1
|
Klein L, Petrozziello E. Antigen presentation for central tolerance induction. Nat Rev Immunol 2025; 25:57-72. [PMID: 39294277 DOI: 10.1038/s41577-024-01076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/20/2024]
Abstract
The extent of central T cell tolerance is determined by the diversity of self-antigens that developing thymocytes 'see' on thymic antigen-presenting cells (APCs). Here, focusing on insights from the past decade, we review the functional adaptations of medullary thymic epithelial cells, thymic dendritic cells and thymic B cells for the purpose of tolerance induction. Their distinct cellular characteristics range from unconventional phenomena, such as promiscuous gene expression or mimicry of peripheral cell types, to strategic positioning in distinct microenvironments and divergent propensities to preferentially access endogenous or exogenous antigen pools. We also discuss how 'tonic' inflammatory signals in the thymic microenvironment may extend the intrathymically visible 'self' to include autoantigens that are otherwise associated with highly immunogenic peripheral environments.
Collapse
Affiliation(s)
- Ludger Klein
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.
| | - Elisabetta Petrozziello
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
2
|
Kioulaphides S, García AJ. Encapsulation and immune protection for type 1 diabetes cell therapy. Adv Drug Deliv Rev 2024; 207:115205. [PMID: 38360355 PMCID: PMC10948298 DOI: 10.1016/j.addr.2024.115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Type 1 Diabetes (T1D) involves the autoimmune destruction of insulin-producing β-cells in the pancreas. Exogenous insulin injections are the current therapy but are user-dependent and cannot fully recapitulate physiological insulin secretion dynamics. Since the emergence of allogeneic cell therapy for T1D, the Edmonton Protocol has been the most promising immunosuppression protocol for cadaveric islet transplantation, but the lack of donor islets, poor cell engraftment, and required chronic immunosuppression have limited its application as a therapy for T1D. Encapsulation in biomaterials on the nano-, micro-, and macro-scale offers the potential to integrate islets with the host and protect them from immune responses. This method can be applied to different cell types, including cadaveric, porcine, and stem cell-derived islets, mitigating the issue of a lack of donor cells. This review covers progress in the efforts to integrate insulin-producing cells from multiple sources to T1D patients as a form of cell therapy.
Collapse
Affiliation(s)
- Sophia Kioulaphides
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Andrés J García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
3
|
Sandholm N, Rubio García A, Pekalski ML, Inshaw JRJ, Cutler AJ, Todd JA. Thymocyte regulatory variant alters transcription factor binding and protects from type 1 diabetes in infants. Sci Rep 2022; 12:14137. [PMID: 35986039 PMCID: PMC9391468 DOI: 10.1038/s41598-022-18296-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractWe recently mapped a genetic susceptibility locus on chromosome 6q22.33 for type 1 diabetes (T1D) diagnosed below the age of 7 years between the PTPRK and thymocyte-selection-associated (THEMIS) genes. As the thymus plays a central role in shaping the T cell repertoire, we aimed to identify the most likely causal genetic factors behind this association using thymocyte genomic data. In four thymocyte populations, we identified 253 DNA sequence motifs underlying histone modifications. The G insertion allele of rs138300818, associated with protection from diabetes, created thymocyte motifs for multiple histone modifications and thymocyte types. In a parallel approach to identifying variants that alter transcription factor binding motifs, the same variant disrupted a predicted motif for Rfx7, which is abundantly expressed in the thymus. Chromatin state and RNA sequencing data suggested strong transcription overlapping rs138300818 in fetal thymus, while expression quantitative trait locus and chromatin conformation data associate the insertion with lower THEMIS expression. Extending the analysis to other T1D loci further highlighted rs66733041 affecting the GATA3 transcription factor binding in the AFF3 locus. Taken together, our results support a role for thymic THEMIS gene expression and the rs138300818 variant in promoting the development of early-onset T1D.
