1
|
Cheng X, Wang H, Wang Z, Zhu B, Long H. Tumor-associated myeloid cells in cancer immunotherapy. J Hematol Oncol 2023; 16:71. [PMID: 37415162 PMCID: PMC10324139 DOI: 10.1186/s13045-023-01473-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
Tumor-associated myeloid cells (TAMCs) are among the most important immune cell populations in the tumor microenvironment, and play a significant role on the efficacy of immune checkpoint blockade. Understanding the origin of TAMCs was found to be the essential to determining their functional heterogeneity and, developing cancer immunotherapy strategies. While myeloid-biased differentiation in the bone marrow has been traditionally considered as the primary source of TAMCs, the abnormal differentiation of splenic hematopoietic stem and progenitor cells, erythroid progenitor cells, and B precursor cells in the spleen, as well as embryo-derived TAMCs, have been depicted as important origins of TAMCs. This review article provides an overview of the literature with a focus on the recent research progress evaluating the heterogeneity of TAMCs origins. Moreover, this review summarizes the major therapeutic strategies targeting TAMCs with heterogeneous sources, shedding light on their implications for cancer antitumor immunotherapies.
Collapse
Affiliation(s)
- Xinyu Cheng
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China
| | - Huilan Wang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China
| | - Zhongyu Wang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China.
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China.
| |
Collapse
|
2
|
Li YL, Chen CH, Chen JY, Lai YS, Wang SC, Jiang SS, Hung WC. Single-cell analysis reveals immune modulation and metabolic switch in tumor-draining lymph nodes. Oncoimmunology 2020; 9:1830513. [PMID: 33117603 PMCID: PMC7575008 DOI: 10.1080/2162402x.2020.1830513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lymph-node metastasis is a prognosis factor for poor clinical outcome of breast cancer patients. Currently, how breast cancer cells establish pre-metastatic niche in the tumor-draining lymph nodes (TDLNs) is still unclear. To address this question, we isolated heterogeneous cells including immune and stromal cells from naive lymph nodes (LNs) of the FVB/NJ mice and TDLNs of the MMTV-PyMT mice. Single-cell RNA sequencing was performed to investigate the transcriptome of the cells and various bioinformatics analyses were used to identify the altered pathways. Our results revealed several significant changes between naïve LNs and TDLNs. First, according to immunologic signature and pathway analysis, CD4+ and CD8 + T cells showed upregulated angiogenesis pathway genes and higher regulatory T (Treg)-associated genes while they demonstrated downregulation of interferon response and inflammatory response gene signatures, concurrently suggesting an immunosuppressive microenvironment in the TDLNs. Second, profiling of B cells showed down-regulation of marginal zone B lymphocytes in the TDLNs, which was validated by flow cytometric analysis. Third, we found the enhancement of oxidative phosphorylation pathway in the fibroblastic reticular cells (FRCs) of the MMTV-PyMT mice and the elevation of related genes including Prdx3, Ndufa4 and Uqcrb, suggesting massive ATP consumption and TCA cycle metabolism in the FRCs. Collectively, our results reveal the reprogramming of TDLNs during breast cancer progression at single-cell level in a spontaneous breast cancer model and suggest the changes in immune modulation and metabolic switch are key alterations in the preparation of pre-metastatic niche by breast cancer cells.
