1
|
Inoue F, Sone K, Kumegawa K, Hachijo R, Suzuki E, Tanimoto S, Tsuboyama N, Kato K, Toyohara Y, Takahashi Y, Kusakabe M, Kukita A, Honjoh H, Nishijima A, Taguchi A, Miyamoto Y, Tanikawa M, Iriyama T, Mori M, Wada-Hiraike O, Oda K, Suzuki H, Maruyama R, Osuga Y. Inhibition of protein arginine methyltransferase 6 activates interferon signaling and induces the apoptosis of endometrial cancer cells via histone modification. Int J Oncol 2024; 64:32. [PMID: 38299254 PMCID: PMC10836505 DOI: 10.3892/ijo.2024.5620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 10/10/2023] [Indexed: 02/02/2024] Open
Abstract
Histone modification, a major epigenetic mechanism regulating gene expression through chromatin remodeling, introduces dynamic changes in chromatin architecture. Protein arginine methyltransferase 6 (PRMT6) is overexpressed in various types of cancer, including prostate, lung and endometrial cancer (EC). Epigenome regulates the expression of endogenous retrovirus (ERV), which activates interferon signaling related to cancer. The antitumor effects of PRMT6 inhibition and the role of PRMT6 in EC were investigated, using epigenome multi‑omics analysis, including an assay for chromatin immunoprecipitation sequencing (ChIP‑seq) and RNA sequencing (RNA‑seq). The expression of PRMT6 in EC was analyzed using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and immunohistochemistry (IHC). The prognostic impact of PRMT6 expression was evaluated using IHC. The effects of PRMT6‑knockdown (KD) were investigated using cell viability and apoptosis assays, as well as its effects on the epigenome, using ChIP‑seq of H3K27ac antibodies and RNA‑seq. Finally, the downstream targets identified by multi‑omics analysis were evaluated. PRMT6 was overexpressed in EC and associated with a poor prognosis. PRMT6‑KD induced histone hypomethylation, while suppressing cell growth and apoptosis. ChIP‑seq revealed that PRMT6 regulated genomic regions related to interferons and apoptosis through histone modifications. The RNA‑seq data demonstrated altered interferon‑related pathways and increased expression of tumor suppressor genes, including NK6 homeobox 1 and phosphoinositide‑3‑kinase regulatory subunit 1, following PRMT6‑KD. RT‑qPCR revealed that eight ERV genes which activated interferon signaling were upregulated by PRMT6‑KD. The data of the present study suggested that PRMT6 inhibition induced apoptosis through interferon signaling activated by ERV. PRMT6 regulated tumor suppressor genes and may be a novel therapeutic target, to the best of our knowledge, in EC.
Collapse
Affiliation(s)
- Futaba Inoue
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Ryuta Hachijo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Eri Suzuki
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Saki Tanimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Natsumi Tsuboyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kosuke Kato
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yusuke Toyohara
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yu Takahashi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Misako Kusakabe
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Asako Kukita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Harunori Honjoh
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Akira Nishijima
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuichiro Miyamoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mayuyo Mori
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Reo Maruyama
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
2
|
Shao Y, Fu J, Zhan T, Yin J, Xu J, Lu Y, Luo Q, Yu C. Inhibition of CD4 + T cells by fanchinoline via miR506-3p/NFATc1 in Sjögren's syndrome. Inflammopharmacology 2023; 31:2431-2443. [PMID: 37450074 DOI: 10.1007/s10787-023-01279-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/02/2023] [Indexed: 07/18/2023]
Abstract
The hyperproliferation and hyperactivation of CD4 + T cells in salivary gland tissues are hallmarks of Sjögren's syndrome (SS). Fangchinoline (Fan) is extracted from the root of Stephania tetrandra Moore, which is used for treating rheumatic diseases in many studies. This study aimed to identify the mechanism underlying the inhibition of CD4 + T cells by Fan in the SS model NOD/ShiLtj mice. In vivo, Fan alleviated the dry mouth and lymphocyte infiltration in the salivary gland tissues of the NOD/ShiLtj mice and inhibited the number of CD4 + T cells in the infiltrating focus. In vitro, Fan's inhibitory effect on the proliferation of mouse primary CD4 + T cells was verified by CFSE and EdU tests. Furthermore, qRT-PCR and WB analysis confirmed that Fan could inhibit the expression of NFATc1 (Nuclear factor of activated T-cells, cytoplasmic 1) by upregulating miR-506-3p. Dual luciferase reporter gene assay suggested that miR-506-3p interacted with NFATc1. CFSE and EdU tests showed that Fan could inhibit the proliferation of CD4 + T cells through miR-506-3p/NFATc1. The key role of NFATc1 in the activation of CD4 + T cells and the high expression of NFATc1 in samples from SS patients suggested that NFATc1 might become a therapeutic target for SS. In vivo, 11R-VIVIT (NFATc1 inhibitor) alleviated SS-like symptoms. This study not only explained the new mechanism of Fan inhibiting proliferation of CD4 + T cells and alleviating SS-like symptoms but also provided NFATc1 as a potential target for the subsequent research and treatment of SS.
Collapse
Affiliation(s)
- Yanxiong Shao
- Department of Oral Surgery, Shanghai Ninth People's HospitalCollege of Stomatology, National Center for Stomatology, National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Zhizaoju Road 639, Shanghai, 200011, China
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jiayao Fu
- Department of Oral Surgery, Shanghai Ninth People's HospitalCollege of Stomatology, National Center for Stomatology, National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Zhizaoju Road 639, Shanghai, 200011, China
| | - Tianle Zhan
- Department of Oral Surgery, Shanghai Ninth People's HospitalCollege of Stomatology, National Center for Stomatology, National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Zhizaoju Road 639, Shanghai, 200011, China
| | - Junhao Yin
- Department of Oral Surgery, Shanghai Ninth People's HospitalCollege of Stomatology, National Center for Stomatology, National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Zhizaoju Road 639, Shanghai, 200011, China
| | - Jiabao Xu
- Department of Oral Surgery, Shanghai Ninth People's HospitalCollege of Stomatology, National Center for Stomatology, National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Zhizaoju Road 639, Shanghai, 200011, China
| | - Yifan Lu
- Department of Oral Surgery, Shanghai Ninth People's HospitalCollege of Stomatology, National Center for Stomatology, National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Zhizaoju Road 639, Shanghai, 200011, China
| | - Qi Luo
- Department of Oral Surgery, Shanghai Ninth People's HospitalCollege of Stomatology, National Center for Stomatology, National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Zhizaoju Road 639, Shanghai, 200011, China
| | - Chuangqi Yu
- Department of Oral Surgery, Shanghai Ninth People's HospitalCollege of Stomatology, National Center for Stomatology, National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Zhizaoju Road 639, Shanghai, 200011, China.
