1
|
Arve-Butler S, Moorman CD. A comprehensive overview of tolerogenic vaccine adjuvants and their modes of action. Front Immunol 2024; 15:1494499. [PMID: 39759532 PMCID: PMC11695319 DOI: 10.3389/fimmu.2024.1494499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Tolerogenic vaccines represent a therapeutic approach to induce antigen-specific immune tolerance to disease-relevant antigens. As general immunosuppression comes with significant side effects, including heightened risk of infections and reduced anti-tumor immunity, antigen-specific tolerance by vaccination would be game changing in the treatment of immunological conditions such as autoimmunity, anti-drug antibody responses, transplantation rejection, and hypersensitivity. Tolerogenic vaccines induce antigen-specific tolerance by promoting tolerogenic antigen presenting cells, regulatory T cells, and regulatory B cells, or by suppressing or depleting antigen-specific pathogenic T and B cells. The design of tolerogenic vaccines vary greatly, but they all deliver a disease-relevant antigen with or without a tolerogenic adjuvant. Tolerogenic adjuvants are molecules which mediate anti-inflammatory or immunoregulatory effects and enhance vaccine efficacy by modulating the immune environment to favor a tolerogenic immune response to the vaccine antigen. Tolerogenic adjuvants act through several mechanisms, including immunosuppression, modulation of cytokine signaling, vitamin signaling, and modulation of immunological synapse signaling. This review seeks to provide a comprehensive examination of tolerogenic adjuvants currently utilized in tolerogenic vaccines, describing their mechanism of action and examples of their use in human clinical trials and animal models of disease.
Collapse
Affiliation(s)
- Sabine Arve-Butler
- Amgen R&D Postdoctoral Fellows Program, Amgen Inc, South San Francisco, CA, United States
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | | |
Collapse
|
2
|
Kawai K, Uchiyama M, Hester J, Issa F. IL-33 drives the production of mouse regulatory T cells with enhanced in vivo suppressive activity in skin transplantation. Am J Transplant 2021; 21:978-992. [PMID: 33314772 PMCID: PMC7613121 DOI: 10.1111/ajt.16266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 01/25/2023]
Abstract
Regulatory T cells (Tregs) are crucial mediators of immune homeostasis with the ability to modulate allogeneic response and control transplant rejection. Although Treg-based cell therapies have shown immense promise, methods to optimize current strategies are critical for successful implementation within the clinic. IL-33 is a cytokine with pleiotropic properties and effects on Treg function and development. In this study, we explored the unique properties of Treg populations activated through the IL-33/ST2 pathway, aiming to exploit their tolerogenic properties for cell therapy. We show that treatment with exogenous IL-33 results in a generalized downregulation of genes critical to T cell biology together with an upregulation of Treg-associated genes. Tregs that develop in response to IL-33 upregulate critical Treg-associated markers, yet without developing enhanced in vitro suppressive capacity. Conversely, these Tregs display potent regulatory activity in vivo, promoting long-term skin allograft survival in a stringent transplantation model. Detailed transcriptomic and immunophenotypic analyses of IL-33-expanded Tregs reveal an enhancement in graft-homing chemokine receptors, which may be partly responsible for their superior in vivo activity that is not reflected in vitro. IL-33 treatment is therefore an attractive adjunctive strategy for patients receiving Treg cell therapeutics.