Collapse
|
4
|
Lin Y, Perovanovic J, Kong Y, Igyarto BZ, Zurawski S, Tantin D, Zurawski G, Bettini M, Bettini ML. Antibody-Mediated Targeting of a Hybrid Insulin Peptide Toward Neonatal Thymic Langerin-Positive Cells Enhances T-Cell Central Tolerance and Delays Autoimmune Diabetes. Diabetes 2022; 71:1735-1745. [PMID: 35622068 PMCID: PMC9490359 DOI: 10.2337/db21-1069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022]
Abstract
Thymic presentation of self-antigens is critical for establishing a functional yet self-tolerant T-cell population. Hybrid peptides formed through transpeptidation within pancreatic β-cell lysosomes have been proposed as a new class of autoantigens in type 1 diabetes (T1D). While the production of hybrid peptides in the thymus has not been explored, due to the nature of their generation, it is thought to be highly unlikely. Therefore, hybrid peptide-reactive thymocytes may preferentially escape thymic selection and contribute significantly to T1D progression. Using an antibody-peptide conjugation system, we targeted the hybrid insulin peptide (HIP) 2.5HIP toward thymic resident Langerin-positive dendritic cells to enhance thymic presentation during the early neonatal period. Our results indicated that anti-Langerin-2.5HIP delivery can enhance T-cell central tolerance toward cognate thymocytes in NOD.BDC2.5 mice. Strikingly, a single dose treatment with anti-Langerin-2.5HIP during the neonatal period delayed diabetes onset in NOD mice, indicating the potential of antibody-mediated delivery of autoimmune neoantigens during early stages of life as a therapeutic option in the prevention of autoimmune diseases.
Collapse
Affiliation(s)
- Yong Lin
- Baylor College of Medicine, Houston, TX
| | | | | | - Botond Z. Igyarto
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Sandra Zurawski
- Baylor Institute for Immunology Research, Baylor Scott and White Research Institute, Dallas, TX
| | - Dean Tantin
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Gerard Zurawski
- Baylor Institute for Immunology Research, Baylor Scott and White Research Institute, Dallas, TX
| | - Maria Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Matthew L. Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT
- Corresponding author: Matthew L. Bettini,
| |
Collapse
|
5
|
Breed ER, Vobořil M, Ashby KM, Martinez RJ, Qian L, Wang H, Salgado OC, O'Connor CH, Hogquist KA. Type 2 cytokines in the thymus activate Sirpα + dendritic cells to promote clonal deletion. Nat Immunol 2022; 23:1042-1051. [PMID: 35637352 PMCID: PMC10037932 DOI: 10.1038/s41590-022-01218-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 04/18/2022] [Indexed: 12/30/2022]
Abstract
The thymus contains a diversity of dendritic cells (DCs) that exist in defined locations and have different antigen-processing and -presenting features. This suggests that they play nonredundant roles in mediating thymocyte selection. In an effort to eliminate SIRPα+ classic DC2 subsets, we discovered that a substantial proportion expresses the surface lectin, CD301b, in the thymus. These cells resemble the CD301b+ type 2 immune response promoting DCs that are present in the skin-draining lymph nodes. Transcriptional and phenotypic comparison to other DC subsets in the thymus revealed that thymic CD301b+ cDCs represent an activated state that exhibits enhanced antigen processing and presentation. Furthermore, a CD301b+ cDC2 subset demonstrated a type 2 cytokine signature and required steady-state interleukin-4 receptor signaling. Selective ablation of CD301b+ cDC2 subsets impaired clonal deletion without affecting regulatory T cells (Treg cells). The T cell receptor α repertoire sequencing confirmed that a cDC2 subset promotes deletion of conventional T cells with minimal effect on Treg cell selection. Together, these findings suggest that cytokine-induced activation of DCs in the thymus substantially enforces central tolerance.