| |
Collapse
|
3
|
Shahbazi R, Yasavoli-Sharahi H, Alsadi N, Sharifzad F, Fang S, Cuenin C, Cahais V, Chung FFL, Herceg Z, Matar C. Lentinula edodes Cultured Extract and Rouxiella badensis subsp. acadiensis (Canan SV-53) Intake Alleviates Immune Deregulation and Inflammation by Modulating Signaling Pathways and Epigenetic Mechanisms. Int J Mol Sci 2023; 24:14610. [PMID: 37834058 PMCID: PMC10572597 DOI: 10.3390/ijms241914610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Puberty is a critical developmental period of life characterized by marked physiological changes, including changes in the immune system and gut microbiota development. Exposure to inflammation induced by immune stressors during puberty has been found to stimulate central inflammation and lead to immune disturbance at distant sites from the gut; however, its enduring effects on gut immunity are not well explored. Therefore, in this study, we used a pubertal lipopolysaccharides (LPS)-induced inflammation mouse model to mimic pubertal exposure to inflammation and dysbiosis. We hypothesized that pubertal LPS-induced inflammation may cause long-term dysfunction in gut immunity by enduring dysregulation of inflammatory signaling and epigenetic changes, while prebiotic/probiotic intake may mitigate the gut immune system deregulation later in life. To this end, four-week-old female Balb/c mice were fed prebiotics/probiotics and exposed to LPS in the pubertal window. To better decipher the acute and enduring immunoprotective effects of biotic intake, we addressed the effect of treatment on interleukin (IL)-17 signaling related-cytokines and pathways. In addition, the effect of treatment on gut microbiota and epigenetic alterations, including changes in microRNA (miRNA) expression and DNA methylation, were studied. Our results revealed a significant dysregulation in selected cytokines, proteins, and miRNAs involved in key signaling pathways related to IL-17 production and function, including IL-17A and F, IL-6, IL-1β, transforming growth factor-β (TGF-β), signal transducer and activator of transcription-3 (STAT3), p-STAT3, forkhead box O1 (FOXO1), and miR-145 in the small intestine of adult mice challenged with LPS during puberty. In contrast, dietary interventions mitigated the lasting adverse effects of LPS on gut immune function, partly through epigenetic mechanisms. A DNA methylation analysis demonstrated that enduring changes in gut immunity in adult mice might be linked to differentially methylated genes, including Lpb, Rorc, Runx1, Il17ra, Rac1, Ccl5, and Il10, involved in Th17 cell differentiation and IL-17 production and signaling. In addition, prebiotic administration prevented LPS-induced changes in the gut microbiota in pubertal mice. Together, these results indicate that following a healthy diet rich in prebiotics and probiotics is an optimal strategy for programming immune system function in the critical developmental windows of life and controlling inflammation later in life.
Collapse
Affiliation(s)
- Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (H.Y.-S.); (N.A.)
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (H.Y.-S.); (N.A.)
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (H.Y.-S.); (N.A.)
| | - Farzaneh Sharifzad
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Sandra Fang
- Translational Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (V.C.); (F.F.-L.C.); (Z.H.)
| | - Vincent Cahais
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (V.C.); (F.F.-L.C.); (Z.H.)
| | - Felicia Fei-Lei Chung
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (V.C.); (F.F.-L.C.); (Z.H.)
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (V.C.); (F.F.-L.C.); (Z.H.)
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (H.Y.-S.); (N.A.)
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
4
|
Samarpita S, Li X. Leveraging Exosomes as the Next-Generation Bio-Shuttles: The Next Biggest Approach against Th17 Cell Catastrophe. Int J Mol Sci 2023; 24:ijms24087647. [PMID: 37108809 PMCID: PMC10142210 DOI: 10.3390/ijms24087647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, the launch of clinical-grade exosomes is rising expeditiously, as they represent a new powerful approach for the delivery of advanced therapies and for diagnostic purposes for various diseases. Exosomes are membrane-bound extracellular vesicles that can act as biological messengers between cells, in the context of health and disease. In comparison to several lab-based drug carriers, exosome exhibits high stability, accommodates diverse cargo loads, elicits low immunogenicity and toxicity, and therefore manifests tremendous perspectives in the development of therapeutics. The efforts made to spur exosomes in drugging the untreatable targets are encouraging. Currently, T helper (Th) 17 cells are considered the most prominent factor in the establishment of autoimmunity and several genetic disorders. Current reports have indicated the importance of targeting the development of Th17 cells and the secretion of its paracrine molecule, interleukin (IL)-17. However, the present-day targeted approaches exhibit drawbacks, such as high cost of production, rapid transformation, poor bioavailability, and importantly, causing opportunistic infections that ultimately hamper their clinical applications. To overcome this hurdle, the potential use of exosomes as vectors seem to be a promising approach for Th17 cell-targeted therapies. With this standpoint, this review discusses this new concept by providing a snapshot of exosome biogenesis, summarizes the current clinical trials of exosomes in several diseases, analyzes the prospect of exosomes as an established drug carrier and delineates the present challenges, with an emphasis on their practical applications in targeting Th17 cells in diseases. We further decode the possible future scope of exosome bioengineering for targeted drug delivery against Th17 cells and its catastrophe.
Collapse
Affiliation(s)
- Snigdha Samarpita
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Li J, Zhao J, Chen L, Gao H, Zhang J, Wang D, Zou Y, Qin Q, Qu Y, Li J, Xiong Y, Min Z, Yan M, Mao Z, Xue Z. α-Synuclein induces Th17 differentiation and impairs the function and stability of Tregs by promoting RORC transcription in Parkinson's disease. Brain Behav Immun 2023; 108:32-44. [PMID: 36343753 DOI: 10.1016/j.bbi.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons (DA) and the accumulation of Lewy body deposits composed of alpha-Synuclein (α-Syn), which act as antigenic epitopes to drive cytotoxic T-cell responses in PD. Increased T helper 17 (Th17) cells and dysfunctional regulatory T cells (Tregs) have been reported to be associated with the loss of DA in PD. However, the mechanism underlying the Th17/Treg imbalance remains unknown. METHODS Here, we examined the percentage of Th17 cells, the percentage of Tregs and the α-Syn level and analysed their correlations in the peripheral blood of PD patients and in the substantia nigra pars compacta (SNpc) and spleen of MPTP-treated mice and A53 transgenic mice. We assessed the effect of α-Syn on the stability and function of Tregs and the differentiation of Th17 cells and evaluated the role of retinoid-related orphan nuclear receptor (RORγt) upregulation in α-Syn stimulation in vivo and in vitro. RESULTS We found that the α-Syn level and severity of motor symptoms were positively correlated with the increase in Th17 cells and decrease in Tregs in PD patients. Moreover, α-Syn stimulation led to the loss of Forkhead box protein P3 (FOXP3) expression in Tregs, accompanied by the acquisition of IL-17A expression. Increased Th17 differentiation was detected upon α-Syn stimulation when naïve CD4+ T cells were cultured under Th17-polarizing conditions. Mechanistically, α-Syn promotes the transcription of RORC, encoding RORγt, in Tregs and Th17 cells, leading to increased Th17 differentiation and loss of Treg function. Intriguingly, the increase in Th17 cells, decrease in Tregs and apoptosis of DA were suppressed by a RORγt inhibitor (GSK805) in MPTP-treated mice. CONCLUSION Together, our data suggest that α-Syn promotes the transcription of RORC in circulating CD4+ T cells, including Tregs and Th17 cells, to impair the stability of Tregs and promote the differentiation of Th17 cells in PD. Inhibition of RORγt attenuated the apoptosis of DA and alleviated the increase in Th17 cells and decrease in Tregs in PD.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jingwei Zhao
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Longmin Chen
- Department of Rheumatology and Immunology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Center for Biomedical Research, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Hongling Gao
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jing Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Danlei Wang
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yuan Zou
- The Center for Biomedical Research, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Qixiong Qin
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yi Qu
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jiangting Li
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yongjie Xiong
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zhe Min
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Manli Yan
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zhijuan Mao
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
6
|
Qi SS, Miao Y, Sheng YY, Hu RM, Zhao J, Yang QP. MicroRNA-1246 Inhibits NFATc1 Phosphorylation and Regulates T Helper 17 Cell Activation in the Pathogenesis of Severe Alopecia Areata. Ann Dermatol 2023; 35:46-55. [PMID: 36750458 PMCID: PMC9905862 DOI: 10.5021/ad.22.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/29/2022] [Accepted: 10/12/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND We found microRNA (miR)-1246 to be significantly differentially expressed between severe active alopecia areata (AA) patients and healthy individuals. OBJECTIVE To explore the role and mechanism of miR-1246 in severe AA. METHODS Expression of miR-1246, dual-specific tyrosine phosphorylation-regulated kinase 1A (DYRK1A), and nuclear factor of activated T cells 1c (NFATc1) in peripheral CD4+ T cells and in scalp tissues of patients were detected using RT-qPCR, Western blot, and immunohistochemistry assays. Peripheral CD4+ T cells from the AA patients were transfected with lentiviral vectors overexpressing miR-1246. RT-qPCR and Western blot analysis were used to measure mRNA or protein expression of retinoic-acid-receptor-related orphan nuclear receptor gamma (ROR-γt), interleukin (IL)-17, DYRK1A, NFATc1, and phosphorylated NFATc1. Flow cytometry was used to assay the CD4+IL-17+ cells proportion. ELISA was used to measure cytokine levels. RESULTS miR-1246 levels decreased and DYRK1A and NFATc1 mRNA levels significantly increased in the peripheral CD4+ T cells and scalp tissues of severe active AA samples. NFATc1 protein expression was also significantly increased in the peripheral CD4+ T cells but not in the scalp tissues. NFATc1 positive cells were mainly distributed among infiltrating inflammatory cells around hair follicles. In peripheral CD4+ T cells of severe active AA, overexpression of miR-1246 resulted in significant downregulation of DYRK1A, NFATc1, ROR-γt, and IL-17 mRNA and phosphorylated NFATc1 protein, as well as a decrease in the CD4+IL-17+ cells proportion and the IL-17F level. CONCLUSION miR-1246 can inhibit NFAT signaling and Th17 cell activation, which may be beneficial in the severe AA treatment.