Collapse
Affiliation(s)
- Kento Kawai
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Masateru Uchiyama
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK,Department of Surgery, Teikyo University, Tokyo, Japan
| | - Joanna Hester
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Link CW, Rau CN, Udoye CC, Ragab M, Korkmaz RÜ, Comdühr S, Clauder AK, Lindemann T, Frehse B, Hofmann K, Almeida LN, Laumonnier Y, Beidaq AE, Finkelman FD, Manz RA. IL-2-Agonist-Induced IFN-γ Exacerbates Systemic Anaphylaxis in Food Allergen-Sensitized Mice. Front Immunol 2020; 11:596772. [PMID: 33362780 PMCID: PMC7759672 DOI: 10.3389/fimmu.2020.596772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022] Open
Abstract
Food allergies are common, costly and potentially life-threatening disorders. They are driven by Th2, but inhibited by Th1 reactions. There is also evidence indicating that IL-2 agonist treatment inhibits allergic sensitization through expansion of regulatory T cells. Here, we tested the impact of an IL-2 agonist in a novel model for food allergy to hen´s egg in mice sensitized without artificial adjuvants. Prophylactic IL-2 agonist treatment expanded Treg populations and inhibited allergen-specific sensitization. However, IL-2 agonist treatment of already sensitized mice increased mast cell responses and allergic anaphylaxis upon allergen re-challenge. These effects depended on allergen-specific IgE and were mediated through IFN-γ, as shown by IgE transfer and blockade of IFN-γ with monoclonal antibodies. These results suggest that although shifting the allergic reaction toward a Treg/Th1 response inhibits allergic sensitization, the prototypic Th1 cytokine IFN-γ promotes mast cell activation and allergen-induced anaphylaxis in individuals that are already IgE-sensitized. Hence, while a Th1 response can prevent the development of food allergy, IFN-γ has the ability to exacerbate already established food allergy.
Collapse
Affiliation(s)
| | - Christina N. Rau
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Christopher C. Udoye
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Mohab Ragab
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | - Rabia Ü. Korkmaz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Sara Comdühr
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Ann-Katrin Clauder
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Timo Lindemann
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Britta Frehse
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Katharina Hofmann
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Larissa N. Almeida
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Asmaa El Beidaq
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Fred D. Finkelman
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, University of Cincinnati College of Medicine and the Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Rudolf A. Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
Zhang H, Madi A, Yosef N, Chihara N, Awasthi A, Pot C, Lambden C, Srivastava A, Burkett PR, Nyman J, Christian E, Etminan Y, Lee A, Stroh H, Xia J, Karwacz K, Thakore PI, Acharya N, Schnell A, Wang C, Apetoh L, Rozenblatt-Rosen O, Anderson AC, Regev A, Kuchroo VK. An IL-27-Driven Transcriptional Network Identifies Regulators of IL-10 Expression across T Helper Cell Subsets. Cell Rep 2020; 33:108433. [PMID: 33238123 PMCID: PMC7771052 DOI: 10.1016/j.celrep.2020.108433] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Interleukin-27 (IL-27) is an immunoregulatory cytokine that suppresses inflammation through multiple mechanisms, including induction of IL-10, but the transcriptional network mediating its diverse functions remains unclear. Combining temporal RNA profiling with computational algorithms, we predict 79 transcription factors induced by IL-27 in T cells. We validate 11 known and discover 5 positive (Cebpb, Fosl2, Tbx21, Hlx, and Atf3) and 2 negative (Irf9 and Irf8) Il10 regulators, generating an experimentally refined regulatory network for Il10. We report two central regulators, Prdm1 and Maf, that cooperatively drive the expression of signature genes induced by IL-27 in type 1 regulatory T cells, mediate IL-10 expression in all T helper cells, and determine the regulatory phenotype of colonic Foxp3+ regulatory T cells. Prdm1/Maf double-knockout mice develop spontaneous colitis, phenocopying ll10-deficient mice. Our work provides insights into IL-27-driven transcriptional networks and identifies two shared Il10 regulators that orchestrate immunoregulatory programs across T helper cell subsets. Zhang et al. construct a transcriptional network for IL-27-mediated Il10 production in CD4 T cells, characterize the function of 16 Il10 regulators, and uncover the role of two transcription factors, Prdm1 and Maf, in driving Il10 production in all T helper cells and in maintaining immune homeostasis in the colon.
