1
|
Baars MJ, Floor E, Sinha N, ter Linde JJ, van Dam S, Amini M, Nijman IJ, ten Hove JR, Drylewicz J, Offerhaus GA, Laclé MM, Oldenburg B, Vercoulen Y. Multiplex spatial omics reveals changes in immune-epithelial crosstalk during inflammation and dysplasia development in chronic IBD patients. iScience 2024; 27:110550. [PMID: 39165839 PMCID: PMC11334790 DOI: 10.1016/j.isci.2024.110550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/16/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
Patients with long-standing inflammatory bowel disease (IBD) face an increased risk of developing colitis-associated cancer (CAC). Although IBD-induced prolonged inflammation seems to be involved in CAC pathogenesis, the specific molecular changes that contribute remain unknown. Here, we applied digital spatial RNA profiling, RNAscope, and imaging mass cytometry to examine paired uninflamed, inflamed, and early dysplastic mucosa of patients with IBD. We observed robust type 3 (IL-17) responses during inflammation, accompanied by elevated JAK-STAT signaling and phosphorylated STAT3 (P-STAT3) levels, with both inflamed and dysplastic mucosa displaying immune cell activation. Higher stromal P-STAT3 was detected in uninflamed and inflamed mucosa of patients who eventually developed dysplasia. CD8a+ T cells did not infiltrate inflamed or dysplastic epithelial regions in these patients, while control patients showed elevated CD8a in inflamed mucosa. Our study reveals distinct inflammatory patterns throughout CAC development, marked by an activated IL-17 pathway, engaged STAT3, and diminished cytotoxic T cell infiltration.
Collapse
Affiliation(s)
- Matthijs J.D. Baars
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, CX, Utrecht 3584, the Netherlands
| | - Evelien Floor
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, CX, Utrecht 3584, the Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, CX, Utrecht 3584, the Netherlands
| | - Neeraj Sinha
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, CX, Utrecht 3584, the Netherlands
| | - José J.M. ter Linde
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, CX, Utrecht 3584, the Netherlands
| | - Stephanie van Dam
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, CX, Utrecht 3584, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Mojtaba Amini
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, CX, Utrecht 3584, the Netherlands
- UCyTOF, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, CX, Utrecht 3584, the Netherlands
| | - Isaäc J. Nijman
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, CX, Utrecht 3584, the Netherlands
- USEQ, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, CX, Utrecht 3584, the Netherlands
| | - Joren R. ten Hove
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, CX, Utrecht 3584, the Netherlands
| | - Julia Drylewicz
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Lundlaan 6, EA, Utrecht 3584, the Netherlands
| | - G.Johan A. Offerhaus
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, CX, Utrecht 3584, the Netherlands
| | - Miangela M. Laclé
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, CX, Utrecht 3584, the Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, CX, Utrecht 3584, the Netherlands
| | - Yvonne Vercoulen
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, CX, Utrecht 3584, the Netherlands
- UCyTOF, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, CX, Utrecht 3584, the Netherlands
| |
Collapse
|
2
|
He M, Zhang H, Zhang Y, Ding Y, Zhang F, Kang Y. Systematic Analysis to Identify the MIR99AHG-has-miR-21-5p- EHD1 CeRNA Regulatory Network as Potential Biomarkers in Lung Cancer. J Cancer 2024; 15:2391-2402. [PMID: 38495494 PMCID: PMC10937275 DOI: 10.7150/jca.93343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Lung cancer (LC) remains an extremely lethal disease worldwide, and effective prognostic biomarkers are at top priority. With the rapid development of high-throughput sequencing and bioinformatic analysis methods, the quest to characterize cancer transcriptomes continues to move forward. However, the integrated systematic analysis of lncRNA-miRNA-mRNA regulatory network in LC is lacking. In this study, we collected samples of cancer tissues and adjacent normal tissues from patients with lung cancer and conducted transcriptome and small RNA sequencing to identify differentially expressed genes (DEGs), miRNAs (DEMs), and lncRNAs (DELs). The regulatory roles of miRNAs in LC were explained by functional analysis on DEM-targeted genes. The lncRNA-miRNA pairs, miRNA-mRNA pairs, and lncRNA-mRNA pairs were identified and combined to construct the interplay of lncRNA-miRNA-mRNA. We evaluated the prognostic value of selected lncRNA-miRNA-mRNA by Kaplan-Meier analysis. Finally, we analyzed the expression levels of selected DEM, DELs, and DEGs in lung cancer patients and healthy people to verify our findings. A total of 1492 DEGs, 12 DEMs, and 604 DELs were identified in LC patients. Based on the bioinformatic analysis and the regulatory mechanism of ceRNAs, 3 lncRNAs (GATA2-AS1, LINC00632, MIR99AHG), 1 miRNA (hsa-miR-21-5p) and 5 targeted genes (RECK, TIMP3, EHD1, RASGRP1 and ERG) were figured out first. Through further Kaplan-Meier analysis screening the prognostic value, we finally found the hub subnetwork (MIR99AHG-hsa-miR-21-5p-EHD1) by collating lncRNA-miRNA pairs, miRNA-mRNA pairs and lncRNA-mRNA pairs. As the key of ceRNA regulatory network, the expression of miRNA-21-5p in lung cancer patients was significantly higher than that in healthy people (P < 0.01), and its high expression was significantly associated with poor prognosis (P = 0.0025). Our study successfully constructed a MIR99AHG-hsa-miR-21-5p-EHD1 mutually regulatory network, suggesting the potential efficient biomarkers in LC.
