1
|
Custodio JM, Ayres CM, Rosales TJ, Brambley CA, Arbuiso AG, Landau LM, Keller GLJ, Srivastava PK, Baker BM. Structural and physical features that distinguish tumor-controlling from inactive cancer neoepitopes. Proc Natl Acad Sci U S A 2023; 120:e2312057120. [PMID: 38085776 PMCID: PMC10742377 DOI: 10.1073/pnas.2312057120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Neoepitopes arising from amino acid substitutions due to single nucleotide polymorphisms are targets of T cell immune responses to cancer and are of significant interest in the development of cancer vaccines. However, understanding the characteristics of rare protective neoepitopes that truly control tumor growth has been a challenge, due to their scarcity as well as the challenge of verifying true, neoepitope-dependent tumor control in humans. Taking advantage of recent work in mouse models that circumvented these challenges, here, we compared the structural and physical properties of neoepitopes that range from fully protective to immunologically inactive. As neoepitopes are derived from self-peptides that can induce immune tolerance, we studied not only how the various neoepitopes differ from each other but also from their wild-type counterparts. We identified multiple features associated with protection, including features that describe how neoepitopes differ from self as well as features associated with recognition by diverse T cell receptor repertoires. We demonstrate both the promise and limitations of neoepitope structural analysis and predictive modeling and illustrate important aspects that can be incorporated into neoepitope prediction pipelines.
Collapse
Affiliation(s)
- Jean M. Custodio
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| | - Cory M. Ayres
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| | - Tatiana J. Rosales
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| | - Chad A. Brambley
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| | - Alyssa G. Arbuiso
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| | - Lauren M. Landau
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| | - Grant L. J. Keller
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| | - Pramod K. Srivastava
- Department of Immunology, and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT06030
| | - Brian M. Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| |
Collapse
|
2
|
The Induction of Antigen 85B-Specific CD8 + T Cells by Recombinant BCG Protects against Mycobacterial Infection in Mice. Int J Mol Sci 2023; 24:ijms24020966. [PMID: 36674484 PMCID: PMC9862620 DOI: 10.3390/ijms24020966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection remains a major health problem worldwide. Although the Bacillus Calmette-Guérin (BCG) vaccine is the most widely used vaccination for preventing tuberculosis (TB), its efficacy is limited. We previously developed a new recombinant BCG (rBCG)-based vaccine encoding the Ag85B protein of M. kansasii (Mkan85B), termed rBCG-Mkan85B, and its administration is followed by boosting with plasmid DNA expressing the Ag85B gene (DNA-Mkan85B). Previously, we identified MHC-I (H2-Kd)-restricted epitopes that highly cross-react with those of Mtb in BALB/c (H2d) and CB6F1 (H2b/d) mice. We also reported that the rBCG-Mkan85B/DNA-Mkan85B prime-boost vaccination protocol protected CB6F1 mice against M. kansasii infection. In this study, to investigate the protective effect of our novel rBCG against Mtb infection, CB6F1 mice were either left unimmunized or immunized with the BCG, rBCG-Mkan85B, or rBCG-Mkan85B/DNA-Mkan85B vaccine for 10 weeks prior to inhalation exposure to the virulent Mtb Erdman strain for another 6 weeks. Compared with the BCG and rBCG-Mkan85B vaccinations, the rBCG-Mkan85B/DNA-Mkan85B prime-boost vaccination protocol significantly reduced the numbers of pulmonary colony-forming units (CFUs). Moreover, the rBCG-Mkan85B/DNA-Mkan85B prime-boost vaccination induced antigen-specific polyfunctional CD4+ and CD8+ T cells. These results suggest that CD8+ T-cell immunity to immunodominant epitopes of Mtb is enhanced by rBCG vector-based immunization. Thus, rBCG vector-based vaccinations may overcome the limited ability of the current BCG vaccine to elicit TB immunity.