Collapse
Affiliation(s)
- Huiyuan Zhang
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Asaf Madi
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Nir Yosef
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Department of Electrical Engineering and Computer Science and Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Norio Chihara
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Amit Awasthi
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Center for Human Microbial Ecology, Translational Health Science and Technology Institute(an autonomous institute of the Department of Biotechnology, Government of India), NCR Biotech Science Cluster, Faridabad, India
| | - Caroline Pot
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Laboratories of Neuroimmunology, Division of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Conner Lambden
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Patrick R Burkett
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Biogen, 300 Binney St., Cambridge, MA, USA
| | - Jackson Nyman
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elena Christian
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yasaman Etminan
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Annika Lee
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Helene Stroh
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Junrong Xia
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Katarzyna Karwacz
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Pratiksha I Thakore
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nandini Acharya
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Alexandra Schnell
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Chao Wang
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Lionel Apetoh
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; INSERM, U1231, Dijon, France
| | | | - Ana C Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Department of Biology, Koch Institute and Ludwig Center, Massachusetts Institute of Technology, Cambridge, MA, USA; Genentech, 1 DNA Way, South San Francisco, CA, USA.
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Guo T, Zou L, Ni J, Zhou Y, Ye L, Yang X, Zhu Z. Regulatory T Cells: An Emerging Player in Radiation-Induced Lung Injury. Front Immunol 2020; 11:1769. [PMID: 32849634 PMCID: PMC7417370 DOI: 10.3389/fimmu.2020.01769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022] Open
Abstract
Regulatory T cells (Tregs), which have long been recognized as essential regulators of both inflammation and autoimmunity, also impede effective antitumor immune response due to their immunosuppressive properties. Combined radiotherapy and immunotherapeutic interventions focusing on the removal of Tregs have recently garnered interest as a promising strategy to reverse immunosuppression. Meanwhile, Tregs are emerging as a key player in the pathogenesis of radiation-induced lung injury (RILI), a frequent and potentially life-threatening complication of thoracic radiotherapy. Recognition of the critical role of Tregs in RILI raises the important question of whether radiotherapy combined with Treg-targeting immunotherapy offers any beneficial effects in the protection of normal lung tissue. This present review focuses on the contributions of Tregs to RILI, with particular emphasis on the suspected differential role of Tregs in the pneumonitic phase and fibrotic phase of RILI. We also introduce recent progress on the potential mechanisms by which Tregs modulate RILI and the crosstalk among Tregs, other infiltrating T cells, fibrocytes, and resident epithelial cells driving disease pathogenesis. Finally, we discuss whether Tregs also hold promise as a potential target for immunotherapeutic interventions for RILI.
Collapse
Affiliation(s)
- Tiantian Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liqing Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Luxi Ye
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
6
|
He R, Li L, Kong Y, Tian L, Tian X, Fang P, Bian M, Liu Z. Preventing murine transfusion-related acute lung injury by expansion of CD4 + CD25 + FoxP3 + Tregs using IL-2/anti-IL-2 complexes. Transfusion 2018; 59:534-544. [PMID: 30499590 DOI: 10.1111/trf.15064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Transfusion-related acute lung injury (TRALI) is one of the most serious adverse events following transfusion, and there is no specific treatment in clinical practice. However, regulatory T cells (Tregs) have been suggested to play a potential role in the treatment of TRALI. This study investigated whether interleukin (IL)-2 or IL-2/anti-IL-2 complexes (IL-2c), which are mediators of Treg expansion, can modulate the severity of antibody-mediated TRALI in vivo. STUDY DESIGN AND METHODS This study utilized a mouse model of the "two-hit" mechanism: BALB/c mice were primed with lipopolysaccharide (LPS) as the first hit, and then TRALI was induced by injecting major histocompatibility complex Class I antibodies. Mice injected with LPS only or LPS combined with isotype control antibodies served as controls. For the Treg-depleted groups, mice were infused with anti-mouse IL-2Rα first and then subjected to the same treatments as the TRALI group. Regarding IL-2- and IL-2c-treated mice, recombinant murine IL-2 or IL-2c was intraperitoneally administered to mice for 5 consecutive days before induction of the TRALI model. Samples were collected 2 hours after TRALI induction. RESULTS Prophylactic administration of IL-2 or IL-2c to mice prevented the onset of edema, pulmonary protein levels, and proinflammatory factors that inhibited polymorphonuclear neutrophil aggregation in the lungs. Furthermore, the percentage of CD4+ CD25+ FoxP3+ Tregs was expanded in vivo using IL-2 and IL-2c compared to TRALI mice, as was confirmed through analysis of the spleen, blood, and lung. CONCLUSION This study validates that the protective mechanisms against TRALI involve CD4+ CD25+ FoxP3+ Tregs, which can be expanded in vivo by IL-2 and IL-2c. This results in increased IL-10 levels and decreased IL-17A, thereby prophylactically preventing antibody-mediated murine TRALI.
