro Ikebuchi
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
- Digestive Center, Showa University Koto-Toyosu Hospital, Tokyo 135-8577, Japan
| | - Takuki Sakaguchi
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
- Digestive Center, Showa University Koto-Toyosu Hospital, Tokyo 135-8577, Japan
| | - Shigetoshi Urabe
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Hitomi Minami
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Naoyuki Yamaguchi
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Haruhiro Inoue
- Digestive Center, Showa University Koto-Toyosu Hospital, Tokyo 135-8577, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| |
Collapse
|
2
|
Li T, Li B, Sara A, Ay C, Leung WY, Zhang Y, Dong Y, Liang Q, Zhang X, Weidner P, Gutting T, Behrens HM, Röcken C, Sung JJ, Ebert MP, Yu J, Burgermeister E. Docking protein-1 promotes inflammatory macrophage signaling in gastric cancer. Oncoimmunology 2019; 8:e1649961. [PMID: 31646096 DOI: 10.1080/2162402x.2019.1649961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
Docking protein-1 (DOK1) is a tumor suppressor frequently lost in malignant cells, however, it retains the ability to control activities of immune receptors in adjacent stroma cells of the tumor microenvironment. We therefore hypothesized that addressing DOK1 may be useful for cancer immunotherapy. DOK1 mRNA and DOK1 protein expression were downregulated in tumor cells of gastric cancer patients (n = 249). Conversely, its expression was up-regulated in cases positive for Epstein Barr Virus (EBV+) together with genes related to macrophage biology and targets of clinical immunotherapy such as programmed-cell-death-ligand-1 (PD-L1). Notably, high DOK1 positivity in stroma cells conferred poor prognosis in patients and correlated with high levels of inducible nitric oxide synthase in CD68+ tumor-associated macrophages. In macrophages derived from human monocytic leukemia cell lines, DOK1 (i) was inducible by agonists of the anti-diabetic transcription factor peroxisome proliferator-activated receptor-gamma (PPARγ), (ii) increased polarization towards an inflammatory phenotype, (iii) augmented nuclear factor-κB-dependent transcription of pro-inflammatory cytokines and (iv) reduced PD-L1 expression. These properties empowered DOK1+ macrophages to decrease the viability of human gastric cancer cells in contact-dependent co-cultures. DOK1 also reduced PD-L1 expression in human primary blood monocytes. Our data propose that the drugability of DOK1 may be exploited to reprogram myeloid cells and enforce the innate immune response against EBV+ human gastric cancer.
Collapse
Affiliation(s)
- Tong Li
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Beifang Li
- Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Asgharpour Sara
- Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christine Ay
- Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wing Yan Leung
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yanquan Zhang
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yujuan Dong
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Qiaoyi Liang
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang Zhang
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Philip Weidner
- Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tobias Gutting
- Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Christoph Röcken
- Dept. of Pathology, Christian-Albrechts University, Kiel, Germany
| | - Joseph Jy Sung
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthias P Ebert
- Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jun Yu
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Elke Burgermeister
- Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
3
|
Zhang B, Jiao A, Dai M, Wiest DL, Zhuang Y. Id3 Restricts γδ NKT Cell Expansion by Controlling Egr2 and c-Myc Activity. THE JOURNAL OF IMMUNOLOGY 2018; 201:1452-1459. [PMID: 30012846 DOI: 10.4049/jimmunol.1800106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/21/2018] [Indexed: 12/31/2022]
Abstract
γδ NKT cells are neonatal-derived γδ T lymphocytes that are grouped together with invariant NKT cells based on their shared innate-like developmental program characterized by the transcription factor PLZF (promyelocytic leukemia zinc finger). Previous studies have demonstrated that the population size of γδ NKT cells is tightly controlled by Id3-mediated inhibition of E-protein activity in mice. However, how E proteins promote γδ NKT cell development and expansion remains to be determined. In this study, we report that the transcription factor Egr2, which also activates PLZF expression in invariant NKT cells, is essential for regulating γδ NKT cell expansion. We observed a higher expression of Egr family genes in γδ NKT cells compared with the conventional γδ T cell population. Loss of function of Id3 caused an expansion of γδ NKT cells, which is accompanied by further upregulation of Egr family genes as well as PLZF. Deletion of Egr2 in Id3-deficient γδ NKT cells prevented cell expansion and blocked PLZF upregulation. We further show that this Egr2-mediated γδ NKT cell expansion is dependent on c-Myc. c-Myc knockdown attenuated the proliferation of Id3-deficient γδ NKT cells, whereas c-Myc overexpression enhanced the proliferation of Id3/Egr2-double-deficient γδ NKT cells. Therefore, our data reveal a regulatory circuit involving Egr2-Id3-E2A, which normally restricts the population size of γδ NKT cells by adjusting Egr2 dosage and c-Myc expression.