Collapse
Affiliation(s)
- Si-si Qi
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Miao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - You-yu Sheng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Rui-ming Hu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qin-ping Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Luo S, Li Y, Li S, Jiang R, Deng F, Liu G, Zhang J. Expression Regulation of Water Reabsorption Genes and Transcription Factors in the Kidneys of Lepus yarkandensis. Front Physiol 2022; 13:856427. [PMID: 35721542 PMCID: PMC9204326 DOI: 10.3389/fphys.2022.856427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Lepus yarkandensis is a desert-dwelling animal that has various adaptations to cope with drought. The kidney maintains water and acid-base balance mainly through the vasopressin-regulated water reabsorption pathway and proximal tubular bicarbonate reabsorption pathway. In this study, we compared the differentially expressed genes (DEGs) and transcription factors in the kidneys of L. yarkandensis and Oryctolagus cuniculus to explore the relationship between the DEGs in kidneys and the animals’ adaptations. Transcriptome sequencing data were used to predict the differentially-expressed water reabsorption genes and their transcription factors. Quantitative real-time PCR, immunohistochemistry, and western blotting were used to detect and verify the expression of DEGs in the kidney at mRNA and protein levels. Transcriptome analysis of the kidney of L. yarkandensis and O. cuniculus showed that 6,610 genes were up-regulated and 5,727 genes down-regulated in data shared by both species. According to the data, 232 transcription factors and their corresponding target genes were predicted, from which genes and transcription factors related to renal water reabsorption were screened. Quantitative RT-PCR results showed AQP1, AQP2, ADCY3, HIF1A, CREB3, and NFATc1 had higher expression in the L. yarkandensis kidney; in comparison, FXYD2 mRNA expression levels were lower. In western blotting, transcription factors HIF1A, NFATc1, NF-κB1, and critical genes ADCY3, ATPA1, and SLC4A4, were highly expressed in the kidneys of L. yarkandensis. Immunohistochemical results showed that the ADCY3 protein was in the basolateral membrane of the collecting duct, the ATP1A1 protein was in the basolateral membrane and medulla of proximal tubules, and the SLC4A4 protein was in the basolateral membrane of proximal tubules. According to these results can be inferred that HIF1A, NFATc1, and NF-κB1 play a certain role in regulating the expression of genes related to water reabsorption in the kidney of L. yarkandensis, thus improving the water reclamation efficiency of L. yarkandensis, so as to adapt to the arid desert environment.
Collapse
Affiliation(s)
- Shengjie Luo
- College of Life Sciences and Technology, Tarim University, Alar, China
| | - Yongle Li
- College of Life Sciences and Technology, Tarim University, Alar, China
| | - Shuwei Li
- College of Life Sciences and Technology, Tarim University, Alar, China.,Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources, Tarim University, Alar, China
| | - Renjun Jiang
- College of Life Sciences and Technology, Tarim University, Alar, China
| | - Fang Deng
- College of Life Sciences and Technology, Tarim University, Alar, China
| | - Guoquan Liu
- Anhui Province Key Laboratory of Translational Cancer Research and Department of Biochemistry, College of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianping Zhang
- College of Life Sciences and Technology, Tarim University, Alar, China.,Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources, Tarim University, Alar, China
| |
Collapse
|
8
|
Vitronectin-derived bioactive peptide prevents spondyloarthritis by modulating Th17/Treg imbalance in mice with curdlan-induced spondyloarthritis. PLoS One 2022; 17:e0262183. [PMID: 34986165 PMCID: PMC8730421 DOI: 10.1371/journal.pone.0262183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose Spondyloarthritis (SpA) is a systemic inflammatory arthritis mediated mainly by interleukin (IL)-17. The vitronectin-derived bioactive peptide, VnP-16, exerts an anti-osteoporotic effect via β1 and αvβ3 integrin signaling. SpA is associated with an increased risk of osteoporosis, and we investigated the effect of VnP-16 in mice with SpA. Methods SpA was induced by curdlan in SKG ZAP-70W163C mice, which were treated with vehicle, celecoxib, VnP-16, or VnP-16+celecoxib. The clinical score, arthritis score, spondylitis score, and proinflammatory cytokine expression of the spine were evaluated by immunohistochemical staining. Type 17 helper T cell (Th17) and regulatory T cell (Treg) differentiation in the spleen was evaluated by flow cytometry and in the spine by confocal staining. Splenocyte expression of signal transducer and activator of transcription (STAT) 3 and pSTAT3 was evaluated by in vitro Western blotting. Results The clinical score was significantly reduced in the VnP16+celecoxib group. The arthritis and spondylitis scores were significantly lower in the VnP-16 and VnP16+celecoxib groups than the vehicle group. In the spine, the levels of IL-1β, IL-6, tumor necrosis factor-α, and IL-17 expression were reduced and Th17/Treg imbalance was regulated in the VnP-16 alone and VnP-16+celecoxib groups. Flow cytometry of splenocytes showed increased polarization of Tregs in the VnP-16+celecoxib group. In vitro, VnP-16 suppressed pSTAT3. Conclusions VnP-16 plus celecoxib prevented SpA progression in a mouse model by regulating the Th17/Treg imbalance and suppressing the expression of proinflammatory cytokines.