Collapse
Affiliation(s)
- Rui He
- Department of Blood Transfusion, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ling Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yujie Kong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Li Tian
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xue Tian
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Peng Fang
- Department of Blood Transfusion, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Maohong Bian
- Department of Blood Transfusion, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhong Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
7
|
Yu L, Yang F, Zhang F, Guo D, Li L, Wang X, Liang T, Wang J, Cai Z, Jin H. CD69 enhances immunosuppressive function of regulatory T-cells and attenuates colitis by prompting IL-10 production. Cell Death Dis 2018; 9:905. [PMID: 30185773 PMCID: PMC6125584 DOI: 10.1038/s41419-018-0927-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/07/2018] [Accepted: 07/30/2018] [Indexed: 01/09/2023]
Abstract
Foxp3+ regulatory T cells (Tregs) can inhibit immune responses and maintain immune tolerance by secreting immunosuppressive TGF-β1 and IL-10. However, the efficiency of Tregs become the major obstacle to their use for immunotherapy. In this study, we investigated the relevance of the C-type lectin receptor CD69 to the suppressive function. Compared to CD4+Foxp3+CD69− Tregs (CD69− Tregs), CD4+Foxp3+CD69+ Tregs (CD69+ Tregs) displayed stronger ability to maintain immune tolerance. CD69+ Tregs expressed higher levels of suppression-associated markers such as CTLA-4, ICOS, CD38 and GITR, and secreted higher levels of IL-10 but not TGF-β1. CD69+ Tregs from Il10+/+ rather than Il10−/− mice significantly inhibit the proliferation of CD4+ T cells. CD69 over-expression stimulated higher levels of IL-10 and c-Maf expression, which was compromised by silencing of STAT3 or STAT5. In addition, the direct interaction of STAT3 with the c-Maf promoter was detected in cells with CD69 over-expression. Moreover, adoptive transfer of CD69+ Tregs but not CD69−Tregs or CD69+ Tregs deficient in IL-10 dramatically prevented the development of inflammatory bowel disease (IBD) in mice. Taken together, CD69 is important to the suppressive function of Tregs by promoting IL-10 production. CD69+ Tregs have the potential to develop new therapeutic approach for autoimmune diseases like IBD.
Collapse
Affiliation(s)
- Lei Yu
- Laboratory of Cancer Biology, The Key Lab of Biotherapy in Zhejiang Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.,Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Yang
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China.,Chronic Disease Research Institute, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fanghui Zhang
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Danfeng Guo
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Ling Li
- Laboratory of Cancer Biology, The Key Lab of Biotherapy in Zhejiang Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianli Wang
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zhijian Cai
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
| | - Hongchuan Jin
- Laboratory of Cancer Biology, The Key Lab of Biotherapy in Zhejiang Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Izquierdo C, Ortiz AZ, Presa M, Malo S, Montoya A, Garabatos N, Mora C, Verdaguer J, Stratmann T. Treatment of T1D via optimized expansion of antigen-specific Tregs induced by IL-2/anti-IL-2 monoclonal antibody complexes and peptide/MHC tetramers. Sci Rep 2018; 8:8106. [PMID: 29802270 PMCID: PMC5970271 DOI: 10.1038/s41598-018-26161-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/09/2018] [Indexed: 01/08/2023] Open
Abstract
Type 1 diabetes can be overcome by regulatory T cells (Treg) in NOD mice yet an efficient method to generate and maintain antigen-specific Treg is difficult to come by. Here, we devised a combination therapy of peptide/MHC tetramers and IL-2/anti-IL-2 monoclonal antibody complexes to generate antigen-specific Treg and maintain them over extended time periods. We first optimized treatment protocols conceived to obtain an improved islet-specific Treg/effector T cell ratio that led to the in vivo expansion and activation of these Treg as well as to an improved suppressor function. Optimized protocols were applied to treatment for testing diabetes prevention in NOD mice as well as in an accelerated T cell transfer model of T1D. The combined treatment led to robust protection against diabetes, and in the NOD model, to a close to complete prevention of insulitis. Treatment was accompanied with increased secretion of IL-10, detectable in total splenocytes and in Foxp3− CD4 T cells. Our data suggest that a dual protection mechanism takes place by the collaboration of Foxp3+ and Foxp3− regulatory cells. We conclude that antigen-specific Treg are an important target to improve current clinical interventions against this disease.