Collapse
|
3
|
Nadolinskaia NI, Kotliarova MS, Goncharenko AV. Fighting Tuberculosis: In Search of a BCG Replacement. Microorganisms 2022; 11:microorganisms11010051. [PMID: 36677343 PMCID: PMC9863999 DOI: 10.3390/microorganisms11010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis is one of the most threatening infectious diseases and represents an important and significant reason for mortality in high-burden regions. The only licensed vaccine, BCG, is hardly capable of establishing long-term tuberculosis protection and is highly variable in its effectiveness. Even after 100 years of BCG use and research, we still cannot unequivocally answer the question of which immune correlates of protection are crucial to prevent Mycobacterium tuberculosis (Mtb) infection or the progression of the disease. The development of a new vaccine against tuberculosis arises a nontrivial scientific challenge caused by several specific features of the intracellular lifestyle of Mtb and the ability of the pathogen to manipulate host immunity. The purpose of this review is to discuss promising strategies and the possibilities of creating a new vaccine that could replace BCG and provide greater protection. The considered approaches include supplementing mycobacterial strains with immunodominant antigens and genetic engineering aimed at altering the interaction between the bacterium and the host cell, such as the exit from the phagosome. Improved new vaccine strains based on BCG and Mtb undergoing clinical evaluation are also overviewed.
Collapse
|
4
|
Waeckerle-Men Y, Kotkowska ZK, Bono G, Duda A, Kolm I, Varypataki EM, Amstutz B, Meuli M, Høgset A, Kündig TM, Halin C, Sander P, Johansen P. Photochemically-Mediated Inflammation and Cross-Presentation of Mycobacterium bovis BCG Proteins Stimulates Strong CD4 and CD8 T-Cell Responses in Mice. Front Immunol 2022; 13:815609. [PMID: 35173729 PMCID: PMC8841863 DOI: 10.3389/fimmu.2022.815609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Conventional vaccines are very efficient in the prevention of bacterial infections caused by extracellular pathogens due to effective stimulation of pathogen-specific antibodies. In contrast, considering that intracellular surveillance by antibodies is not possible, they are typically less effective in preventing or treating infections caused by intracellular pathogens such as Mycobacterium tuberculosis. The objective of the current study was to use so-called photochemical internalization (PCI) to deliver a live bacterial vaccine to the cytosol of antigen-presenting cells (APCs) for the purpose of stimulating major histocompatibility complex (MHC) I-restricted CD8 T-cell responses. For this purpose, Mycobacterium bovis BCG (BCG) was combined with the photosensitiser tetraphenyl chlorine disulfonate (TPCS2a) and injected intradermally into mice. TPCS2a was then activated by illumination of the injection site with light of defined energy. Antigen-specific CD4 and CD8 T-cell responses were monitored in blood, spleen, and lymph nodes at different time points thereafter using flow cytometry, ELISA and ELISPOT. Finally, APCs were infected and PCI-treated in vitro for analysis of their activation of T cells in vitro or in vivo after autologous vaccination of mice. Combination of BCG with PCI induced stronger BCG-specific CD4 and CD8 T-cell responses than treatment with BCG only or with BCG and TPCS2a without light. The overall T-cell responses were multifunctional as characterized by the production of IFN-γ, TNF-α, IL-2 and IL-17. Importantly, PCI induced cross-presentation of BCG proteins for stimulation of antigen-specific CD8 T-cells that were particularly producing IFN-γ and TNF-α. PCI further facilitated antigen presentation by causing up-regulation of MHC and co-stimulatory proteins on the surface of APCs as well as their production of TNF-α and IL-1β in vivo. Furthermore, PCI-based vaccination also caused local inflammation at the site of vaccination, showing strong infiltration of immune cells, which could contribute to the stimulation of antigen-specific immune responses. This study is the first to demonstrate that a live microbial vaccine can be combined with a photochemical compound and light for cross presentation of antigens to CD8 T cells. Moreover, the results revealed that PCI treatment strongly improved the immunogenicity of M. bovis BCG.
