1
|
van Gils LAJL, Corsten MFM, Koelman CAC, Bosma RJR, Fijnheer RR, Mulder AHLL, Regelink JCJ. Cold case: COVID-19-triggered type 1 cryoglobulinemia. Ann Hematol 2024; 103:4305-4308. [PMID: 39214930 PMCID: PMC11512869 DOI: 10.1007/s00277-024-05970-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
A 42-year-old male was referred to the internal medicine department because of renal failure and persistent malaise after a recent SARS-CoV-2 infection. Blood results showed anemia and severe renal insufficiency (hemoglobin of 10.3 g/dL and a creatinine of 2.19 mg/dL). Additional tests revealed a type I cryoglobulinemia with a cryoprecipitate composed of dual IgM (kappa and lambda). Further investigations on the cryoprecipitate revealed that the immunoglobulins were directed against SARS-CoV-2 antigens. In the meanwhile, our patient noticed improvement of his symptoms accompanied by resolution of laboratory abnormalities. Three months later, the cryoglobulin could no longer be detected.Type 1 cryoglobulinemia is usually associated with lymphoproliferative disorders and is characterized by various symptoms caused by cryoprecipitates occluding small blood vessels. This is, to our knowledge, the first case of type I cryoglobulinemia with proven precipitation of SARS-CoV-19 antibodies. COVID-19 induced cryoglobulinemia appears to have a mild disease course and to be self-limiting upon viral clearance.
Collapse
Affiliation(s)
- L A J Luuk van Gils
- Meander Medical Center, department of Internal Medicine, Amersfoort, Netherlands.
| | - M F Maarten Corsten
- Meander Medical Center, department of Internal Medicine, Amersfoort, Netherlands
| | - C A Carin Koelman
- Meander Medical Center, department of Medical Microbiology and Medical Immunology, Amersfoort, Netherlands
| | - R J Renate Bosma
- Meander Medical Center, department of Internal Medicine, Amersfoort, Netherlands
| | - R Rob Fijnheer
- Meander Medical Center, department of Internal Medicine, Amersfoort, Netherlands
| | | | - J C Josien Regelink
- Meander Medical Center, department of Internal Medicine, Amersfoort, Netherlands
| |
Collapse
|
2
|
Jensen CG, Sumner JA, Kleinstein SH, Hoehn KB. Inferring B Cell Phylogenies from Paired H and L Chain BCR Sequences with Dowser. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1579-1588. [PMID: 38557795 PMCID: PMC11073909 DOI: 10.4049/jimmunol.2300851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
Abs are vital to human immune responses and are composed of genetically variable H and L chains. These structures are initially expressed as BCRs. BCR diversity is shaped through somatic hypermutation and selection during immune responses. This evolutionary process produces B cell clones, cells that descend from a common ancestor but differ by mutations. Phylogenetic trees inferred from BCR sequences can reconstruct the history of mutations within a clone. Until recently, BCR sequencing technologies separated H and L chains, but advancements in single-cell sequencing now pair H and L chains from individual cells. However, it is unclear how these separate genes should be combined to infer B cell phylogenies. In this study, we investigated strategies for using paired H and L chain sequences to build phylogenetic trees. We found that incorporating L chains significantly improved tree accuracy and reproducibility across all methods tested. This improvement was greater than the difference between tree-building methods and persisted even when mixing bulk and single-cell sequencing data. However, we also found that many phylogenetic methods estimated significantly biased branch lengths when some L chains were missing, such as when mixing single-cell and bulk BCR data. This bias was eliminated using maximum likelihood methods with separate branch lengths for H and L chain gene partitions. Thus, we recommend using maximum likelihood methods with separate H and L chain partitions, especially when mixing data types. We implemented these methods in the R package Dowser: https://dowser.readthedocs.io.