Collapse
Affiliation(s)
- Cristina Izquierdo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Angela Zarama Ortiz
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Otsuka Pharmaceutical, S.A, Barcelona, Spain
| | - Maximiliano Presa
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,The Jackson Laboratory, Bar Harbor, USA
| | - Sara Malo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Anna Montoya
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Danone Nutricia, Madrid, Spain
| | - Nahir Garabatos
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Benaroya Research Institute, Seattle, USA
| | - Conchi Mora
- Immunology Unit, Department of Experimental Medicine, School of Medicine, University of Lleida and IRB Lleida, 25008, Lleida, Spain
| | - Joan Verdaguer
- Immunology Unit, Department of Experimental Medicine, School of Medicine, University of Lleida and IRB Lleida, 25008, Lleida, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Thomas Stratmann
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
9
|
Luo X, Pan Z, Luo S, Liu Q, Huang S, Yang G, Nong F, Fu Y, Deng X, Zhou L. Effects of ceftriaxone-induced intestinal dysbacteriosis on regulatory T cells validated by anaphylactic mice. Int Immunopharmacol 2018; 60:221-227. [PMID: 29772494 DOI: 10.1016/j.intimp.2018.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/27/2022]
Abstract
Both probiotics and pathogens in the human gut express pathogen-associated molecular patterns (PAMPs) and die with the release of endotoxin and bacterial DNA, which can stimulate our immune system and cause immune reaction. However, it's interesting and fascinating to address why the normal intestinal flora will not generate immunological rejection like the pathogen does. By investigating the changes in cells and molecules relevant to immune tolerance in mice with ceftriaxone-induced dysbacteriosis, our study discovered that both the Evenness indexes and Shannon Wiener index of intestinal flora showed a decrease in dysbacteriosis mice. Moreover, the proportion of αβ+TCR+CD3+CD4-CD8- cells, CD3+γδTCR+ cells and CD4+CD25+FoxP3+ cells in the Peyer's patches (PPs), mesenteric lymph nodes (MLNs) and spleen (SP) and the level of TGF-β1, IL-2, IL-4 and IL-10 in the serum also changed. Intestinal dysbacteriosis in an asthma murine model resulted in enhancement of immunologic response to the allergen ovalbumin (OVA), which was an agent that aggravates asthma symptoms. In summary, it is integral to maintain a certain amount or variety of intestinal microflora for regulatory T cells to act in averting hypersensitivity.
Collapse
Affiliation(s)
- Xia Luo
- Institute: School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, China
| | - Zengfeng Pan
- Institute: School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, China
| | - Shuang Luo
- Institute: School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, China
| | - Qi Liu
- Institute: School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, China
| | - Shaowei Huang
- Institute: School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, China
| | - Guanghua Yang
- Institute: School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, China
| | - Feifei Nong
- Institute: School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, China
| | - Yajun Fu
- Institute: School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, China
| | - Xiangliang Deng
- Infinitus Chinese Herbal Immunity Research Centre, Guangzhou, China
| | - Lian Zhou
- Institute: School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, China.