Collapse
|
9
|
Kim J, Islam SMT, Qiao F, Singh AK, Khan M, Won J, Singh I. Regulation of B cell functions by S-nitrosoglutathione in the EAE model. Redox Biol 2021; 45:102053. [PMID: 34175668 PMCID: PMC8246645 DOI: 10.1016/j.redox.2021.102053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022] Open
Abstract
B cells play both protective and pathogenic roles in T cell-mediated autoimmune diseases by releasing regulatory vs. pathogenic cytokines. B cell-depleting therapy has been attempted in various autoimmune diseases but its efficacy varies and can even worsen symptoms due to depletion of B cells releasing regulatory cytokines along with B cells releasing pathogenic cytokines. Here, we report that S-nitrosoglutathione (GSNO) and GSNO-reductase (GSNOR) inhibitor N6022 drive upregulation of regulatory cytokine (IL-10) and downregulation of pathogenic effector cytokine (IL-6) in B cells and protected against the neuroinflammatory disease of experimental autoimmune encephalomyelitis (EAE). In human and mouse B cells, the GSNO/N6022-mediated regulation of IL-10 vs. IL-6 was not limited to regulatory B cells but also to a broad range of B cell subsets and antibody-secreting cells. Adoptive transfer of B cells from N6022 treated EAE mice or EAE mice deficient in the GSNOR gene also regulated T cell balance (Treg > Th17) and reduced clinical disease in the recipient EAE mice. The data presented here provide evidence of the role of GSNO in shifting B cell immune balance (IL-10 > IL-6) and the preclinical relevance of N6022, a first-in-class drug targeting GSNOR with proven human safety, as therapeutics for autoimmune disorders including multiple sclerosis. GSNO and GSNOR inhibitor (N6022) upregulates IL-10 and downregulates IL-6 in B cells. GSNO/N6022-mediated cytokine regulation occurs in a broad range of B cell subsets. GSNO/N6022 treatment ameliorates autoimmune disease of EAE. B cell transfer from N6022-treated or GSNOR null EAE mice to EAE mice shifts T cell balance (Treg > Th17) and alleviates EAE. The data provide the first insight into the therapeutic potential of GSNO/N6022 targeting B cells in multiple sclerosis.
Collapse
Affiliation(s)
- Judong Kim
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - S M Touhidul Islam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Fei Qiao
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
| |
Collapse
|
10
|
Tan AHM, Tso GHW, Zhang B, Teo PY, Ou X, Ng SW, Wong AXF, Tan SJX, Sanny A, Kim SSY, Lee AP, Xu S, Lam KP. TACI Constrains T H17 Pathogenicity and Protects against Gut Inflammation. iScience 2020; 23:101707. [PMID: 33205021 PMCID: PMC7653077 DOI: 10.1016/j.isci.2020.101707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/20/2020] [Accepted: 10/07/2020] [Indexed: 11/24/2022] Open
Abstract
TACI (transmembrane activator and calcium modulator and cyclophilin ligand interactor) plays critical roles in B cells by promoting immunoglobulin class switching and plasma cell survival. However, its expression and function in T cells remain controversial. We show here that TACI expression can be strongly induced in murine CD4+ T cells in vitro by cytokines responsible for TH17 but not TH1 or TH2 differentiation. Frequencies and numbers of TH17 cells were elevated in TACI-/ - compared with wild-type mice as well as among TACI-/ - versus wild-type CD4+ T cells in mixed bone marrow chimeras, arguing for a T cell-intrinsic effect in the contribution of TACI deficiency to TH17 cell accumulation. TACI-/ - mice were more susceptible to severe colitis induced by dextran sodium sulfate or adoptive T cell transfer, suggesting that TACI negatively regulates TH17 function and limits intestinal inflammation in a cell-autonomous manner. Finally, transcriptomic and biochemical analyses revealed that TACI-/ - CD4+ T cells exhibited enhanced activation of TH17-promoting transcription factors NFAT, IRF4, c-MAF, and JUNB. Taken together, these findings reveal an important role of TACI in constraining TH17 pathogenicity and protecting against gut disease.
Collapse
Affiliation(s)
- Andy Hee-Meng Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Gloria Hoi Wan Tso
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Biyan Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Pei-Yun Teo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Xijun Ou
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Sze-Wai Ng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Alex Xing Fah Wong
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Sean Jing Xiang Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Arleen Sanny
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Susana Soo-Yeon Kim
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Alison P Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Shengli Xu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Kong-Peng Lam
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Departments of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Departments of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
11
|
Inhibition of interleukin-2-inducible T-cell kinase causes reduction in imiquimod-induced psoriasiform inflammation through reduction of Th17 cells and enhancement of Treg cells in mice. Biochimie 2020; 179:146-156. [PMID: 33007409 DOI: 10.1016/j.biochi.2020.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 01/07/2023]
Abstract
Psoriasis is a debilitating chronic skin disease with a worldwide prevalence. Its main features include well-marked silvery scales on the skin of hands and feet and back which arise due to hyperproliferation of keratinocytes and infiltration of immune cells in the skin. Multiple interactions exist between adaptive immune cells such as T cells and innate immune cells such as neutrophils and macrophages which are key players in the pathogenesis of psoriasis. Interleukin-2-inducible T-cell kinase (ITK) plays a key role in Th17 cell development through control of several transcription factors. ITK has been shown to control NFATc1, NFkB and STAT3 in CD4+ T cells. Effect of ITK inhibitor in imiquimod (IMQ)-induced psoriasiform inflammation remains to be explored. In the current examination, role of ITK signaling and its inhibition blockade were evaluated on NFATc1, NFkB and STAT3, IL-17A, TNF-α, IFN-γ, Foxp3, IL-10 in CD4+ T cells in IMQ model. Our data display that ITK signaling is involved in IMQ-induced psoriatic inflammation as paralleled by enhancement of p-ITK, NFATc1, p-NFkB and p-STAT3 in CD4+ T cells. It was associated with enhancement of Th17/Th1 cells and neutrophilic inflammation in the skin. Preventive treatment with ITK inhibitor led to a reduction in Th17/Th1 cells and enhancement of Treg cells. Overall, this study suggests that ITK signaling is an important modulator of transcription factor signaling in CD4+ T cells which is associated with Th17/Th1 cells and psoriasiform inflammation in mice. ITK signaling blockade could be a therapeutic target for the treatment of psoriatic inflammation.
Collapse
|
12
|
Nadeem A, Al-Harbi NO, Ahmad SF, Al-Harbi MM, Alhamed AS, Alfardan AS, Assiri MA, Ibrahim KE, Albassam H. Blockade of interleukin-2-inducible T-cell kinase signaling attenuates acute lung injury in mice through adjustment of pulmonary Th17/Treg immune responses and reduction of oxidative stress. Int Immunopharmacol 2020; 83:106369. [PMID: 32163900 DOI: 10.1016/j.intimp.2020.106369] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/23/2020] [Accepted: 03/01/2020] [Indexed: 12/21/2022]
Abstract
Acute lung injury (ALI) is linked with considerable morbidity and mortality. ALI can be caused by various agents, one of them being sepsis. ALI is characterized by injury to vascular endothelium and alveolar epithelium that results in edema, pulmonary immune cells infiltration and hypoxemia. Neutrophils and T cells particularly play a huge role in amplification of pulmonary inflammation through release of multiple inflammatory mediators. Recent reports suggest a strong involvement of Th17 cells and oxidative stress in initiation/amplification of pulmonary inflammation during ALI. Interleukin-2-inducible T-cell kinase (ITK) plays a key role in Th17 cell development through control of several transcription factors. Therefore, our study explored the role of ITK on airway inflammation (total/neutrophilic cell counts, myeloperoxidase activity, E-cadherin expression, histopathological analyses) and effect of its inhibition on various inflammatory/anti-inflammatory pathways during ALI [phosphorylated-ITK (p-ITK), NFATc1, IL-17A, STAT3, Foxp3, IL-10, iNOS, nitrotyrosine, lipid peroxides). ALI was associated with increased total/neutrophilic cell counts and myeloperoxidase activity, and decreased E-cadherin expression in airway epithelial cells (AECs) which was concurrent with upregulation of p-ITK, NFATc1, IL-17A, STAT3 in CD4+ T cells and iNOS/nitrotyrosine in AECs. Treatment with ITK inhibitor reversed ALI-induced changes in airway inflammation and Th17 cells/oxidative stress. Treatment with ITK inhibitor further expanded Treg cells in mice with ALI. In short, our study proposes that ITK signaling plays a significant role in sepsis-induced ALI through upregulation of Th17 cells and oxidative stress. Further, findings provide evidence that ITK blockade could be a potential treatment strategy to attenuate airway inflammation associated with ALI.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah S Alhamed
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alfardan
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed A Assiri
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hussam Albassam
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Wang X, Ni L, Wan S, Zhao X, Ding X, Dejean A, Dong C. Febrile Temperature Critically Controls the Differentiation and Pathogenicity of T Helper 17 Cells. Immunity 2020; 52:328-341.e5. [PMID: 32049050 DOI: 10.1016/j.immuni.2020.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/02/2019] [Accepted: 01/19/2020] [Indexed: 02/06/2023]
Abstract
Fever, an evolutionarily conserved physiological response to infection, is also commonly associated with many autoimmune diseases, but its role in T cell differentiation and autoimmunity remains largely unclear. T helper 17 (Th17) cells are critical in host defense and autoinflammatory diseases, with distinct phenotypes and pathogenicity. Here, we show that febrile temperature selectively regulated Th17 cell differentiation in vitro in enhancing interleukin-17 (IL-17), IL-17F, and IL-22 expression. Th17 cells generated under febrile temperature (38.5°C-39.5°C), compared with those under 37°C, showed enhanced pathogenic gene expression with increased pro-inflammatory activities in vivo. Mechanistically, febrile temperature promoted SUMOylation of SMAD4 transcription factor to facilitate its nuclear localization; SMAD4 deficiency selectively abrogated the effects of febrile temperature on Th17 cell differentiation both in vitro and ameliorated an autoimmune disease model. Our results thus demonstrate a critical role of fever in shaping adaptive immune responses with implications in autoimmune diseases.