Collapse
Affiliation(s)
- Elise R Breed
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Matouš Vobořil
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Katherine M Ashby
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ryan J Martinez
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Lily Qian
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Haiguang Wang
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Oscar C Salgado
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Christine H O'Connor
- Research Informatics Solutions, Laboratory Medicine and Pathology Group, Minnesota Supercomputing Institute, Minneapolis, MN, USA
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Li Y, Chen P, Huang H, Feng H, Ran H, Liu W. Quantification of dendritic cell subsets in human thymus tissues of various ages. IMMUNITY & AGEING 2021; 18:44. [PMID: 34794472 PMCID: PMC8600781 DOI: 10.1186/s12979-021-00255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/28/2021] [Indexed: 12/03/2022]
Abstract
Background Dendritic cells (DCs) in the thymus are involved in central tolerance formation, but they also have other functions in the thymus, such as pathogen recognition. The density changes of human thymic DCs have been hardly investigated. In this study, human thymus samples of various ages were collected for tissue sectioning and staining. The thymic cortex and medulla area as well as the densities of various subsets of thymic DCs were calculated. Results All common DC subsets were found in the human thymus of various ages. Most DCs had accumulated in the human thymic epithelial space, especially the medulla. We also found that the human thymic cortex had atrophied relatively faster than the medulla, which led to a gradual increase of the area ratio of the medulla to cortex with the increase of age. The densities of DC subsets in the human thymus showed various changes with increasing age, which contributed to the composition changes of DC subsets. The density of plasmacytoid DCs (pDCs) in the human thymus had increased gradually with aging, which suggested that pDCs plays another essential role in the thymus in addition to central tolerance. Conclusions Inconsistent with the shrinking of the epithelial space in the thymus, the densities of DC subsets in the epithelial space of the thymus are maintained at a constant level with aging to preserve highly efficient autoreactive thymocyte screening. An increasing density of the thymic pDCs with aging implies an extra function of DCs in the thymus beyond central tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-021-00255-8.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurosurgical Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Pei Chen
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Huang
- Department of Neurology, The First People's Hospital of Nanning, Nanning, 530022, China
| | - Huiyu Feng
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Ran
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Weibin Liu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
7
|
Srinivasan J, Lancaster JN, Singarapu N, Hale LP, Ehrlich LIR, Richie ER. Age-Related Changes in Thymic Central Tolerance. Front Immunol 2021; 12:676236. [PMID: 33968086 PMCID: PMC8100025 DOI: 10.3389/fimmu.2021.676236] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 01/03/2023] Open
Abstract
Thymic epithelial cells (TECs) and hematopoietic antigen presenting cells (HAPCs) in the thymus microenvironment provide essential signals to self-reactive thymocytes that induce either negative selection or generation of regulatory T cells (Treg), both of which are required to establish and maintain central tolerance throughout life. HAPCs and TECs are comprised of multiple subsets that play distinct and overlapping roles in central tolerance. Changes that occur in the composition and function of TEC and HAPC subsets across the lifespan have potential consequences for central tolerance. In keeping with this possibility, there are age-associated changes in the cellular composition and function of T cells and Treg. This review summarizes changes in T cell and Treg function during the perinatal to adult transition and in the course of normal aging, and relates these changes to age-associated alterations in thymic HAPC and TEC subsets.
Collapse
Affiliation(s)
- Jayashree Srinivasan
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | | | - Nandini Singarapu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, TX, United States
| | - Laura P Hale
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Ellen R Richie
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, TX, United States
| |
Collapse
|
8
|
Clark M, Kroger CJ, Ke Q, Tisch RM. The Role of T Cell Receptor Signaling in the Development of Type 1 Diabetes. Front Immunol 2021; 11:615371. [PMID: 33603744 PMCID: PMC7884625 DOI: 10.3389/fimmu.2020.615371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
T cell receptor (TCR) signaling influences multiple aspects of CD4+ and CD8+ T cell immunobiology including thymic development, peripheral homeostasis, effector subset differentiation/function, and memory formation. Additional T cell signaling cues triggered by co-stimulatory molecules and cytokines also affect TCR signaling duration, as well as accessory pathways that further shape a T cell response. Type 1 diabetes (T1D) is a T cell-driven autoimmune disease targeting the insulin producing β cells in the pancreas. Evidence indicates that dysregulated TCR signaling events in T1D impact the efficacy of central and peripheral tolerance-inducing mechanisms. In this review, we will discuss how the strength and nature of TCR signaling events influence the development of self-reactive T cells and drive the progression of T1D through effects on T cell gene expression, lineage commitment, and maintenance of pathogenic anti-self T cell effector function.