| |
Collapse
|
10
|
Strain-specific helper T cell profile in the gut-associated lymphoid tissue. Immunol Lett 2017; 190:282-288. [DOI: 10.1016/j.imlet.2017.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022]
|
11
|
Gregor CE, Foeng J, Comerford I, McColl SR. Chemokine-Driven CD4 + T Cell Homing: New Concepts and Recent Advances. Adv Immunol 2017; 135:119-181. [DOI: 10.1016/bs.ai.2017.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Loyher PL, Rochefort J, Baudesson de Chanville C, Hamon P, Lescaille G, Bertolus C, Guillot-Delost M, Krummel MF, Lemoine FM, Combadière C, Boissonnas A. CCR2 Influences T Regulatory Cell Migration to Tumors and Serves as a Biomarker of Cyclophosphamide Sensitivity. Cancer Res 2016; 76:6483-6494. [PMID: 27680685 DOI: 10.1158/0008-5472.can-16-0984] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/07/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022]
Abstract
The CCL2 chemokine receptor CCR2 drives cancer by mediating the recruitment of monocytes and myeloid-derived suppressor cells to the tumor microenvironment. In this study, we extend the significance of CCR2 in this setting by identifying a new role for it in mediating recruitment of CD4+ T regulatory cells (Treg). Following tumor initiation, an expanded population of CCR2+ Tregs required CCR2 expression to traffic between draining lymph nodes (dLN) and the tumor. This Treg subset was enriched in the fraction of tumor antigen-specific cells in the dLN, where they displayed an activated immunosuppressive phenotype. Notably, in mouse models, low-dose cyclophosphamide treatment preferentially depleted CCR2+ Treg, enhancing priming of tumor-specific CD8+ T cells. In the MMTV-PyMT transgenic mouse model of breast cancer and in oral squamous cell carcinoma patients, tumor development was associated with decreased blood frequency and inversely increased tumor frequency of CCR2+ Tregs. Our results define a novel subset of CCR2+ Treg involved in tumoral immune escape, and they offer evidence that this Treg subset may be preferentially eradicated by low-dose cyclophosphamide treatment. Cancer Res; 76(22); 6483-94. ©2016 AACR.
Collapse
Affiliation(s)
- Pierre-Louis Loyher
- Sorbonne Universités, UPMC Université Paris 06 UMR_S1135, Institut Universitaire de Cancérologie (IUC), Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Juliette Rochefort
- Sorbonne Universités, UPMC Université Paris 06 UMR_S1135, Institut Universitaire de Cancérologie (IUC), Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Camille Baudesson de Chanville
- Sorbonne Universités, UPMC Université Paris 06 UMR_S1135, Institut Universitaire de Cancérologie (IUC), Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Pauline Hamon
- Sorbonne Universités, UPMC Université Paris 06 UMR_S1135, Institut Universitaire de Cancérologie (IUC), Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Géraldine Lescaille
- Sorbonne Universités, UPMC Université Paris 06 UMR_S1135, Institut Universitaire de Cancérologie (IUC), Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Chloé Bertolus
- Sorbonne Universités, UPMC Université Paris 06 UMR_S1135, Institut Universitaire de Cancérologie (IUC), Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France.,Department of Maxillofacial Surgery, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Maude Guillot-Delost
- Sorbonne Universités, UPMC Université Paris 06 UMR_S1135, Institut Universitaire de Cancérologie (IUC), Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Matthew F Krummel
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - François M Lemoine
- Sorbonne Universités, UPMC Université Paris 06 UMR_S1135, Institut Universitaire de Cancérologie (IUC), Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Christophe Combadière
- Sorbonne Universités, UPMC Université Paris 06 UMR_S1135, Institut Universitaire de Cancérologie (IUC), Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Alexandre Boissonnas
- Sorbonne Universités, UPMC Université Paris 06 UMR_S1135, Institut Universitaire de Cancérologie (IUC), Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France.