Collapse
Affiliation(s)
- Xiaohu Wang
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Lu Ni
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Siyuan Wan
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhao
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiao Ding
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Anne Dejean
- Nuclear Organization and Oncogenesis Laboratory, Department of Cell Biology and Infection, INSERM U993, Institute Pasteur, Paris 75015, France
| | - Chen Dong
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing 100084, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing 100084, China.
| |
Collapse
|
14
|
Targeted deletion of NFAT-Interacting-Protein-(NIP) 45 resolves experimental asthma by inhibiting Innate Lymphoid Cells group 2 (ILC2). Sci Rep 2019; 9:15695. [PMID: 31666531 PMCID: PMC6821848 DOI: 10.1038/s41598-019-51690-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Here we investigated the role of NFAT-interacting protein (NIP)-45, an Interleukin (IL)-4 inducing Transcription Factor, and its impact on the differentiation of Group 2 Innate -Lymphoid -Cells (ILC2s) in the pathogenesis of asthma. NIP45, a transcription factor regulating NFATc1 activity, mRNA was found to be induced in the Peripheral Blood mononuclear cells (PMBCs) of asthmatic pre-school children with allergies and in the peripheral blood CD4+ T cells from adult asthmatic patients. In PBMCs of asthmatic and control children, NIP45 mRNA directly correlated with NFATc1 but not with T-bet. Targeted deletion of NIP45 in mice resulted in a protective phenotype in experimental asthma with reduced airway mucus production, airway hyperresponsiveness and eosinophils. This phenotype was reversed by intranasal delivery of recombinant r-IL-33. Consistently, ILC2s and not GATA3+ CD4+ T-cells were decreased in the lungs of asthmatic NIP45−/− mice. Reduced cell number spleen ILC2s could be differentiated from NIP45−/− as compared to wild-type mice after in vivo injection of a microcircle-DNA vector expressing IL-25 and decreased cytokines and ILC2 markers in ILC2 differentiated from the bone marrow of NIP45−/− mice. NIP45 thus emerges as a new therapeutic target for the resolution of the airway pathology, down-regulation of ILC2s and mucus production in asthma.
Collapse
|
15
|
Kalinin S, Meares GP, Lin SX, Pietruczyk EA, Saher G, Spieth L, Nave KA, Boullerne AI, Lutz SE, Benveniste EN, Feinstein DL. Liver kinase B1 depletion from astrocytes worsens disease in a mouse model of multiple sclerosis. Glia 2019; 68:600-616. [PMID: 31664743 PMCID: PMC7337013 DOI: 10.1002/glia.23742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/19/2019] [Accepted: 10/05/2019] [Indexed: 12/15/2022]
Abstract
Liver kinase B1 (LKB1) is a ubiquitously expressed kinase involved in the regulation of cell metabolism, growth, and inflammatory activation. We previously reported that a single nucleotide polymorphism in the gene encoding LKB1 is a risk factor for multiple sclerosis (MS). Since astrocyte activation and metabolic function have important roles in regulating neuroinflammation and neuropathology, we examined the serine/threonine kinase LKB1 in astrocytes in a chronic experimental autoimmune encephalomyelitis mouse model of MS. To reduce LKB1, a heterozygous astrocyte-selective conditional knockout (het-cKO) model was used. While disease incidence was similar, disease severity was worsened in het-cKO mice. RNAseq analysis identified Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in het-cKO mice relating to mitochondrial function, confirmed by alterations in mitochondrial complex proteins and reductions in mRNAs related to astrocyte metabolism. Enriched pathways included major histocompatibility class II genes, confirmed by increases in MHCII protein in spinal cord and cerebellum of het-cKO mice. We observed increased numbers of CD4+ Th17 cells and increased neuronal damage in spinal cords of het-cKO mice, associated with reduced expression of choline acetyltransferase, accumulation of immunoglobulin-γ, and reduced expression of factors involved in motor neuron survival. In vitro, LKB1-deficient astrocytes showed reduced metabolic function and increased inflammatory activation. These data suggest that metabolic dysfunction in astrocytes, in this case due to LKB1 deficiency, can exacerbate demyelinating disease by loss of metabolic support and increase in the inflammatory environment.
Collapse
Affiliation(s)
- Sergey Kalinin
- Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Gordon P Meares
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia
| | - Shao Xia Lin
- Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | | | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Gottingen, Germany
| | - Lena Spieth
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Gottingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Gottingen, Germany
| | - Anne I Boullerne
- Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Sarah E Lutz
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois
| | - Etty N Benveniste
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, Illinois.,Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
16
|
Yahia-Cherbal H, Rybczynska M, Lovecchio D, Stephen T, Lescale C, Placek K, Larghero J, Rogge L, Bianchi E. NFAT primes the human RORC locus for RORγt expression in CD4 + T cells. Nat Commun 2019; 10:4698. [PMID: 31619674 PMCID: PMC6795897 DOI: 10.1038/s41467-019-12680-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
T helper 17 (Th17) cells have crucial functions in mucosal immunity and the pathogenesis of several chronic inflammatory diseases. The lineage-specific transcription factor, RORγt, encoded by the RORC gene modulates Th17 polarization and function, as well as thymocyte development. Here we define several regulatory elements at the human RORC locus in thymocytes and peripheral CD4+ T lymphocytes, with CRISPR/Cas9-guided deletion of these genomic segments supporting their role in RORγt expression. Mechanistically, T cell receptor stimulation induces cyclosporine A-sensitive histone modifications and P300/CBP acetylase recruitment at these elements in activated CD4+ T cells. Meanwhile, NFAT proteins bind to these regulatory elements and activate RORγt transcription in cooperation with NF-kB. Our data thus demonstrate that NFAT specifically regulate RORγt expression by binding to the RORC locus and promoting its permissive conformation. The master transcription factor RORγt, encoded by the RORC gene, controls the polarization of CD4+ T cells expressing interleukin-17 (Th17). Here the authors describe several regulatory elements at the RORC locus that are recognized by NFAT and NFkB to induce a permissive epigenetic configuration of the RORC gene for RORγt expression and Th17 differentiation.
