1
|
Ma R, Prigge AD, Ortiz Serrano TP, Cheng Y, Davis JM, Lou KF, Wood WA, Do HC, Ren Z, Fulcer MM, Lotesto MJ, Singer BD, Coates BM, Ridge KM. Vimentin modulates regulatory T cell receptor-ligand interactions at distal pole complex, leading to dysregulated host response to viral pneumonia. Cell Rep 2024; 43:115056. [PMID: 39645657 DOI: 10.1016/j.celrep.2024.115056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/04/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024] Open
Abstract
Forkhead box P3 (Foxp3)+ regulatory T cells (Tregs) resolve acute inflammation and repair the injured lung after viral pneumonia. Vimentin is a critical protein in the distal pole complex (DPC) of Tregs. This study reveals the inhibitory effect of vimentin on the suppressive and reparative capacity of Tregs. Treg-specific deletion of vimentin increases Helios+interleukin-18 receptor (IL-18R)+ Tregs, suppresses inflammatory immune cells, and enhances tissue repair, protecting Vimfl/flFoxp3YFP-cre mice from influenza-induced lung injury and mortality. Mechanistically, vimentin suppresses the induction of amphiregulin, an epidermal growth factor receptor (EGFR) ligand necessary for tissue repair, by sequestering IL-18R to the DPC and restricting receptor-ligand interactions. We propose that vimentin in the DPC of Tregs functions as a molecular switch, which could be targeted to regulate the immune response and enhance tissue repair in patients with severe viral pneumonia.
Collapse
Affiliation(s)
- Ruihua Ma
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Andrew D Prigge
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Tatiana P Ortiz Serrano
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yuan Cheng
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jennifer M Davis
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Karen F Lou
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Walter A Wood
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hanh Chi Do
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ziyou Ren
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - McKenzie M Fulcer
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mary J Lotesto
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bria M Coates
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
2
|
Jing Y, Kong Y, Allard D, Liu B, Kolawole E, Sprouse M, Evavold B, Bettini M, Bettini M. Increased TCR signaling in regulatory T cells is disengaged from TCR affinity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.523999. [PMID: 36711832 PMCID: PMC9882247 DOI: 10.1101/2023.01.17.523999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Foxp3+ regulatory T cells (Tregs) are capable suppressors of aberrant self-reactivity. However, TCR affinity and specificities that support Treg function, and how these compare to autoimmune T cells remain unresolved. In this study, we used antigen agnostic and epitope-focused analyses to compare TCR repertoires of regulatory and effector T cells that spontaneously infiltrate pancreatic islets of non-obese diabetic mice. We show that effector and regulatory T cell-derived TCRs possess similar wide-ranging reactivity for self-antigen. Treg-derived TCRs varied in their capacity to confer optimal protective function, and Treg suppressive capacity was in part determined by effector TCR affinity. Interestingly, when expressing the same TCR, Tregs showed higher Nur77-GFP expression than Teffs, suggesting Treg-intrinsic ability to compete for antigen. Our findings provide a new insight into TCR-dependent and independent mechanisms that regulate Treg function and indicate a TCR-intrinsic insufficiency in tissue-specific Tregs that may contribute to the pathogenesis of type 1 diabetes.