Collapse
Affiliation(s)
- Ying Waeckerle-Men
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Zuzanna K. Kotkowska
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Géraldine Bono
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Agathe Duda
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Isabel Kolm
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Eleni M. Varypataki
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Beat Amstutz
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Michael Meuli
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | | | - Thomas M. Kündig
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- National Center for Mycobacteria, University of Zurich, Zurich, Switzerland
| | - Pål Johansen
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- *Correspondence: Pål Johansen,
| |
Collapse
|
5
|
Recombinant BCG-Prime and DNA-Boost Immunization Confers Mice with Enhanced Protection against Mycobacterium kansasii. Vaccines (Basel) 2021; 9:vaccines9111260. [PMID: 34835191 PMCID: PMC8618695 DOI: 10.3390/vaccines9111260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022] Open
Abstract
The incidence of infections with nontuberculous mycobacteria (NTM) has been increasing worldwide. The emergence of multidrug-resistant NTM is a serious clinical concern, and a vaccine for NTM has not yet been developed. We previously developed a new recombinant Bacillus Calmette–Guérin (rBCG) vaccine encoding the antigen 85B (Ag85B) protein of Mycobacterium kansasii—termed rBCG-Mkan85B—which was used together with a booster immunization with plasmid DNA expressing the same M. kansasii Ag85B gene (DNA-Mkan85B). We reported that rBCG-Mkan85B/DNA-Mkan85B prime–boost immunization elicited various NTM strain-specific CD4+ and CD8+ T cells and induced Mycobacterium tuberculosis-specific immunity. In this study, to investigate the protective effect against M. kansasii infection, we challenged mice vaccinated with a rBCG-Mkan85B or rBCG-Mkan85B/DNA-Mkan85B prime–boost strategy with virulent M. kansasii. Although BCG and rBCG-Mkan85B immunization each suppressed the growth of M. kansasii in the mouse lungs, the rBCG-Mkan85B/DNA-Mkan85B prime–boost vaccination reduced the bacterial burden more significantly. Moreover, the rBCG-Mkan85B/DNA-Mkan85B prime–boost vaccination induced antigen-specific CD4+ and CD8+ T cells. Our data suggest that rBCG-Mkan85B/DNA-Mkan85B prime–boost vaccination effectively enhances antigen-specific T cells. Our novel rBCG could be a potential alternative to clinical BCG for preventing various NTM infections.
Collapse
|
6
|
Miyamoto Y, Tsukamoto Y, Maeda Y, Tamura T, Mukai T, Ato M, Makino M. Production of antibiotic resistance gene-free urease-deficient recombinant BCG that secretes antigenic protein applicable for practical use in tuberculosis vaccination. Tuberculosis (Edinb) 2021; 129:102105. [PMID: 34186276 DOI: 10.1016/j.tube.2021.102105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/05/2021] [Accepted: 06/15/2021] [Indexed: 11/26/2022]
Abstract
Mycobacterium bovis BCG has been the only practical vaccine for tuberculosis. However, BCG cannot fully prevent adult pulmonary tuberculosis. Therefore, the improvement of BCG vaccine is necessary. We previously produced recombinant (r) BCG (BCG-PEST) for the better control of tuberculosis. BCG-PEST was developed by introducing PEST-Heat Shock Protein (HSP)70-Major Membrane Protein (MMP)-II-PEST fusion gene into urease-deficient rBCG using antibiotic-resistant gene for the selection of rBCG. HSP70-MMPII fusion protein is highly immunogenic and PEST sequence was added to enhance processing of the fusion protein. Although BCG-PEST effectively inhibited intrapulmonary growth of Mycobacterium tuberculosis (MTB), BCG with antibiotic-resistant gene is not appropriate for human use. Therefore, we produced antibiotic-resistant gene-free rBCG. We generated leucine-biosynthetic gene (leuD)-deficient BCG and introduced the fusion gene with leuD as the selection marker and named this rBCG as BCG-LeuPH. BCG-LeuPH activated human naïve T cells of both CD4 and CD8 subsets and efficiently inhibited aerosol-challenged MTB in mice. These results indicate that leuD can replace antibiotic-resistant gene for the selection of vaccine candidates of rBCG for human use.