Collapse
Affiliation(s)
- Hanane Yahia-Cherbal
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Magda Rybczynska
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France.,Laboratoire Colloides et Matériaux Divisés, École supérieure de Physique et de Chimie industrielles, Paris, France
| | - Domenica Lovecchio
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France
| | - Tharshana Stephen
- Institut Pasteur, Unité de Technologie et Service Cytométrie et Biomarqueurs (UTechS CB), Centre de recherche translationnelle (CRT), Paris, France
| | - Chloé Lescale
- Institut Pasteur, Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Paris, France
| | - Katarzyna Placek
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France.,Immunology and Metabolism, LIMES Institute, University of Bonn, Bonn, Germany
| | - Jérome Larghero
- Assistance Publique-Hopitaux de Paris, Hôpital Saint-Louis, Cell Therapy Unit and Cord Blood Bank; CIC de Biothérapies, CBT501, Paris, France
| | - Lars Rogge
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France
| | - Elisabetta Bianchi
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France.
| |
Collapse
|
17
|
Tsukahara C, Sase K, Fujita N, Takagi H, Kitaoka Y. Axonal Protection by Tacrolimus with Inhibition of NFATc1 in TNF-Induced Optic Nerve Degeneration. Neurochem Res 2019; 44:1726-1735. [PMID: 31087207 PMCID: PMC6555779 DOI: 10.1007/s11064-019-02804-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 11/25/2022]
Abstract
Tacrolimus, a calcineurin (CaN) inhibitor, has been used for treatment of refractory allergic ocular disease, although its role in optic nerve degeneration remains to be elucidated. In this study, we investigated whether tacrolimus modulates tumor necrosis factor (TNF)-mediated axonal degeneration and whether it alters nuclear factor of activated T cells (NFATc), a downstream effector of CaN signaling. Immunoblot analysis showed no significant difference in CaNAα protein levels in optic nerve on day 3, 7, or 14 after TNF injection compared with PBS injection. However, a significant increase in NFATc1 protein level was observed in optic nerve 7 days after TNF injection. This increase was negated by simultaneous administration of tacrolimus. Administration of tacrolimus alone did not change the NFATc1 protein level in comparison to that observed after PBS injection. A significant increase in TNF protein level was observed in optic nerve 14 days after TNF injection and this increase was prevented by tacrolimus. Immunohistochemical analysis showed the immunoreactivity of NFATc1 to be increased in optic nerve after TNF injection. This increased immunoreactivity was colocalized with glial fibrillary acidic protein and was suppressed by tacrolimus. Treatment of tacrolimus significantly ameliorated the TNF-mediated axonal loss. These results suggest that tacrolimus is neuroprotective against axon loss in TNF-induced optic neuropathy and that the effect arises from suppression of the CaN/NFATc1 pathway.
Collapse
Affiliation(s)
- Chihiro Tsukahara
- Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, 216-8511, Kanagawa, Japan.
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, Kawasaki, Japan.
| | - Kana Sase
- Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, 216-8511, Kanagawa, Japan
| | - Naoki Fujita
- Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, 216-8511, Kanagawa, Japan
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Hitoshi Takagi
- Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, 216-8511, Kanagawa, Japan
| | - Yasushi Kitaoka
- Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, 216-8511, Kanagawa, Japan
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| |
Collapse
|
18
|
Kawalkowska JZ, Ogbechi J, Venables PJ, Williams RO. cIAP1/2 inhibition synergizes with TNF inhibition in autoimmunity by down-regulating IL-17A and inducing T regs. SCIENCE ADVANCES 2019; 5:eaaw5422. [PMID: 31049403 PMCID: PMC6494502 DOI: 10.1126/sciadv.aaw5422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
IL-17 and TNF-α are major effector cytokines in chronic inflammation. TNF-α inhibitors have revolutionized the treatment of rheumatoid arthritis (RA), although not all patients respond, and most relapse after treatment withdrawal. This may be due to a paradoxical exacerbation of TH17 responses by TNF-α inhibition. We examined the therapeutic potential of targeting cellular inhibitors of apoptosis 1 and 2 (cIAP1/2) in inflammation by its influence on human TH subsets and mice with collagen-induced arthritis. Inhibition of cIAP1/2 abrogated CD4+ IL-17A differentiation and IL-17 production. This was a direct effect on T cells, mediated by reducing NFATc1 expression. In mice, cIAP1/2 inhibition, when combined with etanercept, abrogated disease activity, which was associated with an increase in Tregs and was sustained after therapy retraction. We reveal an unexpected role for cIAP1/2 in regulating the balance between TH17 and Tregs and suggest that combined therapeutic inhibition could induce long-term remission in inflammatory diseases.
Collapse
|
19
|
Exendin-4 Exacerbates Burn-Induced Morbidity in Mice by Activation of the Sympathetic Nervous System. Mediators Inflamm 2019; 2019:2750528. [PMID: 30800001 PMCID: PMC6360064 DOI: 10.1155/2019/2750528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/19/2018] [Accepted: 12/05/2018] [Indexed: 12/27/2022] Open
Abstract
Background Although glucagon-like peptide 1- (GLP-1-) based therapy of hyperglycemia in burn injury has shown great potential in clinical trials, its safety is seldom evaluated. We hypothesize that exendin-4, a GLP-1 analogue, might affect the immune response via the activation of the sympathetic nervous system in burn injury. Methods Male Balb/c mice were subjected to sham or thermal injury of 15% total body surface area. Exendin-4 on T cell function in vitro was examined in cultured splenocytes in the presence of β-adrenoceptor antagonist propranolol (1 nmol/L) or GLP-1R antagonist exendin (9-39) (1 μmol/L), whereas its in vivo effect was determined by i.p. injection of exendin-4 (2.4 nmol/kg) in mice. To further elucidate the sympathetic mechanism, propranolol (30 mg/kg) or vehicle was applied 30 min prior to injury. Results Although the exacerbated burn-induced mortality by exendin-4 was worsened by propranolol pretreatment, the inhibition of T cell proliferation by exendin-4 in vitro could be restored by propranolol instead of exendin (9-39). However, a Th2 switch by exendin-4 in vitro could only be reversed by exendin (9-39). Likewise, the inhibition of splenic T cell function and NFAT activity by exendin-4 in vivo was restored by propranolol. By contrast, the increased splenic NF-κB translocation by exendin-4 in vivo was potentiated by propranolol in sham mice but suppressed in burn mice. Accordingly, propranolol abrogated the heightened inflammatory response in the lung and the accelerated organ injuries by exendin-4 in burn mice. On the contrary, a Th2 switch and higher serum levels of inflammatory mediators by exendin-4 were potentiated by propranolol in burn mice. Lastly, exendin-4 raised serum stress hormones which could be remarkably augmented by propranolol. Conclusions Exendin-4 suppresses T cell function and promotes organ inflammation through the activation of the sympathetic nervous system, while elicits Th2 switch via GLP-1R in burn injury.
Collapse
|
20
|
Lee JU, Kim LK, Choi JM. Revisiting the Concept of Targeting NFAT to Control T Cell Immunity and Autoimmune Diseases. Front Immunol 2018; 9:2747. [PMID: 30538703 PMCID: PMC6277705 DOI: 10.3389/fimmu.2018.02747] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/08/2018] [Indexed: 01/15/2023] Open
Abstract
The nuclear factor of activated T cells (NFAT) family of transcription factors, which includes NFAT1, NFAT2, and NFAT4, are well-known to play important roles in T cell activation. Most of NFAT proteins are controlled by calcium influx upon T cell receptor and costimulatory signaling results increase of IL-2 and IL-2 receptor. NFAT3 however is not shown to be expressed in T cells and NFAT5 has not much highlighted in T cell functions yet. Recent studies demonstrate that the NFAT family proteins involve in function of lineage-specific transcription factors during differentiation of T helper 1 (Th1), Th2, Th17, regulatory T (Treg), and follicular helper T cells (Tfh). They have been studied to make physical interaction with the other transcription factors like GATA3 or Foxp3 and they also regulate Th cell signature gene expressions by direct binding on promotor region of target genes. From last decades, NFAT functions in T cells have been targeted to develop immune modulatory drugs for controlling T cell immunity in autoimmune diseases like cyclosporine A, FK506, etc. Due to their undesirable side defects, only limited application is available in human diseases. This review focuses on the recent advances in development of NFAT targeting drug as well as our understanding of each NFAT family protein in T cell biology. We also discuss updated detail molecular mechanism of NFAT functions in T cells, which would lead us to suggest an idea for developing specific NFAT inhibitors as a therapeutic drug for autoimmune diseases.