Collapse
|
3
|
Fulford TS, Grumont R, Wirasinha RC, Ellis D, Barugahare A, Turner SJ, Naeem H, Powell D, Lyons PA, Smith KGC, Scheer S, Zaph C, Klein U, Daley SR, Gerondakis S. c-Rel employs multiple mechanisms to promote the thymic development and peripheral function of regulatory T cells in mice. Eur J Immunol 2021; 51:2006-2026. [PMID: 33960413 DOI: 10.1002/eji.202048900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/12/2021] [Accepted: 05/05/2021] [Indexed: 01/03/2023]
Abstract
The NF-κB transcription factor c-Rel is a critical regulator of Treg ontogeny, controlling multiple points of the stepwise developmental pathway. Here, we found that the thymic Treg defect in c-Rel-deficient (cRel-/- ) mice is quantitative, not qualitative, based on analyses of TCR repertoire and TCR signaling strength. However, these parameters are altered in the thymic Treg-precursor population, which is also markedly diminished in cRel-/- mice. Moreover, c-Rel governs the transcriptional programme of both thymic and peripheral Tregs, controlling a core of genes involved with immune signaling, and separately in the periphery, cell cycle progression. Last, the immune suppressive function of peripheral cRel-/- tTregs is diminished in a lymphopenic model of T cell proliferation and is associated with decreased stability of Foxp3 expression. Collectively, we show that c-Rel is a transcriptional regulator that controls multiple aspects of Treg development, differentiation, and function via distinct mechanisms.
Collapse
Affiliation(s)
- Thomas S Fulford
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Raelene Grumont
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Rushika C Wirasinha
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Darcy Ellis
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Adele Barugahare
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.,Monash Bioinformatics Platform, School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - Stephen J Turner
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.,Department of Microbiology, Monash University, Melbourne, Australia
| | - Haroon Naeem
- Monash Bioinformatics Platform, School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - David Powell
- Monash Bioinformatics Platform, School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - Paul A Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, England, UK.,Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge, England, UK
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, England, UK.,Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge, England, UK
| | - Sebastian Scheer
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Colby Zaph
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Ulf Klein
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, LS2 7TF
| | - Stephen R Daley
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Steve Gerondakis
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| |
Collapse
|
4
|
Building a CAR-Treg: Going from the basic to the luxury model. Cell Immunol 2020; 358:104220. [DOI: 10.1016/j.cellimm.2020.104220] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 01/10/2023]
|
5
|
Eggenhuizen PJ, Ng BH, Ooi JD. Treg Enhancing Therapies to Treat Autoimmune Diseases. Int J Mol Sci 2020; 21:E7015. [PMID: 32977677 PMCID: PMC7582931 DOI: 10.3390/ijms21197015] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) are a small yet critical subset of CD4+ T cells, which have the role of maintaining immune homeostasis by, for example, regulating self-tolerance, tumor immunity, anti-microbial resistance, allergy and transplantation rejection. The suppressive mechanisms by which Tregs function are varied and pleiotropic. The ability of Tregs to maintain self-tolerance means they are critical for the control and prevention of autoimmune diseases. Irregularities in Treg function and number can result in loss of tolerance and autoimmune disease. Restoring immune homeostasis and tolerance through the promotion, activation or delivery of Tregs has emerged as a focus for therapies aimed at curing or controlling autoimmune diseases. Such therapies have focused on the Treg cell subset by using drugs to suppress T effector cells and promote Tregs. Other approaches have trialed inducing tolerance by administering the autoantigen via direct administration, by transient expression using a DNA vector, or by antigen-specific nanoparticles. More recently, cell-based therapies have been developed as an approach to directly or indirectly enhance Treg cell specificity, function and number. This can be achieved indirectly by transfer of tolerogenic dendritic cells, which have the potential to expand antigen-specific Treg cells. Treg cells can be directly administered to treat autoimmune disease by way of polyclonal Tregs or Tregs transduced with a receptor with high affinity for the target autoantigen, such as a high affinity T cell receptor (TCR) or a chimeric antigen receptor (CAR). This review will discuss the strategies being developed to redirect autoimmune responses to a state of immune tolerance, with the aim of the prevention or amelioration of autoimmune disease.