Collapse
Affiliation(s)
- Cole G. Jensen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
| | - Jacob A. Sumner
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, 06520, USA
| | - Steven H. Kleinstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kenneth B. Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Current address: Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
3
|
Zhu L, Peng Q, Wu Y, Yao X. scBCR-seq revealed a special and novel IG H&L V(D)J allelic inclusion rearrangement and the high proportion dual BCR expressing B cells. Cell Mol Life Sci 2023; 80:319. [PMID: 37804328 PMCID: PMC11073065 DOI: 10.1007/s00018-023-04973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023]
Abstract
Since the initial report of V (D) J "allelic exclusion/inclusion" (allelic exclusion rearrangement or allelic inclusion rearrangement) and the concept of the "dual B cell receptor (BCR)" in 1961, despite ongoing discoveries, the precise proportion and source mechanism of dual BCR under physiological conditions have been puzzling immuologists. This study takes advantage of the single cell B cell receptor sequencing (scBCR-seq) technology, which can perfectly match the heavy and light chains of BCR at the level of a single B cell, and obtain the full length mRNA sequence of the complementary determining region 3 (CDR3). Through analyzing the pairing of functional IGH (immunoglobulin heavy chain) and IGL (immunoglobulin light chain) in single B cell from both human and mouse bone marrow and peripheral blood, it was observed that dual BCR B cells exhibit stable and high levels of expression. Among them, the human bone marrow and peripheral blood contain about 10% dual (or multiple) BCR B cells, while in mouse peripheral blood and bone marrow memory B cells, this proportion reaches around 20%. At the same time, we innovatively found that in each research sample of humans and mice, there are three (or more) functional rearrangements (mRNA level) of a single chain in a single B cell. By analyzing the position, direction and other compositional characteristics of the V(D)J gene family, we found that at least two (or more) of them are derived from over two (or more) specific allelic inclusion rearrangements of a single chromosome (mRNA molecular level evidence), our findings also highlighted the necessity of classified single cell sequencing data based on single, dual (or multiple) and cannot be assembled into BCR when analyzing the B cell repertoire. The results of this article provides new methods and modeling references for evaluating the proportion and source mechanisms of dual BCR B cells, as well as potential significance of allelic inclusion (exclusion escape) of V(D)J rearrangement.
Collapse
Affiliation(s)
- Lanwei Zhu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation and Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Qi Peng
- Department of Immunology, Center of Immunomolecular Engineering, Innovation and Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Yingjie Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation and Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation and Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
4
|
Jensen CG, Sumner JA, Kleinstein SH, Hoehn KB. Inferring B cell phylogenies from paired heavy and light chain BCR sequences with Dowser. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560187. [PMID: 37873135 PMCID: PMC10592837 DOI: 10.1101/2023.09.29.560187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Antibodies are vital to human immune responses and are composed of genetically variable heavy and light chains. These structures are initially expressed as B cell receptors (BCRs). BCR diversity is shaped through somatic hypermutation and selection during immune responses. This evolutionary process produces B cell clones, cells that descend from a common ancestor but differ by mutations. Phylogenetic trees inferred from BCR sequences can reconstruct the history of mutations within a clone. Until recently, BCR sequencing technologies separated heavy and light chains, but advancements in single cell sequencing now pair heavy and light chains from individual cells. However, it is unclear how these separate genes should be combined to infer B cell phylogenies. In this study, we investigated strategies for using paired heavy and light chain sequences to build phylogenetic trees. We found incorporating light chains significantly improved tree accuracy and reproducibility across all methods tested. This improvement was greater than the difference between tree building methods and persisted even when mixing bulk and single cell sequencing data. However, we also found that many phylogenetic methods estimated significantly biased branch lengths when some light chains were missing, such as when mixing single cell and bulk BCR data. This bias was eliminated using maximum likelihood methods with separate branch lengths for heavy and light chain gene partitions. Thus, we recommend using maximum likelihood methods with separate heavy and light chain partitions, especially when mixing data types. We implemented these methods in the R package Dowser: https://dowser.readthedocs.io.