Collapse
Affiliation(s)
- Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
9
|
Cosway EJ, James KD, Lucas B, Anderson G, White AJ. The thymus medulla and its control of αβT cell development. Semin Immunopathol 2020; 43:15-27. [PMID: 33306154 PMCID: PMC7925449 DOI: 10.1007/s00281-020-00830-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
αβT cells are an essential component of effective immune responses. The heterogeneity that lies within them includes subsets that express diverse self-MHC-restricted αβT cell receptors, which can be further subdivided into CD4+ helper, CD8+ cytotoxic, and Foxp3+ regulatory T cells. In addition, αβT cells also include invariant natural killer T cells that are very limited in αβT cell receptor repertoire diversity and recognise non-polymorphic CD1d molecules that present lipid antigens. Importantly, all αβT cell sublineages are dependent upon the thymus as a shared site of their development. Ongoing research has examined how the thymus balances the intrathymic production of multiple αβT cell subsets to ensure correct formation and functioning of the peripheral immune system. Experiments in both wild-type and genetically modified mice have been essential in revealing complex cellular and molecular mechanisms that regulate thymus function. In particular, studies have demonstrated the diverse and critical role that the thymus medulla plays in shaping the peripheral T cell pool. In this review, we summarise current knowledge on functional properties of the thymus medulla that enable the thymus to support the production of diverse αβT cell types.
Collapse
Affiliation(s)
- Emilie J Cosway
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kieran D James
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Beth Lucas
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Andrea J White
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
10
|
Salgado OC, Hogquist KA. Early childhood education is critical for T reg cells. Nat Immunol 2019; 20:952-954. [PMID: 31308543 DOI: 10.1038/s41590-019-0440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Oscar C Salgado
- Center for Immunology and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Kristin A Hogquist
- Center for Immunology and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Lancaster JN, Thyagarajan HM, Srinivasan J, Li Y, Hu Z, Ehrlich LIR. Live-cell imaging reveals the relative contributions of antigen-presenting cell subsets to thymic central tolerance. Nat Commun 2019; 10:2220. [PMID: 31101805 PMCID: PMC6525199 DOI: 10.1038/s41467-019-09727-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/18/2019] [Indexed: 12/31/2022] Open
Abstract
Both medullary thymic epithelial cells (mTEC) and dendritic cells (DC) present tissue-restricted antigens (TRA) to thymocytes to induce central tolerance, but the relative contributions of these antigen-presenting cell (APC) subsets remain unresolved. Here we developed a two-photon microscopy approach to observe thymocytes interacting with intact APCs presenting TRAs. We find that mTECs and DCs cooperate extensively to induce tolerance, with their relative contributions regulated by the cellular form of the TRA and the class of major histocompatibility complex (MHC) on which antigen is presented. Even when TRA expression is restricted to mTECs, DCs still present self-antigens at least as frequently as mTECs. Notably, the DC subset cDC2 efficiently acquires secreted mTEC-derived TRAs for cross-presentation on MHC-I. By directly imaging interactions between thymocytes and APCs, while monitoring intracellular signaling, this study reveals that distinct DC subsets and AIRE+ mTECs contribute substantially to presentation of diverse self-antigens for establishing central tolerance.