Collapse
Affiliation(s)
- Jae-Ung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Li-Kyung Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| |
Collapse
|
21
|
Zhou Y, Leng X, He Y, Li Y, Liu Y, Liu Y, Zou Q, Shi G, Wang Y. Loss of Perp in T Cells Promotes Resistance to Apoptosis of T Helper 17 Cells and Exacerbates the Development of Experimental Autoimmune Encephalomyelitis in Mice. Front Immunol 2018; 9:842. [PMID: 29740445 PMCID: PMC5925960 DOI: 10.3389/fimmu.2018.00842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 04/05/2018] [Indexed: 01/03/2023] Open
Abstract
T helper 17 (Th17) cells are crucial for the pathogenesis of multiple sclerosis (MS) in humans and experimental autoimmune encephalomyelitis (EAE) in animals. High frequency of Th17 cells and low sensitivity to activation-induced cell death (AICD) are detected in MS patients. However, the mechanisms underlying apoptosis resistance of T cells remain unclear. Perp is an apoptosis-associated target of p53 and implicated in the development of cancers. Here, we show that loss of Perp in T cells does not affect Th1, Th17, or Treg cell differentiation, but does significantly increase the resistance of Perp-/- Th17 cells to AICD and anti-Fas in Lck-Cre × Perpfl/fl mice by inhibiting the caspase-dependent apoptotic pathway. Moreover, Lck-Cre × Perpfl/fl mice exhibited earlier onset of EAE and severe spinal cord inflammation and demyelination, accompanied by increased levels of pro-inflammatory cytokines and enlarged population of Th17 cells. Therefore, Perp deletion promoted Th17 responses and exacerbated the development and severity of EAE.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Emergency, West China Second University Hospital and Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Xiao Leng
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yan He
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Yan Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Yuan Liu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Yang Liu
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Qiang Zou
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Xiamen University, Xiamen, China
- *Correspondence: Guixiu Shi, ; Yantang Wang,
| | - Yantang Wang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
- *Correspondence: Guixiu Shi, ; Yantang Wang,
| |
Collapse
|
22
|
Regulator of Calcineurin 3 Ameliorates Autoimmune Arthritis by Suppressing Th17 Cell Differentiation. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2034-2045. [PMID: 28704638 DOI: 10.1016/j.ajpath.2017.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 01/10/2023]
Abstract
Regulator of calcineurin 3 (RCAN3), an endogenous regulator of the calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway, inhibits the phosphatase activity of calcineurin, the nuclear translocation of NFAT, and the NFAT downstream pathway. To investigate the effects of RCAN3 on T-cell regulatory function and the development and progression of inflammatory arthritis, we studied the effects of RCAN3 transfection on regulation of Th17 cell differentiation in a murine T-lymphoma cell line and primary splenic CD4+ T cells. Overexpression of RCAN3 suppressed Th17 cell differentiation through the down-regulation of RAR receptor orphan receptor γT mRNA and up-regulation of forkhead box P3 mRNA. In mice with collagen-induced arthritis, injection of an RCAN3-overexpression vector controlled arthritis development in vivo. Injection of RCAN3 reduced the formation of osteoclasts and expression of inflammatory cytokines in vivo. Antioxidants stimulated the expression of RCAN3 in vitro, and combination therapy with pcDNA-RCAN3 had a synergistic suppressive effect on the development of arthritis. These data suggest that RCAN3 may be an effective treatment for rheumatoid arthritis.
Collapse
|
23
|
Pachulec E, Neitzke-Montinelli V, Viola JPB. NFAT2 Regulates Generation of Innate-Like CD8 + T Lymphocytes and CD8 + T Lymphocytes Responses. Front Immunol 2016; 7:411. [PMID: 27766099 PMCID: PMC5052263 DOI: 10.3389/fimmu.2016.00411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/22/2016] [Indexed: 11/13/2022] Open
Abstract
Nuclear factor of activated T cells (NFAT) 2 null mutant mice die in utero of cardiac failure, precluding analysis of the role of NFAT2 in lymphocyte responses. Only the NFAT2-/-/Rag-1-/- chimeric mice model gave insight into the role of NFAT2 transcription factor in T lymphocyte development, activation, and differentiation. As reports are mainly focused on the role of NFAT2 in CD4+ T lymphocytes activation and differentiation, we decided to investigate NFAT2's impact on CD8+ T lymphocyte responses. We report that NFAT2 is phosphorylated and inactive in the cytoplasm of naive CD8+ T cells, and upon TCR stimulation, it is dephosphorylated and translocated into the nucleus. To study the role of NFAT2 in CD8+ T responses, we employed NFAT2fl/flCD4-Cre mice with NFAT2 deletion specifically in T cells. Interestingly, the absence of NFAT2 in T cells resulted in increased percentage of non-conventional innate-like CD8+ T cells. These cells were CD122+, rapid producer of interferon gamma (IFN-γ) and had characteristics of conventional memory CD8+ T cells. We also observed an expansion of PLZF+ expressing CD3+ thymocyte population in the absence of NFAT2 and increased IL-4 production. Furthermore, we found that CD8+ T lymphocytes deficient in NFAT2 had reduced activation, proliferation, and IFN-γ and IL-2 production at suboptimal TCR strength. NFAT2 absence did not significantly influence differentiation of CD8+ T cells into cytotoxic effector cells but reduced their IFN-γ production. This work documents NFAT2 as a negative regulator of innate-like CD8+ T cells development. NFAT2 is required for complete CD8+ T cell responses at suboptimal TCR stimulation and regulates IFN-γ production by cytotoxic CD8+ T cells in vitro.
Collapse
Affiliation(s)
- Emilia Pachulec
- Program of Cellular Biology, Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | | | - João P B Viola
- Program of Cellular Biology, Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| |
Collapse
|
24
|
The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases. J Aging Res 2016; 2016:5081021. [PMID: 27597899 PMCID: PMC5002468 DOI: 10.1155/2016/5081021] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022] Open
Abstract
The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.
Collapse
|
25
|
Wang H, Zhang X, Xue L, Xing J, Jouvin MH, Putney JW, Anderson MP, Trebak M, Kinet JP. Low-Voltage-Activated CaV3.1 Calcium Channels Shape T Helper Cell Cytokine Profiles. Immunity 2016; 44:782-94. [PMID: 27037192 PMCID: PMC6771933 DOI: 10.1016/j.immuni.2016.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 12/30/2015] [Accepted: 01/22/2016] [Indexed: 12/15/2022]
Abstract
Activation of T cells is mediated by the engagement of T cell receptors (TCRs) followed by calcium entry via store-operated calcium channels. Here we have shown an additional route for calcium entry into T cells-through the low-voltage-activated T-type CaV3.1 calcium channel. CaV3.1 mediated a substantial current at resting membrane potentials, and its deficiency had no effect on TCR-initiated calcium entry. Mice deficient for CaV3.1 were resistant to the induction of experimental autoimmune encephalomyelitis and had reduced productions of the granulocyte-macrophage colony-stimulating factor (GM-CSF) by central nervous system (CNS)-infiltrating T helper 1 (Th1) and Th17 cells. CaV3.1 deficiency led to decreased secretion of GM-CSF from in vitro polarized Th1 and Th17 cells. Nuclear translocation of the nuclear factor of activated T cell (NFAT) was also reduced in CaV3.1-deficient T cells. These data provide evidence for T-type channels in immune cells and their potential role in shaping the autoimmune response.