Collapse
Affiliation(s)
- Cole G. Jensen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
| | - Jacob A. Sumner
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, 06520, USA
| | - Steven H. Kleinstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kenneth B. Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Current address: Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
5
|
Pearce DR, Akarca AU, De Maeyer RPH, Kostina E, Huebner A, Sivakumar M, Karasaki T, Shah K, Janes SM, McGranahan N, Reddy V, Akbar AN, Moore DA, Marafioti T, Swanton C, Hynds RE. Phenotyping of lymphoproliferative tumours generated in xenografts of non-small cell lung cancer. Front Oncol 2023; 13:1156743. [PMID: 37342197 PMCID: PMC10277614 DOI: 10.3389/fonc.2023.1156743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/11/2023] [Indexed: 06/22/2023] Open
Abstract
Background Patient-derived xenograft (PDX) models involve the engraftment of tumour tissue in immunocompromised mice and represent an important pre-clinical oncology research method. A limitation of non-small cell lung cancer (NSCLC) PDX model derivation in NOD-scid IL2Rgammanull (NSG) mice is that a subset of initial engraftments are of lymphocytic, rather than tumour origin. Methods The immunophenotype of lymphoproliferations arising in the lung TRACERx PDX pipeline were characterised. To present the histology data herein, we developed a Python-based tool for generating patient-level pathology overview figures from whole-slide image files; PATHOverview is available on GitHub (https://github.com/EpiCENTR-Lab/PATHOverview). Results Lymphoproliferations occurred in 17.8% of lung adenocarcinoma and 10% of lung squamous cell carcinoma transplantations, despite none of these patients having a prior or subsequent clinical history of lymphoproliferative disease. Lymphoproliferations were predominantly human CD20+ B cells and had the immunophenotype expected for post-transplantation diffuse large B cell lymphoma with plasma cell features. All lymphoproliferations expressed Epstein-Barr-encoded RNAs (EBER). Analysis of immunoglobulin light chain gene rearrangements in three tumours where multiple tumour regions had resulted in lymphoproliferations suggested that each had independent clonal origins. Discussion Overall, these data suggest that B cell clones with lymphoproliferative potential are present within primary NSCLC tumours, and that these are under continuous immune surveillance. Since these cells can be expanded following transplantation into NSG mice, our data highlight the value of quality control measures to identify lymphoproliferations within xenograft pipelines and support the incorporation of strategies to minimise lymphoproliferations during the early stages of xenograft establishment pipelines.
Collapse
Affiliation(s)
- David R. Pearce
- Cancer Research UK (CRUK) Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Cancer Evolution and Genome Stability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ayse U. Akarca
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | | | - Emily Kostina
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Ariana Huebner
- Cancer Research UK (CRUK) Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Cancer Evolution and Genome Stability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Genome Evolution Research Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Monica Sivakumar
- Cancer Research UK (CRUK) Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Takahiro Karasaki
- Cancer Evolution and Genome Stability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Kavina Shah
- Division of Medicine, University College London, London, United Kingdom
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Nicholas McGranahan
- Cancer Research UK (CRUK) Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Cancer Genome Evolution Research Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Venkat Reddy
- Division of Medicine, University College London, London, United Kingdom
| | - Arne N. Akbar
- Division of Medicine, University College London, London, United Kingdom
| | - David A. Moore
- Cancer Research UK (CRUK) Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Teresa Marafioti
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Charles Swanton
- Cancer Research UK (CRUK) Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Cancer Evolution and Genome Stability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Robert E. Hynds
- Cancer Research UK (CRUK) Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Cancer Evolution and Genome Stability Laboratory, The Francis Crick Institute, London, United Kingdom
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
6
|
Peterson JN, Boackle SA, Taitano SH, Sang A, Lang J, Kelly M, Rahkola JT, Miranda AM, Sheridan RM, Thurman JM, Rao VK, Torres RM, Pelanda R. Elevated Detection of Dual Antibody B Cells Identifies Lupus Patients With B Cell-Reactive VH4-34 Autoantibodies. Front Immunol 2022; 13:795209. [PMID: 35185888 PMCID: PMC8854503 DOI: 10.3389/fimmu.2022.795209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
About 5% of B cells in healthy mice and humans are allelically or isotypically included and hence co-express two different antibodies. In mice, dual antibody B cells (B2R) expand with systemic autoimmunity, co-express autoreactive and non-autoreactive antibodies, and participate in immune responses, but this phenomenon is strain dependent. This study was developed with two goals: 1) to establish the contribution of TLR and IFN receptor signaling to the development of germinal center B cells that express two antibodies in MRL/lpr mice; and 2) to determine whether B2R B cells are increased and particularly activated in a subset of adult patients diagnosed with systemic lupus erythematosus (SLE). Results from the MRL/lpr studies indicate that the enhanced differentiation of dual-κ B cells into germinal center B cells is due to a heightened response to TLR7 and TLR9 signaling, further fueled by an increased response to type II IFN. To understand the clinical and translational implications of our observations in mouse B2R B cells, cohorts of SLE patients and healthy controls were recruited and evaluated for expression of dual BCRs. Results from flow cytometry and microscopy revealed supraphysiological frequencies of κ+λ+ B2R cells in one fourth of the SLE patients. Abnormal numbers of κ+λ+ B cells correlated with higher frequencies of activated naïve B cells and age-associated B cells, and a lower proportion of "B cells that are naïve IgD+" (BND). However, results from single cell V(D)J sequencing demonstrated that these high κ+λ+ SLE patients harbored normal frequencies of κ+λ+ and other B2R B cells. and we further show that their B cells were instead decorated by κ and λ VH4-34 autoantibodies. Thus, our findings indicate that elevated flow cytometric detection of isotypically-included B cells can identify patients with high titers of B cell-reactive VH4-34 autoantibodies and abnormal distribution of B cell subsets relevant to autoimmunity.