Collapse
Affiliation(s)
- Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, ShaanXi 710061, China; .,Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, ShaanXi 710061, China
| | - Meifang Dai
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| |
Collapse
|
4
|
Laroche-Lefebvre C, Yousefi M, Daudelin JF, Charpentier T, Tarrab E, Klinck R, Lamarre A, Labrecque N, Stäger S, Duplay P. Dok-1 and Dok-2 Regulate the Formation of Memory CD8+ T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:3618-3627. [PMID: 27664281 DOI: 10.4049/jimmunol.1600385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 09/06/2016] [Indexed: 11/19/2022]
Abstract
Diverse signals received by CD8+ T cells are integrated to achieve the required magnitude of cell expansion and the appropriate balance of effector/memory CD8+ T cell generation. Notably, the strength and nature of TCR signaling influence the differentiation and functional capacity of effector and memory CD8+ T cells. Dok-1 and Dok-2, the two members of the Dok family expressed in T cells, negatively regulate TCR signaling in vitro. However, the role of Dok proteins in modulating T cell function in vivo has not yet studied. We studied the function of Dok-1 and Dok-2 proteins in the regulation of the CD8+ T cell response to vaccinia virus infection. Comparison of responses to vaccinia virus expressing OVA peptide SIINFEKL by wild-type and Dok-1/2-/- CD8+ OT-I cells showed that the absence of Dok-1 and Dok-2 slightly reduced the magnitude of virus-specific effector CD8+ T cell expansion. This was not due to reduced proliferation or enhanced apoptosis of effector CD8+ T cells. Dok-1/2-deficient effector CD8+ T cells showed increased cell surface TCR expression following virus infection in vivo and increased expression of granzyme B and TNF upon stimulation with peptide Ag ex vivo. Finally, Dok-1/2-deficient effector CD8+ T had a severe defect in survival that resulted in impaired generation of memory CD8+ T cells. These results reveal the critical involvement of Dok-1 and Dok-2 in a negative-feedback loop that prevents overactivation of CD8+ T cells and promotes memory formation.
Collapse
Affiliation(s)
- Constance Laroche-Lefebvre
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Quebec H7V 1B7, Canada
| | - Mitra Yousefi
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Quebec H7V 1B7, Canada
| | - Jean-François Daudelin
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H1T 2M4, Canada; and
| | - Tania Charpentier
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Quebec H7V 1B7, Canada
| | - Esther Tarrab
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Quebec H7V 1B7, Canada
| | - Roscoe Klinck
- Laboratoire de Génomique Fonctionnelle de l'Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Alain Lamarre
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Quebec H7V 1B7, Canada
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H1T 2M4, Canada; and
| | - Simona Stäger
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Quebec H7V 1B7, Canada
| | - Pascale Duplay
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Quebec H7V 1B7, Canada;
| |
Collapse
|
5
|
Yousefi M, Duplay P. CD28 controls the development of innate-like CD8+ T cells by promoting the functional maturation of NKT cells. Eur J Immunol 2013; 43:3017-27. [PMID: 23896981 DOI: 10.1002/eji.201343627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/20/2013] [Accepted: 07/24/2013] [Indexed: 11/08/2022]
Abstract
NK T cells(NKT cells) share functional characteristics and homing properties that are distinct from conventional T cells. In this study, we investigated the contribution of CD28 in the functional development of γδ NKT and αβ NKT cells in mice. We show that CD28 promotes the thymic maturation of promyelocytic leukemia zinc finger(+) IL-4(+) NKT cells and upregulation of LFA-1 expression on NKT cells. We demonstrate that the developmental defect of γδ NKT cells in CD28-deficient mice is cell autonomous. Moreover, we show in both wild-type C57BL/6 mice and in downstream of tyrosine kinase-1 transgenic mice, a mouse model with increased numbers of γδ NKT cells, that CD28-mediated regulation of thymic IL-4(+) NKT cells promotes the differentiation of eomesodermin(+) CD44(high) innate-like CD8(+) T cells. These findings reveal a previously unappreciated mechanism by which CD28 controls NKT-cell homeostasis and the size of the innate-like CD8(+) T-cell pool.
Collapse
Affiliation(s)
- Mitra Yousefi
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Canada
| | | |
Collapse
|
6
|
Gleimer M, von Boehmer H, Kreslavsky T. PLZF Controls the Expression of a Limited Number of Genes Essential for NKT Cell Function. Front Immunol 2012; 3:374. [PMID: 23267359 PMCID: PMC3528072 DOI: 10.3389/fimmu.2012.00374] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/22/2012] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NKT) T cells exhibit tissue distribution, surface phenotype, and functional responses that are strikingly different from those of conventional T cells. The transcription factor PLZF is responsible for most of these properties, as its ectopic expression in conventional T cells is sufficient to confer to them an NKT-like phenotype. The molecular program downstream of PLZF, however, is largely unexplored. Here we report that PLZF regulates the expression of a surprisingly small set of genes, many with known immune functions. This includes several established components of the NKT cell developmental program. Expression of the transcriptional regulators Id2, previously shown to be required for iNKT cell survival in the liver and c-Maf, which shapes the NKT cytokine profile, was compromised in PLZF-deficient cells. Ectopic expression of c-Maf complemented the cells' defect in producing IL-4 and IL-10. PLZF also induced a program of cell surface receptors which shape the NKT cell's response to external stimuli, including the costimulatory receptor ICOS and the cytokine receptors IL12rb1 and IL18r1. As an ensemble, the known functions of the molecules whose expression is affected by PLZF explain many defects observed in PLZF(-/-) NKT cells.
Collapse
Affiliation(s)
- Michael Gleimer
- Laboratory of Lymphocyte Biology, Dana-Farber Cancer Institute, Harvard Medical School Boston, MA, USA ; Department of Microbiology and Immunobiology, Harvard Medical School Boston, MA, USA
| | | | | |
Collapse
|