Collapse
Affiliation(s)
- J N Lancaster
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, 100 E. 24th Street A5000, Austin, TX, 78712, USA
| | - H M Thyagarajan
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, 100 E. 24th Street A5000, Austin, TX, 78712, USA
| | - J Srinivasan
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, 100 E. 24th Street A5000, Austin, TX, 78712, USA
| | - Y Li
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, 100 E. 24th Street A5000, Austin, TX, 78712, USA
| | - Z Hu
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, 100 E. 24th Street A5000, Austin, TX, 78712, USA
| | - L I R Ehrlich
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, 100 E. 24th Street A5000, Austin, TX, 78712, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
12
|
Inglesfield S, Cosway EJ, Jenkinson WE, Anderson G. Rethinking Thymic Tolerance: Lessons from Mice. Trends Immunol 2019; 40:279-291. [PMID: 30803714 DOI: 10.1016/j.it.2019.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 12/20/2022]
Abstract
In the thymus, distinct cortex and medulla areas emphasize the division of labor in selection events shaping the αβT cell receptor repertoire. For example, MHC restriction via positive selection is a unique property of epithelial cells in the thymic cortex. Far less clear are the events controlling tolerance induction in the medulla. By acting in concert through multiple roles, including antigen production/presentation and chemokine-mediated control of migration, we propose that medullary epithelium and dendritic cells collectively enable the medulla to balance T cell production with negative selection and Foxp3+ regulatory T cell (Treg) development. We examine here the features of these medullary resident cells and their roles in T cell tolerance, and discuss how imbalance in the thymus can result in loss of T cell tolerance.
Collapse
Affiliation(s)
- Sarah Inglesfield
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, UK
| | - Emilie J Cosway
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, UK
| | - William E Jenkinson
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, UK
| | - Graham Anderson
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, UK.
| |
Collapse
|
13
|
Guerder S, Hassel C, Carrier A. Thymus-specific serine protease, a protease that shapes the CD4 T cell repertoire. Immunogenetics 2018; 71:223-232. [PMID: 30225612 DOI: 10.1007/s00251-018-1078-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022]
Abstract
The lifespan of T cells is determined by continuous interactions of their T cell receptors (TCR) with self-peptide-MHC (self-pMHC) complexes presented by different subsets of antigen-presenting cells (APC). In the thymus, developing thymocytes are positively selected through recognition of self-pMHC presented by cortical thymic epithelial cells (cTEC). They are subsequently negatively selected by medullary thymic epithelial cells (mTEC) or thymic dendritic cells (DC) presenting self-pMHC complexes. In the periphery, the homeostasis of mature T cells is likewise controlled by the interaction of their TCR with self-pMHC complexes presented by lymph node stromal cells while they may be tolerized by DC presenting tissue-derived self-antigens. To perform these tasks, the different subsets of APC are equipped with distinct combination of antigen processing enzymes and consequently present specific repertoire of self-peptides. Here, we discuss one such antigen processing enzyme, the thymus-specific serine protease (TSSP), which is predominantly expressed by thymic stromal cells. In thymic DC and TEC, TSSP edits the repertoire of peptide presented by class II molecules and thus shapes the CD4 T cell repertoire.
Collapse
Affiliation(s)
- Sylvie Guerder
- INSERM, U1043, 31300, Toulouse, France. .,CNRS, UMR5282, 31300, Toulouse, France. .,Centre de Physiopathologie de Toulouse Purpan, Université Toulouse III Paul-Sabatier, 31300, Toulouse, France. .,INSERM UMR1043, Centre de Physiopathologie de Toulouse Purpan, CHU Purpan, BP 3028, 31024, Toulouse CEDEX 3, France.