Collapse
Affiliation(s)
- Jacob N. Peterson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Susan A. Boackle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Sophina H. Taitano
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Allison Sang
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Julie Lang
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Margot Kelly
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jeremy T. Rahkola
- Mucosa and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, United States
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, CO, United States
| | - Anjelica M. Miranda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Ryan M. Sheridan
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Joshua M. Thurman
- Division of Nephrology and Hypertension, University of Colorado School of Medicine, Aurora, CO, United States
| | - V. Koneti Rao
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, United States
| | - Raul M. Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
7
|
Oscier D, Stamatopoulos K, Mirandari A, Strefford J. The Genomics of Hairy Cell Leukaemia and Splenic Diffuse Red Pulp Lymphoma. Cancers (Basel) 2022; 14:697. [PMID: 35158965 PMCID: PMC8833447 DOI: 10.3390/cancers14030697] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Classical hairy cell leukaemia (HCLc), its variant form (HCLv), and splenic diffuse red pulp lymphoma (SDRPL) constitute a subset of relatively indolent B cell tumours, with low incidence rates of high-grade transformations, which primarily involve the spleen and bone marrow and are usually associated with circulating tumour cells characterised by villous or irregular cytoplasmic borders. The primary aim of this review is to summarise their cytogenetic, genomic, immunogenetic, and epigenetic features, with a particular focus on the clonal BRAFV600E mutation, present in most cases currently diagnosed with HCLc. We then reflect on their cell of origin and pathogenesis as well as present the clinical implications of improved biological understanding, extending from diagnosis to prognosis assessment and therapy response.
Collapse
Affiliation(s)
- David Oscier
- Department of Haematology, Royal Bournemouth and Christchurch NHS Trust, Bournemouth BH7 7DW, UK
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology-Hellas, 57001 Thessaloniki, Greece;
| | - Amatta Mirandari
- Cancer Genomics Group, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK; (A.M.); (J.S.)
| | - Jonathan Strefford
- Cancer Genomics Group, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK; (A.M.); (J.S.)
| |
Collapse
|
8
|
Wu L, Xue Z, Jin S, Zhang J, Guo Y, Bai Y, Jin X, Wang C, Wang L, Liu Z, Wang JQ, Lu L, Liu W. huARdb: human Antigen Receptor database for interactive clonotype-transcriptome analysis at the single-cell level. Nucleic Acids Res 2021; 50:D1244-D1254. [PMID: 34606616 PMCID: PMC8728177 DOI: 10.1093/nar/gkab857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/31/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
T-cell receptors (TCRs) and B-cell receptors (BCRs) are critical in recognizing antigens and activating the adaptive immune response. Stochastic V(D)J recombination generates massive TCR/BCR repertoire diversity. Single-cell immune profiling with transcriptome analysis allows the high-throughput study of individual TCR/BCR clonotypes and functions under both normal and pathological settings. However, a comprehensive database linking these data is not yet readily available. Here, we present the human Antigen Receptor database (huARdb), a large-scale human single-cell immune profiling database that contains 444 794 high confidence T or B cells (hcT/B cells) with full-length TCR/BCR sequence and transcriptomes from 215 datasets. All datasets were processed in a uniform workflow, including sequence alignment, cell subtype prediction, unsupervised cell clustering, and clonotype definition. We also developed a multi-functional and user-friendly web interface that provides interactive visualization modules for biologists to analyze the transcriptome and TCR/BCR features at the single-cell level. HuARdb is freely available at https://huarc.net/database with functions for data querying, browsing, downloading, and depositing. In conclusion, huARdb is a comprehensive and multi-perspective atlas for human antigen receptors.