Collapse
Affiliation(s)
- Yuji Miyamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo, 189-0002, Japan
| | - Yumiko Tsukamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo, 189-0002, Japan.
| | - Yumi Maeda
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo, 189-0002, Japan
| | - Toshiki Tamura
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo, 189-0002, Japan
| | - Tetsu Mukai
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo, 189-0002, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo, 189-0002, Japan
| | - Masahiko Makino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo, 189-0002, Japan
| |
Collapse
|
7
|
Sefidi-Heris Y, Jahangiri A, Mokhtarzadeh A, Shahbazi MA, Khalili S, Baradaran B, Mosafer J, Baghbanzadeh A, Hejazi M, Hashemzaei M, Hamblin MR, Santos HA. Recent progress in the design of DNA vaccines against tuberculosis. Drug Discov Today 2020; 25:S1359-6446(20)30345-7. [PMID: 32927065 DOI: 10.1016/j.drudis.2020.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
Abstract
Current tuberculosis (TB) vaccines have some disadvantages and many efforts have been undertaken to produce effective TB vaccines. As a result of their advantages, DNA vaccines are promising future vaccine candidates. This review focuses on the design and delivery of novel DNA-based vaccines against TB.
Collapse
Affiliation(s)
- Youssof Sefidi-Heris
- Department of Biology, College of Sciences, Shiraz University, 7146713565, Shiraz, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, 193955487, Tehran, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, 5166614731, Tabriz, Iran.
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Faculty of Sciences, Shahid Rajaee Teacher Training University, 1678815811, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, 5166614731, Tabriz, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, 9516915169, Torbat Heydariyeh, Iran; Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, 9196773117, Mashhad, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, 5166614731, Tabriz, Iran
| | - Maryam Hejazi
- Immunology Research Center, Tabriz University of Medical Sciences, 5166614731, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, 9861615881, Zabol, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|
8
|
Li L, Batliwala M, Bouvier M. ERAP1 enzyme-mediated trimming and structural analyses of MHC I-bound precursor peptides yield novel insights into antigen processing and presentation. J Biol Chem 2019; 294:18534-18544. [PMID: 31601650 PMCID: PMC6901306 DOI: 10.1074/jbc.ra119.010102] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/20/2019] [Indexed: 01/07/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) and ERAP2 critically shape the major histocompatibility complex I (MHC I) immunopeptidome. The ERAPs remove N-terminal residues from antigenic precursor peptides and generate optimal-length peptides (i.e. 8-10-mers) to fit into the MHC class I groove. It is therefore intriguing that MHC class I molecules can present N-terminally extended peptides on the cell surface that can elicit CD8+ T-cell responses. This observation likely reflects gaps in our understanding of how antigens are processed by the ERAP enzymes. To better understand ERAPs' function in antigen processing, here we generated a nested set of N-terminally extended 10-20-mer peptides (RA) n AAKKKYCL covalently bound to the human leukocyte antigen (HLA)-B*0801. We used X-ray crystallography, thermostability assessments, and an ERAP1-trimming assay to characterize these complexes. The X-ray structures determined at 1.40-1.65 Å resolutions revealed that the residue extensions (RA) n unexpectedly protrude out of the A pocket of HLA-B*0801, whereas the AAKKKYCL core of all peptides adopts similar, bound conformations. HLA-B*0801 residue 62 was critical to open the A pocket. We also show that HLA-B*0801 and antigenic precursor peptides form stable complexes. Finally, ERAP1-mediated trimming of the MHC I-bound peptides required a minimal length of 14 amino acids. We propose a mechanistic model explaining how ERAP1-mediated trimming of MHC I-bound peptides in cells can generate peptides of canonical as well as noncanonical lengths that still serve as stable MHC I ligands. Our results provide a framework to better understand how the ERAP enzymes influence the MHC I immunopeptidome.
Collapse
Affiliation(s)
- Lenong Li
- Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612
| | - Mansoor Batliwala
- Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612
| | - Marlene Bouvier
- Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612, To whom correspondence should be addressed:
Dept. of Microbiology and Immunology, University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL 60612. Tel.:
312-355-0664; E-mail:
| |
Collapse
|