| | - Chervin Hassel
- INSERM, U1043, 31300, Toulouse, France.,CNRS, UMR5282, 31300, Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan, Université Toulouse III Paul-Sabatier, 31300, Toulouse, France
| | - Alice Carrier
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| |
Collapse
|
14
|
Cowan JE, Baik S, McCarthy NI, Parnell SM, White AJ, Jenkinson WE, Anderson G. Aire controls the recirculation of murine Foxp3 + regulatory T-cells back to the thymus. Eur J Immunol 2018; 48:844-854. [PMID: 29285761 PMCID: PMC6001551 DOI: 10.1002/eji.201747375] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/07/2017] [Accepted: 12/23/2017] [Indexed: 11/07/2022]
Abstract
In the thymus, medullary thymic epithelial cells (mTEC) determine the fate of newly selected CD4+ and CD8+ single positive (SP) thymocytes. For example, mTEC expression of Aire controls intrathymic self-antigen availability for negative selection. Interestingly, alterations in both Foxp3+ Regulatory T-cells (T-Reg) and conventional SP thymocytes in Aire-/- mice suggest additional, yet poorly understood, roles for Aire during intrathymic T-cell development. To examine this, we analysed thymocytes from Aire-/- mice using Rag2GFP and Foxp3 expression, and a recently described CD69/MHCI subset definition of post-selection CD4+ conventional thymocytes. We show that while Aire is dispensable for de novo generation of conventional αβT-cells, it plays a key role in controlling the intrathymic T-Reg pool. Surprisingly, a decline in intrathymic T-Reg in Aire-/- mice maps to a reduction in mature recirculating Rag2GFP- T-Reg that express CCR6 and re-enter the thymus from the periphery. Furthermore, we show mTEC expression of the CCR6 ligand CCL20 is reduced in Aire-/- mice, and that CCR6 is required for T-Reg recirculation back to the thymus. Collectively, our study re-defines requirements for late stage intrathymic αβT-cell development, and demonstrates that Aire controls a CCR6-CCL20 axis that determines the developmental makeup of the intrathymic T-Reg pool.
Collapse
Affiliation(s)
- Jennifer E. Cowan
- Institute of Immunology and ImmunotherapyCollege of Medical and Dental SciencesMedical SchoolUniversity of BirminghamEdgbastonBirminghamUK
| | - Song Baik
- Institute of Immunology and ImmunotherapyCollege of Medical and Dental SciencesMedical SchoolUniversity of BirminghamEdgbastonBirminghamUK
| | - Nicholas I. McCarthy
- Institute of Immunology and ImmunotherapyCollege of Medical and Dental SciencesMedical SchoolUniversity of BirminghamEdgbastonBirminghamUK
| | - Sonia M. Parnell
- Institute of Immunology and ImmunotherapyCollege of Medical and Dental SciencesMedical SchoolUniversity of BirminghamEdgbastonBirminghamUK
| | - Andrea J. White
- Institute of Immunology and ImmunotherapyCollege of Medical and Dental SciencesMedical SchoolUniversity of BirminghamEdgbastonBirminghamUK
| | - William E. Jenkinson
- Institute of Immunology and ImmunotherapyCollege of Medical and Dental SciencesMedical SchoolUniversity of BirminghamEdgbastonBirminghamUK
| | - Graham Anderson
- Institute of Immunology and ImmunotherapyCollege of Medical and Dental SciencesMedical SchoolUniversity of BirminghamEdgbastonBirminghamUK
| |
Collapse
|
15
|
Clark M, Kroger CJ, Tisch RM. Type 1 Diabetes: A Chronic Anti-Self-Inflammatory Response. Front Immunol 2017; 8:1898. [PMID: 29312356 PMCID: PMC5743904 DOI: 10.3389/fimmu.2017.01898] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022] Open
Abstract
Inflammation is typically induced in response to a microbial infection. The release of proinflammatory cytokines enhances the stimulatory capacity of antigen-presenting cells, as well as recruits adaptive and innate immune effectors to the site of infection. Once the microbe is cleared, inflammation is resolved by various mechanisms to avoid unnecessary tissue damage. Autoimmunity arises when aberrant immune responses target self-tissues causing inflammation. In type 1 diabetes (T1D), T cells attack the insulin producing β cells in the pancreatic islets. Genetic and environmental factors increase T1D risk by in part altering central and peripheral tolerance inducing events. This results in the development and expansion of β cell-specific effector T cells (Teff) which mediate islet inflammation. Unlike protective immunity where inflammation is terminated, autoimmunity is sustained by chronic inflammation. In this review, we will highlight the key events which initiate and sustain T cell-driven pancreatic islet inflammation in nonobese diabetic mice and in human T1D. Specifically, we will discuss: (i) dysregulation of thymic selection events, (ii) the role of intrinsic and extrinsic factors that enhance the expansion and pathogenicity of Teff, (iii) defects which impair homeostasis and suppressor activity of FoxP3-expressing regulatory T cells, and (iv) properties of β cells which contribute to islet inflammation.