Collapse
Affiliation(s)
- Lize Wu
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, Zhejiang 311121, China
| | - Ziwei Xue
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang 314400, China
| | - Siqian Jin
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang 314400, China
| | - Jinchun Zhang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang 314400, China
| | - Yixin Guo
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang 314400, China
| | - Yadan Bai
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang 314400, China
| | - Xuexiao Jin
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chaochen Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang 314400, China
| | - Lie Wang
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zuozhu Liu
- Zhejiang University-University of Illinois at Urbana-Champaign Institute (ZJU-UIUC Institute), International Campus, Zhejiang University, Haining, Zhejiang 314400, China
| | - James Q Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang 314400, China
| | - Linrong Lu
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, Zhejiang 311121, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang 314400, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wanlu Liu
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, Zhejiang 311121, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang 314400, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Department of Orthopedic Surgery of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.,Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
9
|
Slot LM, Vergroesen RD, Kerkman PF, Staudinger E, Reijm S, van Dooren HJ, van der Voort EIH, Huizinga TWJ, Toes REM, Scherer HU. Light chain skewing in autoantibodies and B-cell receptors of the citrullinated antigen-binding B-cell response in rheumatoid arthritis. PLoS One 2021; 16:e0247847. [PMID: 33784344 PMCID: PMC8009422 DOI: 10.1371/journal.pone.0247847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/13/2021] [Indexed: 11/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease affecting 1% of the world population. RA is associated with the presence of autoantibodies, of which anti-citrullinated protein antibodies (ACPA) are most prominent. ACPA are produced by citrullinated antigen-binding B cells that have presumably survived tolerance checkpoints. So far, it is unclear how and when such autoreactive B cells emerge. Light chain (LC) rearrangement and mutation rates can be informative with regard to selection steps during B-cell development. Therefore, we studied LC characteristics of ACPA-expressing B cells and secreted ACPA with the aim to better understand the development of this disease-specific, autoreactive B-cell response. Paired ACPA-IgG and ACPA-depleted IgG were isolated from serum (n = 87) and synovial fluid (SF, n = 21) of patients with established RA. We determined the LC composition for each fraction by ELISA using kappa(Igκ)- and lambda(Igλ) LC-specific antibodies. Cellular LC expression was determined using flow cytometry. In addition, we used a B-cell receptor (BCR)-specific PCR to obtain LC variable region sequences of citrullinated antigen- and tetanus toxoid (TT)-binding B cells. In serum, we observed an increased frequency of lambda LC in ACPA-IgG (1.64:1) compared to control IgG (2.03:1) and to the κ/λ ratio reported for healthy individuals (2:1). A similar trend towards higher frequencies of lambda LCs was observed for ACPA-IgG in SF (1.84:1). Additionally, the percentage of Igλ-expressing B cells was higher for citrullinated antigen-binding B cells (51%) compared to TT-specific (43%) and total CD19+CD20+ B cells (36%). Moreover, an increased Igλ percentage was observed in BCR-sequences derived from ACPA-expressing (49%) compared to TT-specific B cells (34%). Taken together, we report an enhanced frequency of lambda LCs in the secreted ACPA-IgG repertoire and, on the cellular level, in BCR sequences of ACPA-expressing B cells compared to control. This skewing in the autoreactive B-cell repertoire could reflect a process of active selection.