Collapse
Affiliation(s)
- Yen-Liang Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jing-Yi Chen
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - You-Syuan Lai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, and the Graduate Program of Cancer Biology and Drug Development, China Medical University, Taichung, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Dieterich LC, Bikfalvi A. The tumor organismal environment: Role in tumor development and cancer immunotherapy. Semin Cancer Biol 2020; 65:197-206. [DOI: 10.1016/j.semcancer.2019.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/03/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
|
4
|
Zehentmeier S, Pereira JP. Cell circuits and niches controlling B cell development. Immunol Rev 2020; 289:142-157. [PMID: 30977190 DOI: 10.1111/imr.12749] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
Abstract
Studies over the last decade uncovered overlapping niches for hematopoietic stem cells (HSCs), multipotent progenitor cells, common lymphoid progenitors, and early B cell progenitors. HSC and lymphoid niches are predominantly composed by mesenchymal progenitor cells (MPCs) and by a small subset of endothelial cells. Niche cells create specialized microenvironments through the concomitant production of short-range acting cell-fate determining cytokines such as interleukin (IL)-7 and stem cell factor and the potent chemoattractant C-X-C motif chemokine ligand 12. This type of cellular organization allows for the cross-talk between hematopoietic stem and progenitor cells with niche cells, such that niche cell activity can be regulated by the quality and quantity of hematopoietic progenitors being produced. For example, preleukemic B cell progenitors and preB acute lymphoblastic leukemias interact directly with MPCs, and downregulate IL-7 expression and the production of non-leukemic lymphoid cells. In this review, we discuss a novel model of B cell development that is centered on cellular circuits formed between B cell progenitors and lymphopoietic niches.
Collapse
Affiliation(s)
- Sandra Zehentmeier
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| | - João P Pereira
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
5
|
Ragonnaud E, Moritoh K, Bodogai M, Gusev F, Garaud S, Chen C, Wang X, Baljinnyam T, Becker KG, Maul RW, Willard-Gallo K, Rogaev E, Biragyn A. Tumor-Derived Thymic Stromal Lymphopoietin Expands Bone Marrow B-cell Precursors in Circulation to Support Metastasis. Cancer Res 2019; 79:5826-5838. [PMID: 31575547 DOI: 10.1158/0008-5472.can-19-1058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/29/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022]
Abstract
Immature B cells in the bone marrow emigrate into the spleen during adult lymphopoiesis. Here, we report that emigration is shifted to earlier B-cell stages in mice with orthotopic breast cancer, spontaneous ovarian cancer, and possibly in human breast carcinoma. Using mouse and human bone marrow aspirates and mouse models challenged with highly metastatic 4T1 breast cancer cells, we demonstrated that this was the result of secretion of thymic stromal lymphopoietin (TSLP) by cancer cells. First, TSLP downregulated surface expression of bone marrow (BM) retention receptors CXCR4 and VLA4 in B-cell precursors, increasing their motility and, presumably, emigration. Then, TSLP supported peripheral survival and proliferation of BM B-cell precursors such as pre-B-like cells. 4T1 cancer cells used the increased pool of circulating pre-B-like cells to generate metastasis-supporting regulatory B cells. As such, the loss of TSLP expression in cancer cells alone or TSLPR deficiency in B cells blocked both accumulation of pre-B-like cells in circulation and cancer metastasis, implying that the pre-B cell-TSLP axis can be an attractive therapeutic target. SIGNIFICANCE: Cancer cells induce premature emigration of B-cell precursors from the bone marrow to generate regulatory B cells.
Collapse
Affiliation(s)
- Emeline Ragonnaud
- Immunoregulation Section, National Institute on Aging, Baltimore, Maryland
| | - Kanako Moritoh
- Immunoregulation Section, National Institute on Aging, Baltimore, Maryland
| | - Monica Bodogai
- Immunoregulation Section, National Institute on Aging, Baltimore, Maryland
| | - Fedor Gusev
- Department of Genomics and Human Genetics, Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Soizic Garaud
- Molecular Immunology Unit, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Chen Chen
- Immunoregulation Section, National Institute on Aging, Baltimore, Maryland
| | - Xin Wang
- Immunoregulation Section, National Institute on Aging, Baltimore, Maryland
| | | | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institute on Aging, Baltimore, Maryland
| | - Robert W Maul
- Antibody Diversity Section, Laboratory of Immunology and Molecular Biology, National Institute on Aging, Baltimore, Maryland
| | - Karen Willard-Gallo
- Center for Genetics and Genetic Technologies, Faculty of Biology, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Evgeny Rogaev
- Department of Genomics and Human Genetics, Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Center for Genetics and Genetic Technologies, Faculty of Biology, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Arya Biragyn
- Immunoregulation Section, National Institute on Aging, Baltimore, Maryland.