Collapse
Affiliation(s)
- Huiyun Wang
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Li Xue
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Juan Xing
- Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Marie-Hélène Jouvin
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - James W Putney
- Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Matthew P Anderson
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Jean-Pierre Kinet
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Wu L, Diny NL, Ong S, Barin JG, Hou X, Rose NR, Talor MV, Čiháková D. Pathogenic IL-23 signaling is required to initiate GM-CSF-driven autoimmune myocarditis in mice. Eur J Immunol 2016; 46:582-92. [PMID: 26660726 PMCID: PMC5153891 DOI: 10.1002/eji.201545924] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/26/2015] [Accepted: 12/08/2015] [Indexed: 01/22/2023]
Abstract
Using a mouse model of experimental autoimmune myocarditis (EAM), we showed for the first time that IL-23 stimulation of CD4(+) T cells is required only briefly at the initiation of GM-CFS-dependent cardiac autoimmunity. IL-23 signal, acting as a switch, turns on pathogenicity of CD4(+) T cells, and becomes dispensable once autoreactivity is established. Il23a(-/-) mice failed to mount an efficient Th17 response to immunization, and were protected from myocarditis. However, remarkably, transient IL-23 stimulation ex vivo fully restored pathogenicity in otherwise nonpathogenic CD4(+) T cells raised from Il23a(-/-) donors. Thus, IL-23 may no longer be necessary to uphold inflammation in established autoimmune diseases. In addition, we demonstrated that IL-23-induced GM-CSF mediates the pathogenicity of CD4(+) T cells in EAM. The neutralization of GM-CSF abrogated cardiac inflammation. However, sustained IL-23 signaling is required to maintain IL-17A production in CD4(+) T cells. Despite inducing inflammation in Il23a(-/-) recipients comparable to wild-type (WT), autoreactive CD4(+) T cells downregulated IL-17A production without persistent IL-23 signaling. This divergence on the controls of GM-CSF-dependent pathogenicity on one side and IL-17A production on the other side may contribute to the discrepant efficacies of anti-IL-23 therapy in different autoimmune diseases.
Collapse
Affiliation(s)
- Lei Wu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Maryland 21205, U.S.A
| | - Nicola L. Diny
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Maryland 21205, U.S.A
| | - SuFey Ong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Maryland 21205, U.S.A
| | - Jobert G. Barin
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, U.S.A
| | - Xuezhou Hou
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Maryland 21205, U.S.A
| | - Noel R. Rose
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Maryland 21205, U.S.A
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, U.S.A
| | - Monica V. Talor
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, U.S.A
| | - Daniela Čiháková
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Maryland 21205, U.S.A
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, U.S.A
| |
Collapse
|
27
|
Martinez GJ, Hu JK, Pereira RM, Crampton JS, Togher S, Bild N, Crotty S, Rao A. Cutting Edge: NFAT Transcription Factors Promote the Generation of Follicular Helper T Cells in Response to Acute Viral Infection. THE JOURNAL OF IMMUNOLOGY 2016; 196:2015-9. [PMID: 26851216 DOI: 10.4049/jimmunol.1501841] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/05/2016] [Indexed: 12/25/2022]
Abstract
Follicular CD4(+) Th (Tfh) cells provide B cell help in germinal center reactions that support class switching, somatic hypermutation, and the generation of high-affinity Abs. In this article, we show that deficiency in NFAT1 and NFAT2 in CD4(+) T cells leads to impaired germinal center reactions upon viral infection because of reduced Tfh cell differentiation and defective expression of proteins involved in T/B interactions and B cell help, including ICOS, PD-1, and SLAM family receptors. Genome-wide chromatin immunoprecipitation data suggest that NFAT proteins likely directly participate in regulation of genes important for Tfh cell differentiation and function. NFAT proteins are important TCR and Ca(2+)-dependent regulators of T cell biology, and in this article we demonstrate a major positive role of NFAT family members in Tfh differentiation.
Collapse
Affiliation(s)
- Gustavo J Martinez
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037;
| | - Joyce K Hu
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037
| | - Renata M Pereira
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Jordan S Crampton
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037
| | - Susan Togher
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Nicholas Bild
- Genomics Core, The Scripps Research Institute, Jupiter, FL, 33458
| | - Shane Crotty
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037; Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Anjana Rao
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093; and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| |
Collapse
|
28
|
Graser A, Ekici AB, Sopel N, Melichar VO, Zimmermann T, Papadopoulos NG, Taka S, Ferrazzi F, Vuorinen T, Finotto S. Rhinovirus inhibits IL-17A and the downstream immune responses in allergic asthma. Mucosal Immunol 2016; 9:1183-92. [PMID: 26732679 PMCID: PMC7099698 DOI: 10.1038/mi.2015.130] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/09/2015] [Indexed: 02/04/2023]
Abstract
The proinflammatory cytokine interleukin-17A (IL-17A) is known to mediate antimicrobial activity, but its role during rhinovirus (RV) infections and in asthma needs further investigation. Therefore, we addressed the role of IL-17A during allergic asthma and antiviral immune response in human and murine immunocompetent cells. In this study we found that asthmatic children with a RV infection in their upper airways have upregulated mRNA levels of the antiviral cytokine interferon type I (IFN)-β and the transcription factor T-box 21 (TBX21) and reduced levels of IL-17A protein in their peripheral blood mononuclear cells (PBMCs). We also found that IL-17A inhibited RV1b replication in infected human lung epithelial cells A549. Furthermore, by using gene array analysis we discovered that targeted deletion of Il17a in murine lung CD4(+) T cells impaired Oas1g mRNA downstream of Ifnβ, independently from RV infection. Additionally, in PBMCs of children with a RV infection in their nasalpharyngeal fluid OAS1 gene expression was found downregulated. Finally RV1b inhibited IL-17A production in lung CD4(+) T cells in a setting of experimental asthma. These results indicate that the RV1b inhibits IL-17A in T helper type 17 cells and IL-17A clears RV1b infection in epithelial cells. In both cases IL-17A contributes to fend off RV1b infection by inducing genes downstream of interferon type I pathway.
Collapse
Affiliation(s)
- A Graser
- grid.411668.c0000 0000 9935 6525Department of Molecular Pneumology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - A B Ekici
- grid.411668.c0000 0000 9935 6525Institute of Humangenetics, Universitätsklinikum Erlangen, Erlangen, Germany
| | - N Sopel
- grid.411668.c0000 0000 9935 6525Department of Molecular Pneumology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - V O Melichar
- grid.411668.c0000 0000 9935 6525Department of Paediatrics and Adolescent Medicine, Paediatric Pneumology-Allergology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - T Zimmermann
- grid.411668.c0000 0000 9935 6525Department of Paediatrics and Adolescent Medicine, Paediatric Pneumology-Allergology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - N G Papadopoulos
- grid.5216.00000 0001 2155 0800Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - S Taka
- grid.5216.00000 0001 2155 0800Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - F Ferrazzi
- grid.411668.c0000 0000 9935 6525Institute of Humangenetics, Universitätsklinikum Erlangen, Erlangen, Germany
| | - T Vuorinen
- grid.1374.10000 0001 2097 1371Department of Virology, University of Turku, Turku, Finland
| | - S Finotto
- grid.411668.c0000 0000 9935 6525Department of Molecular Pneumology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|