Collapse
Affiliation(s)
| | | | - Joshua D. Ooi
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC 3168, Australia; (P.J.E.); (B.H.N.)
| |
Collapse
|
6
|
Fei Q, Pan Y, Lin W, Zhou Y, Yu X, Hou Z, Yu X, Lin X, Lin R, Lu F, Guan H, Huang H. High-dimensional single-cell analysis delineates radiofrequency ablation induced immune microenvironmental remodeling in pancreatic cancer. Cell Death Dis 2020; 11:589. [PMID: 32719347 PMCID: PMC7385122 DOI: 10.1038/s41419-020-02787-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
Radiofrequency ablation (RFA) is an effective local therapy approach for treating solitary tumor of many types of malignancy. The impact of RFA on the tumor immune microenvironment on distant tumors after RFA treatment is still unclear. In this study, by using syngeneic tumor models and single-cell RNA and T-cell receptor sequencing, we have investigated the alterations of tumor-infiltrating immune cells in distant non-RFA tumors. Single-cell RNA sequencing identified six distinct lymphoid clusters, five distinct monocyte/macrophage clusters, three dendritic cells clusters, and one cluster of neutrophils. We found that RFA treatment reduced the proportions of immunosuppressive cells including regulatory T cells, tumor-associated macrophages and tumor-associated neutrophils, whereas increased the percentages of functional T cells in distant non-RFA tumors. Moreover, RFA treatment also altered gene expressions in single-cell level in each cell cluster. By using pseudo-time analysis, we have described the biological processes of tumor-infiltrating CD8+ T cells and monocytes/macrophages based on the transcriptional profiles. In addition, the immune checkpoints including PD-1 and LAG3 were upregulated in the T cells in distant non-RFA tumors after RFA treatment. In conclusion, our data indicate that RFA treatment induced remodeling of tumor immune microenvironment in distant non-RFA tumors in pancreatic cancer mouse model and suggest that combining RFA with immune checkpoint inhibitors may be an effective treatment approach.
Collapse
Affiliation(s)
- Qinglin Fei
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yu Pan
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Wenji Lin
- Department of Radiology, Quanzhou First Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Yuanyuan Zhou
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xingxing Yu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Zelin Hou
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xunbin Yu
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Xianchao Lin
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ronggui Lin
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Fengchun Lu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Hongdan Guan
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
7
|
Phelps DS, Chinchilli VM, Weisz J, Shearer D, Zhang X, Floros J. Using toponomics to characterize phenotypic diversity in alveolar macrophages from male mice treated with exogenous SP-A1. Biomark Res 2020; 8:5. [PMID: 32082572 PMCID: PMC7020580 DOI: 10.1186/s40364-019-0181-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/30/2019] [Indexed: 01/12/2023] Open
Abstract
Background We used the Toponome Imaging System (TIS) to identify “patterns of marker expression”, referred to here as combinatorial molecular phenotypes (CMPs) in alveolar macrophages (AM) in response to the innate immune molecule, SP-A1. Methods We compared 114 AM from male SP-A deficient mice. One group (n = 3) was treated with exogenous human surfactant protein A1 (hSP-A1) and the other with vehicle (n = 3). AM obtained by bronchoalveolar lavage were plated onto slides and analyzed using TIS to study the AM toponome, the spatial network of proteins within intact cells. With TIS, each slide is sequentially immunostained with multiple FITC-conjugated antibodies. Images are analyzed pixel-by-pixel identifying all of the proteins within each pixel, which are then designated as CMPs. CMPs represent organized protein clusters postulated to contribute to specific functions. Results 1) We compared identical CMPs in KO and SP-A1 cells and found them to differ significantly (p = 0.0007). Similarities between pairs of markers in the two populations also differed significantly (p < 0.0001). 2) Focusing on the 20 most abundant CMPs for each cell, we developed a method to generate CMP “signatures” that characterized various groups of cells. Phenotypes were defined as cells exhibiting similar signatures of CMPs. i) AM were extremely diverse and each group contained cells with multiple phenotypes. ii) Among the 114 AM analyzed, no two cells were identical. iii) However, CMP signatures could distinguish among cell subpopulations within and between groups. iv) Some cell populations were enriched with SP-A1 treatment, some were more common without SP-A1, and some seemed not to be influenced by the presence of SP-A1. v) We also found that AM were more diverse in mice treated with SP-A1 compared to those treated with vehicle. Conclusions AM diversity is far more extensive than originally thought. The increased diversity of SP-A1-treated mice points to the possibility that SP-A1 enhances or activates several pathways in the AM to better prepare it for its innate immune functions and other functions shown previously to be affected by SP-A treatment. Future studies may identify key protein(s) responsible for CMP integrity and consequently for a given function, and target it for therapeutic purposes.