| |
Collapse
|
6
|
Cao Z, Ji J, Zhang C, Wang F, Xu H, Yu Y, Sun Y. The preoperative neutrophil-to-lymphocyte ratio is not a marker of prostate cancer characteristics but is an independent predictor of biochemical recurrence in patients receiving radical prostatectomy. Cancer Med 2019; 8:1004-1012. [PMID: 30693666 PMCID: PMC6434220 DOI: 10.1002/cam4.1984] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/23/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
The neutrophil-to-lymphocyte ratio (NLR) has been reported to be a prognostic marker in prostate cancer. In this study, we assessed the association between preoperative NLR and the clinicopathological characteristics, biomolecular features and prognosis of patients with localized prostate cancer treated with radical prostatectomy. A total of 994 subjects were retrospectively enrolled, and the histological specimens of 210 patients were retrieved for constructing a tissue microarray. Immunohistochemistry was then performed to assess the expression of AR, ERG, PTEN, p-AKT, Bcl-2, Beclin-1, Ki-67, CD3, CD4, CD8, IFN-γ and TNF-α. No significant differences in the NLR distributions among clinicopathological variables were observed (P > 0.05) when the original NLR data were utilized. When we dichotomized the NLR value into the high-NLR group (NLR ≥ 2) and low-NLR group (NLR < 2), we found that the patients in the high-NLR group had more prostate capsule invasion (P = 0.047). Additionally, no significant correlation was found between the NLR and infiltrating CD3+ cells, the CD4/CD8 ratio, AR, ERG, PTEN, p-AKT, Bcl-2, Beclin-1, Ki-67, IFN-γ or TNF-α (P > 0.05). When we analyzed the data of patients without postoperative adjuvant hormone therapy or radiotherapy, univariate and multivariate survival analysis indicated that a high NLR was a predictor of better BCR-free survival (P < 0.05). When analyzing the entire cohort, univariate survival analysis showed that the high-NLR group had significantly poorer overall survival (P < 0.05). In conclusion, NLR cannot reflect prostate cancer characteristics or the local immune microenvironment, but a high NLR can serve as an independent predictor of better BCR.
Collapse
Affiliation(s)
- Zhi Cao
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, P. R. China
| | - Jin Ji
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, P. R. China
| | - Chao Zhang
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, P. R. China
| | - Fubo Wang
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, P. R. China
| | - Huan Xu
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, P. R. China
| | - Yongwei Yu
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai, P. R. China
| | - Yinghao Sun
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, P. R. China
| |
Collapse
|
7
|
Mori H, Cardiff RD, Borowsky AD. Aging Mouse Models Reveal Complex Tumor-Microenvironment Interactions in Cancer Progression. Front Cell Dev Biol 2018; 6:35. [PMID: 29651417 PMCID: PMC5884881 DOI: 10.3389/fcell.2018.00035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022] Open
Abstract
Mouse models and genetically engineered mouse models (GEMM) are essential experimental tools for the understanding molecular mechanisms within complex biological systems. GEMM are especially useful for inferencing phenocopy information to genetic human diseases such as breast cancer. Human breast cancer modeling in mice most commonly employs mammary epithelial-specific promoters to investigate gene function(s) and, in particular, putative oncogenes. Models are specifically useful in the mammary epithelial cell in the context of the complete mammary gland environment. Gene targeted knockout mice including conditional targeting to specific mammary cells can reveal developmental defects in mammary organogenesis and demonstrate the importance of putative tumor suppressor genes. Some of these models demonstrate a non-traditional type of tumor suppression which involves interplay between the tumor susceptible cell and its host/environment. These GEMM help to reveal the processes of cancer progression beyond those intrinsic to cancer cells. Furthermore, the, analysis of mouse models requires appropriate consideration of mouse strain, background, and environmental factors. In this review, we compare aging-related factors in mouse models for breast cancer. We introduce databases of GEMM attributes and colony functional variations.
Collapse
Affiliation(s)
- Hidetoshi Mori
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States
| | - Robert D Cardiff
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States.,Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Alexander D Borowsky
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States.,Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|