Collapse
Affiliation(s)
- Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
16
|
Cosway EJ, Lucas B, James KD, Parnell SM, Carvalho-Gaspar M, White AJ, Tumanov AV, Jenkinson WE, Anderson G. Redefining thymus medulla specialization for central tolerance. J Exp Med 2017; 214:3183-3195. [PMID: 28830910 PMCID: PMC5679166 DOI: 10.1084/jem.20171000] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 12/27/2022] Open
Abstract
During αβT cell development, the thymus medulla represents an essential microenvironment for T cell tolerance. This functional specialization is attributed to its typical organized topology consisting of a branching structure that contains medullary thymic epithelial cell (mTEC) networks to support negative selection and Foxp3+ T-regulatory cell (T-reg) development. Here, by performing TEC-specific deletion of the thymus medulla regulator lymphotoxin β receptor (LTβR), we show that thymic tolerance mechanisms operate independently of LTβR-mediated mTEC development and organization. Consistent with this, mTECs continue to express Fezf2 and Aire, regulators of intrathymic self-antigens, and support T-reg development despite loss of LTβR-mediated medulla organogenesis. Moreover, we demonstrate that LTβR controls thymic tolerance by regulating the frequency and makeup of intrathymic dendritic cells (DCs) required for effective thymocyte negative selection. In all, our study demonstrates that thymus medulla specialization for thymic tolerance segregates from medulla organogenesis and instead involves LTβR-mediated regulation of the thymic DC pool.
Collapse
Affiliation(s)
- Emilie J Cosway
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, England, UK
| | - Beth Lucas
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, England, UK
| | - Kieran D James
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, England, UK
| | - Sonia M Parnell
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, England, UK
| | - Manuela Carvalho-Gaspar
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, England, UK
| | - Andrea J White
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, England, UK
| | - Alexei V Tumanov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - William E Jenkinson
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, England, UK
| | - Graham Anderson
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, England, UK
| |
Collapse
|
17
|
Breed ER, Lee ST, Hogquist KA. Directing T cell fate: How thymic antigen presenting cells coordinate thymocyte selection. Semin Cell Dev Biol 2017; 84:2-10. [PMID: 28800929 DOI: 10.1016/j.semcdb.2017.07.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/30/2017] [Accepted: 07/30/2017] [Indexed: 01/02/2023]
Abstract
The development of a self-tolerant and effective T cell receptor repertoire is dependent on interactions coordinated by various antigen presenting cells (APC) within the thymus. T cell receptor-self-peptide-MHC interactions are essential for determining T cell fate, however different cytokine and co-stimulatory signals provided by the diverse APCs within the thymus are also critical. Here, we outline the different localization and functional capabilities of thymic APCs. We also discuss how these distinct APCs work collectively to facilitate the establishment of a diverse T cell receptor repertoire that is tolerant to an array of different self-antigens.
Collapse
Affiliation(s)
- Elise R Breed
- The Center for Immunology, Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, USA
| | - S Thera Lee
- The Center for Immunology, Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Kristin A Hogquist
- The Center for Immunology, Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|