Collapse
Affiliation(s)
- David S Phelps
- 1Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Vernon M Chinchilli
- 2Public Health Sciences; and Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Judith Weisz
- 3Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Debra Shearer
- 3Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Xuesheng Zhang
- 1Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Joanna Floros
- 1Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA.,3Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| |
Collapse
|
8
|
Chatila TA, De Palma R. A simple twist of phosphate: Immunological synapse formation and T cell receptor signaling outcome in regulatory T cells. Eur J Immunol 2019; 47:2039-2042. [PMID: 29211935 DOI: 10.1002/eji.201747359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/02/2017] [Accepted: 11/13/2017] [Indexed: 01/07/2023]
Abstract
Signaling through the T cell receptor (TCR) regulates T cell homeostasis and effector functions. However, a full accounting of the TCR-coupled signaling networks and how their interplay determines specific functional outcomes remains elusive. Of particular interest are efforts over the last years to elucidate distinctive features of TCR signaling in regulatory T cells (Treg) that may account for some of their unique functional attributes as compared to conventional T (Tconv) cells. In this issue of the European Journal of Immunology, van Ham et al. [Eur. J. Immunol. 2017. 47: 2043-2058] employed differential phosphoproteomics to identify a set of 11 proteins mainly linked to cytoskeletal organization and molecular transport that discriminate between TCR signaling in the respective cell subset. They further linked these differences to cell subset-specific alterations in the spatio-temporal organization of signaling pathways at immune synapse (IS) in Treg versus T conv. These data support the idea that these proteins may act as a molecular "twist" element driving Treg cell-specific responses by affecting cytoskeletal dynamics and IS formation. Taken together, these findings may facilitate the development of novel immunomodulatory agents that exploit differences in TCR signaling between Treg and Tconv cells.
Collapse
Affiliation(s)
- Talal A Chatila
- Department of Pediatrics, Division of Immunology, Boston Children's Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Raffaele De Palma
- Department of Clinical & Experimental Medicine, Università della Campania "L. Vanvitelli", CNR, Napoli-Italy and Institute for Protein Biochemistry, Napoli, Italy
| |
Collapse
|
9
|
McDonald-Hyman C, Muller JT, Loschi M, Thangavelu G, Saha A, Kumari S, Reichenbach DK, Smith MJ, Zhang G, Koehn BH, Lin J, Mitchell JS, Fife BT, Panoskaltsis-Mortari A, Feser CJ, Kirchmeier AK, Osborn MJ, Hippen KL, Kelekar A, Serody JS, Turka LA, Munn DH, Chi H, Neubert TA, Dustin ML, Blazar BR. The vimentin intermediate filament network restrains regulatory T cell suppression of graft-versus-host disease. J Clin Invest 2018; 128:4604-4621. [PMID: 30106752 PMCID: PMC6159973 DOI: 10.1172/jci95713] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/26/2018] [Indexed: 01/04/2023] Open
Abstract
Regulatory T cells (Tregs) are critical for maintaining immune homeostasis. However, current Treg immunotherapies do not optimally treat inflammatory diseases in patients. Understanding the cellular processes that control Treg function may allow for the augmentation of therapeutic efficacy. In contrast to activated conventional T cells, in which protein kinase C-θ (PKC-θ) localizes to the contact point between T cells and antigen-presenting cells, in human and mouse Tregs, PKC-θ localizes to the opposite end of the cell in the distal pole complex (DPC). Here, using a phosphoproteomic screen, we identified the intermediate filament vimentin as a PKC-θ phospho target and show that vimentin forms a DPC superstructure on which PKC-θ accumulates. Treatment of mouse Tregs with either a clinically relevant PKC-θ inhibitor or vimentin siRNA disrupted vimentin and enhanced Treg metabolic and suppressive activity. Moreover, vimentin-disrupted mouse Tregs were significantly better than controls at suppressing alloreactive T cell priming in graft-versus-host disease (GVHD) and GVHD lethality, using a complete MHC-mismatch mouse model of acute GVHD (C57BL/6 donor into BALB/c host). Interestingly, vimentin disruption augmented the suppressor function of PKC-θ-deficient mouse Tregs. This suggests that enhanced Treg activity after PKC-θ inhibition is secondary to effects on vimentin, not just PKC-θ kinase activity inhibition. Our data demonstrate that vimentin is a key metabolic and functional controller of Treg activity and provide proof of principle that disruption of vimentin is a feasible, translationally relevant method to enhance Treg potency.