Collapse
Affiliation(s)
- Linda M. Slot
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Priscilla F. Kerkman
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ellen Staudinger
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sanne Reijm
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hugo J. van Dooren
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Tom W. J. Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - René E. M. Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
10
|
Stanciu AE, Popescu M, Gheorghe DC. Idiotype-specific intravenous immunoglobulin for therapy of immunoglobulin kappa free light chain deficiency. Hum Vaccin Immunother 2019; 15:1123-1125. [PMID: 30676854 DOI: 10.1080/21645515.2019.1572411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Deficient antibody production in patients with common variable immunodeficiency (CVID) is accompanied by an inability to produce free light chains (FLCs), particularly kappa (κ) FLC, due to B-cell dysfunction. We found that intravenous immunoglobulin (IVIg) administration, in a patient with CVID and (κ) FLC deficiency, for o short period of only 6 months, induced after discontinuation of treatment some kind of "long-lasting active immunity", leading to the secretion of immunoglobulin (κ) FLCs. A remarkable finding of our study is how effectively IVIg therapy led to a calculable (κ/λ) FLCs ratio, within the reference range. IVIg therapy may have functioned as an idiotype vaccine which induced a humoral response. To date, several questions remain open. For instance, from a clinical standpoint, we do not know whether this form of active immunotherapy has the potential to cure or just to control the immunoglobulin (κ) FLC deficiency. Further studies are necessary to confirm these findings.
Collapse
Affiliation(s)
- Adina Elena Stanciu
- a Department of Carcinogenesis and Molecular Biology , Institute of Oncology Bucharest , Bucharest , Romania
| | - Monica Popescu
- b Center of Hematology and Bone Marrow Transplantation , Fundeni Clinical Institute , Bucharest , Romania
| | - Dan Cristian Gheorghe
- c ENT Department , Maria Sklodowska Curie Children's Emergency Hospital , Bucharest , Romania
| |
Collapse
|
11
|
Collins AM, Watson CT. Immunoglobulin Light Chain Gene Rearrangements, Receptor Editing and the Development of a Self-Tolerant Antibody Repertoire. Front Immunol 2018; 9:2249. [PMID: 30349529 PMCID: PMC6186787 DOI: 10.3389/fimmu.2018.02249] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/10/2018] [Indexed: 11/13/2022] Open
Abstract
Discussion of the antibody repertoire usually emphasizes diversity, but a conspicuous feature of the light chain repertoire is its lack of diversity. The diversity of reported allelic variants of germline light chain genes is also limited, even in well-studied species. In this review, the implications of this lack of diversity are considered. We explore germline and rearranged light chain genes in a variety of species, with a particular focus on human and mouse genes. The importance of the number, organization and orientation of the genes for the control of repertoire development is discussed, and we consider how primary rearrangements and receptor editing together shape the expressed light chain repertoire. The resulting repertoire is dominated by just a handful of IGKV and IGLV genes. It has been hypothesized that an important function of the light chain is to guard against self-reactivity, and the role of secondary rearrangements in this process could explain the genomic organization of the light chain genes. It could also explain why the light chain repertoire is so limited. Heavy and light chain genes may have co-evolved to ensure that suitable light chain partners are usually available for each heavy chain that forms early in B cell development. We suggest that the co-evolved loci of the house mouse often became separated during the inbreeding of laboratory mice, resulting in new pairings of loci that are derived from different sub-species of the house mouse. A resulting vulnerability to self-reactivity could explain at least some mouse models of autoimmune disease.
Collapse
Affiliation(s)
- Andrew M. Collins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
12
|
Innate and adaptive signals enhance differentiation and expansion of dual-antibody autoreactive B cells in lupus. Nat Commun 2018; 9:3973. [PMID: 30266981 PMCID: PMC6162205 DOI: 10.1038/s41467-018-06293-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
Autoreactive B cells have a major function in autoimmunity. A small subset of B cells expressing two distinct B-cell-antigen-receptors (B2R cells) is elevated in many patients with systematic lupus erythematosus (SLE) and in the MRL(/lpr) mouse model of lupus, and is often autoreactive. Here we show, using RNAseq and in vitro and in vivo analyses, signals that are required for promoting B2R cell numbers and effector function in autoimmune mice. Compared with conventional B cells, B2R cells are more responsive to Toll-like receptor 7/9 and type I/II interferon treatment, display higher levels of MHCII and co-receptors, and depend on IL-21 for their homeostasis; moreover they expand better upon T cell-dependent antigen stimulation, and mount a more robust memory response, which are characteristics essential for enhanced (auto)immune responses. Our findings thus provide insights on the stimuli for the expansion of an autoreactive B cell subset that may contribute to the etiology of SLE.