| |
Collapse
|
13
|
El Beidaq A, Link CWM, Hofmann K, Frehse B, Hartmann K, Bieber K, Martin SF, Ludwig RJ, Manz RA. In Vivo Expansion of Endogenous Regulatory T Cell Populations Induces Long-Term Suppression of Contact Hypersensitivity. THE JOURNAL OF IMMUNOLOGY 2016; 197:1567-76. [PMID: 27439515 DOI: 10.4049/jimmunol.1600508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/19/2016] [Indexed: 12/29/2022]
Abstract
Contact hypersensitivity (CHS) of murine skin serves as a model of allergic contact dermatitis. Hapten-specific CD8 T cells and neutrophils represent the major effector cells driving this inflammatory reaction whereas Foxp3(+) regulatory T cells (Tregs) control the severity of inflammation. However, whether in vivo expansion of endogenous Tregs can downregulate CHS-mediated inflammation remains to be elucidated. In this study, we addressed this issue by using injection of an IL-2/anti-IL-2 mAb JES6-1 complex (IL-2/JES6-1) as a means of Treg induction in 2,4,6-trinitrochlorobenzene-induced CHS. IL-2/JES6-1 injection before or after hapten sensitization led to a considerable reduction of skin inflammation, even when rechallenged up to 3 wk after the last treatment. Conversely, Treg depletion re-established the CHS response in IL-2/JES6-1-treated mice. IL-2/JES6-1 injection resulted in increased frequencies of natural and peripheral Tregs in spleen and draining lymph nodes (LNs), elevated IL-10 and TGF-β production by CD4 T cells, reduced CD86 expression by dendritic cells, and led to lower numbers of hapten-specific IFN-γ-producing CD8 T effector cells in LNs. Neutrophil and CD8 T cell infiltration was reduced in inflamed ear tissue, whereas CTLA-4(+)Foxp3(+) Treg frequencies were augmented. Adoptive transfer of LN cells of sensitized mice into recipients treated with IL-2/JES6-1 showed impaired CHS. Our results show that in vivo Treg expansion results in a prolonged CHS suppression, a sustained reduction of hapten-specific CD8 T cells, and a decrease in effector cell influx in inflamed tissue.
Collapse
Affiliation(s)
- Asmaa El Beidaq
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany
| | - Christopher W M Link
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany
| | - Katharina Hofmann
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany
| | - Britta Frehse
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany
| | - Karin Hartmann
- Department of Dermatology, University of Lübeck, 23538 Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23538 Lübeck, Germany; and
| | - Stefan F Martin
- Allergy Research Group, Department of Dermatology, Medical Center, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf J Ludwig
- Department of Dermatology, University of Lübeck, 23538 Lübeck, Germany; Lübeck Institute of Experimental Dermatology, University of Lübeck, 23538 Lübeck, Germany; and
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany;
| |
Collapse
|
14
|
High-dose cyclophosphamide induces specific tumor immunity with concomitant recruitment of LAMP1/CD107a-expressing CD4-positive T cells into tumor sites. Cancer Lett 2015; 366:93-9. [PMID: 26116901 DOI: 10.1016/j.canlet.2015.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/01/2015] [Accepted: 06/15/2015] [Indexed: 12/31/2022]
Abstract
Cancer chemotherapy regimens, particularly those employing high-dose cytotoxic drugs such as cyclophosphamide (CTX), have been considered to be immune suppressive. However, we observed that a single administration of high-dose CTX abolished tumors arising from subcutaneous injection of a mouse hepatoma cell line and subsequently induced specific tumor immunity. Depletion of T cells, specifically CD4(+) T cells, abrogated the CTX-mediated tumor regression. CTX treatment induced the rapid recruitment of CD4(+) T cells into the tumors, and these recruited cells initiated expression of LAMP1/CD107a, a cytotoxic granule molecule, and granzyme B in the absence of antigen presentation at draining lymph nodes and proliferation in the tumor tissues. Moreover, CTX enhanced the expression of a CC chemokine, CCL3, in tumor tissues, and CTX-mediated tumor regression was attenuated in mice deficient in CCR5, the receptor for this chemokine. Consistently, less CTX-induced accumulation of intratumoral LAMP1/CD107a-expressing CD4(+) T cells was observed in mice receiving splenocytes derived from CCR5-deficient mice than in those receiving splenocytes derived from WT mice. Thus, CTX induces the expression of CCL3, which induces the intratumoral migration of CD4(+) T cells expressing cytotoxic molecules, leading to tumor eradication and subsequent specific tumor immunity.
Collapse
|