Collapse
Affiliation(s)
- Cameron McDonald-Hyman
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - James T. Muller
- Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - Michael Loschi
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Govindarajan Thangavelu
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Asim Saha
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Sudha Kumari
- Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - Dawn K. Reichenbach
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Michelle J. Smith
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Guoan Zhang
- Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - Brent H. Koehn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Jiqiang Lin
- Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - Jason S. Mitchell
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Division of Rheumatology, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Brian T. Fife
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Division of Rheumatology, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Colby J. Feser
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew Kemal Kirchmeier
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark J. Osborn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Keli L. Hippen
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ameeta Kelekar
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan S. Serody
- Lineberger Comprehensive Cancer Center, Division of Hematology/Oncology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Laurence A. Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David H. Munn
- Department of Pediatrics, Georgia Health Sciences University, Augusta, Georgia, USA
| | - Hongbo Chi
- Department of Immunology, Saint Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Thomas A. Neubert
- Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - Michael L. Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
10
|
Munn DH, Sharma MD, Johnson TS. Treg Destabilization and Reprogramming: Implications for Cancer Immunotherapy. Cancer Res 2018; 78:5191-5199. [PMID: 30181177 DOI: 10.1158/0008-5472.can-18-1351] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/19/2018] [Accepted: 07/11/2018] [Indexed: 12/18/2022]
Abstract
Regulatory T cells (Tregs) are an important contributor to the immunosuppressive tumor microenvironment. To date, however, they have been difficult to target for therapy. One emerging new aspect of Treg biology is their apparent functional instability in the face of certain acute proinflammatory signals such as IL6 and IFNγ. Under the right conditions, these signals can cause a rapid loss of suppressor activity and reprogramming of the Tregs into a proinflammatory phenotype. In this review, we propose the hypothesis that this phenotypic modulation does not reflect infidelity to the Treg lineage, but rather represents a natural, physiologic response of Tregs during beneficial inflammation. In tumors, however, this inflammation-induced Treg destabilization is actively opposed by dominant stabilizing factors such as indoleamine 2,3-dioxygenase and the PTEN phosphatase pathway in Tregs. Under such conditions, tumor-associated Tregs remain highly suppressive and inhibit cross-presentation of tumor antigens released by dying tumor cells. Interrupting these Treg stabilizing pathways can render tumor-associated Tregs sensitive to rapid destabilization during immunotherapy, or during the wave of cell death following chemotherapy or radiation, thus enhancing antitumor immune responses. Understanding the emerging pathways of Treg stabilization and destabilization may reveal new molecular targets for therapy. Cancer Res; 78(18); 5191-9. ©2018 AACR.
Collapse
Affiliation(s)
- David H Munn
- Georgia Cancer Center, Augusta University, Augusta, Georgia. .,Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Madhav D Sharma
- Georgia Cancer Center, Augusta University, Augusta, Georgia.,Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Theodore S Johnson
- Georgia Cancer Center, Augusta University, Augusta, Georgia.,Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|