Collapse
|
13
|
Totonchy J, Osborn JM, Chadburn A, Nabiee R, Argueta L, Mikita G, Cesarman E. KSHV induces immunoglobulin rearrangements in mature B lymphocytes. PLoS Pathog 2018; 14:e1006967. [PMID: 29659614 PMCID: PMC5919685 DOI: 10.1371/journal.ppat.1006967] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 04/26/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
Kaposi sarcoma herpesvirus (KSHV/HHV-8) is a B cell tropic human pathogen, which is present in vivo in monotypic immunoglobulin λ (Igλ) light chain but polyclonal B cells. In the current study, we use cell sorting to infect specific B cell lineages from human tonsil specimens in order to examine the immunophenotypic alterations associated with KSHV infection. We describe IL-6 dependent maturation of naïve B lymphocytes in response to KSHV infection and determine that the Igλ monotypic bias of KSHV infection in vivo is due to viral induction of BCR revision. Infection of immunoglobulin κ (Igκ) naïve B cells induces expression of Igλ and isotypic inclusion, with eventual loss of Igκ. We show that this phenotypic shift occurs via re-induction of Rag-mediated V(D)J recombination. These data explain the selective presence of KSHV in Igλ B cells in vivo and provide the first evidence that a human pathogen can manipulate the molecular mechanisms responsible for immunoglobulin diversity. Kaposi sarcoma herpesvirus (KSHV) infection of human B cells is poorly understood. KSHV infection in humans is heavily biased towards B cells with a specific subtype of antibody molecule (lambda light chain rather than kappa light chain). This has been a conundrum in the field for years because there is no known physiological distinction between B cells with different light chains that might provide a mechanism for this bias. Here, we develop a novel system for infecting B cells from human tonsil with KSHV and tracking how the virus alters the cells over time. Using this system, we demonstrate a number of KSHV-driven alterations in B cells, including the fact that KSHV infection of kappa light chain positive B cells drives them to become lambda light chain positive by re-inducing recombination events that are normally restricted to B cell development in the bone marrow. We believe that this study is the first demonstration that a virus can alter immunoglobulin specificity via direct infection of B cells.
Collapse
Affiliation(s)
- Jennifer Totonchy
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of Amercia
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States of Amercia
| | - Jessica M. Osborn
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of Amercia
| | - Amy Chadburn
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of Amercia
| | - Ramina Nabiee
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States of Amercia
| | - Lissenya Argueta
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of Amercia
| | - Geoffrey Mikita
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of Amercia
| | - Ethel Cesarman
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of Amercia
- * E-mail:
| |
Collapse
|
14
|
Can Concurrent Abnormalities in Free Light Chains and Immunoglobulin Concentrations Identify a Target Population for Immunoglobulin Trials in Sepsis?*. Crit Care Med 2017; 45:1829-1836. [DOI: 10.1097/ccm.0000000000002627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
A Systems Biology-Based Investigation into the Pharmacological Mechanisms of Sheng-ma-bie-jia-tang Acting on Systemic Lupus Erythematosus by Multi-Level Data Integration. Sci Rep 2015; 5:16401. [PMID: 26560501 PMCID: PMC4642335 DOI: 10.1038/srep16401] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/12/2015] [Indexed: 11/08/2022] Open
Abstract
Sheng-ma-bie-jia-tang (SMBJT) is a Traditional Chinese Medicine (TCM) formula that is widely used for the treatment of Systemic Lupus Erythematosus (SLE) in China. However, molecular mechanism behind this formula remains unknown. Here, we systematically analyzed targets of the ingredients in SMBJT to evaluate its potential molecular mechanism. First, we collected 1,267 targets from our previously published database, the Traditional Chinese Medicine Integrated Database (TCMID). Next, we conducted gene ontology and pathway enrichment analyses for these targets and determined that they were enriched in metabolism (amino acids, fatty acids, etc.) and signaling pathways (chemokines, Toll-like receptors, adipocytokines, etc.). 96 targets, which are known SLE disease proteins, were identified as essential targets and the rest 1,171 targets were defined as common targets of this formula. The essential targets directly interacted with SLE disease proteins. Besides, some common targets also had essential connections to both key targets and SLE disease proteins in enriched signaling pathway, e.g. toll-like receptor signaling pathway. We also found distinct function of essential and common targets in immune system processes. This multi-level approach to deciphering the underlying mechanism of SMBJT treatment of SLE details a new perspective that will further our understanding of TCM formulas.
Collapse
|