Collapse
Affiliation(s)
- Mengju He
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Zhang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,200030, China
| | - Yanfei Zhang
- Shanghai Starriver Bilingual School, Shanghai, 201108, China
| | - Yicen Ding
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fei Zhang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yani Kang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Fan S, Kang B, Li S, Li W, Chen C, Chen J, Deng L, Chen D, Zhou J. Exploring the multifaceted role of RASGRP1 in disease: immune, neural, metabolic, and oncogenic perspectives. Cell Cycle 2024; 23:722-746. [PMID: 38865342 PMCID: PMC11229727 DOI: 10.1080/15384101.2024.2366009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/25/2023] [Indexed: 06/14/2024] Open
Abstract
RAS guanyl releasing protein 1 (RASGRP1) is a guanine nucleotide exchange factor (GEF) characterized by the presence of a RAS superfamily GEF domain. It functions as a diacylglycerol (DAG)-regulated nucleotide exchange factor, specifically activating RAS through the exchange of bound GDP for GTP. Activation of RAS by RASGRP1 has a wide range of downstream effects at the cellular level. Thus, it is not surprising that many diseases are associated with RASGRP1 disorders. Here, we present an overview of the structure and function of RASGRP1, its crucial role in the development, expression, and regulation of immune cells, and its involvement in various signaling pathways. This review comprehensively explores the relationship between RASGRP1 and various diseases, elucidates the underlying molecular mechanisms of RASGRP1 in each disease, and identifies potential therapeutic targets. This study provides novel insights into the role of RASGRP1 in insulin secretion and highlights its potential as a therapeutic target for diabetes. The limitations and challenges associated with studying RASGRP1 in disease are also discussed.
Collapse
Affiliation(s)
- Shangzhi Fan
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bo Kang
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shaoqian Li
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weiyi Li
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Canyu Chen
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jixiang Chen
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lijing Deng
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Danjun Chen
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiecan Zhou
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
4
|
Chen G, Zhang W, Wang C, Chen M, Hu Y, Wang Z. Screening of four lysosome-related genes in sepsis based on RNA sequencing technology. BMC Immunol 2023; 24:50. [PMID: 38057716 PMCID: PMC10699041 DOI: 10.1186/s12865-023-00588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
PURPOSE Screening of lysosome-related genes in sepsis patients to provide direction for lysosome-targeted therapy. METHODS Peripheral blood samples were obtained from 22 patients diagnosed with sepsis and 10 normal controls for the purpose of RNA sequencing and subsequent analysis of differential gene expression. Concurrently, lysosome-related genes were acquired from the Gene Ontology database. The intersecting genes between the differential genes and lysosome-related genes were then subjected to PPI, GO and KEGG analyses. Core genes were identified through survival analysis, and their expression trends in different groups were determined using meta-analysis. Single-cell RNA sequencing was used to clarify the cellular localization of core genes. RESULTS The intersection of 1328 sepsis-differential genes with 878 lysosome-related genes yielded 76 genes. PPI analysis showed that intersecting genes were mainly involved in Cellular process, Response to stimulus, Immune system process, Signal transduction, Lysosome. GO and KEGG analysis showed that intersecting genes were mainly involved in leukocyte mediated immunity, cell activation involved in immune response, lytic vacuole, lysosome. Survival analysis screened four genes positively correlated with sepsis prognosis, namely GNLY, GZMB, PRF1 and RASGRP1. The meta-analysis revealed that the expression levels of these four genes were significantly higher in the normal control group compared to the sepsis group, which aligns with the findings from RNA sequencing data. Furthermore, single-cell RNA sequencing demonstrated that T cells and NK cells exhibited high expression levels of GNLY, GZMB, PRF1, and RASGRP1. CONCLUSION GNLY, GZMB, PRF1, and RASGRP1, which are lysosome-related genes, are closely linked to the prognosis of sepsis and could potentially serve as novel research targets for sepsis, offering valuable insights for the development of lysosome-targeted therapy. The clinical trial registration number is ChiCTR1900021261, and the registration date is February 4, 2019.
Collapse
Affiliation(s)
- Guihong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wen Zhang
- Department of Endocrinology and Metabolism, The Traditional Chinese Medicine Hospital of Luzhou City, Luzhou, Sichuan, China
| | - Chenglin Wang
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Muhu Chen
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Rozen EJ, Ozeroff CD, Allen MA. RUN(X) out of blood: emerging RUNX1 functions beyond hematopoiesis and links to Down syndrome. Hum Genomics 2023; 17:83. [PMID: 37670378 PMCID: PMC10481493 DOI: 10.1186/s40246-023-00531-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND RUNX1 is a transcription factor and a master regulator for the specification of the hematopoietic lineage during embryogenesis and postnatal megakaryopoiesis. Mutations and rearrangements on RUNX1 are key drivers of hematological malignancies. In humans, this gene is localized to the 'Down syndrome critical region' of chromosome 21, triplication of which is necessary and sufficient for most phenotypes that characterize Trisomy 21. MAIN BODY Individuals with Down syndrome show a higher predisposition to leukemias. Hence, RUNX1 overexpression was initially proposed as a critical player on Down syndrome-associated leukemogenesis. Less is known about the functions of RUNX1 in other tissues and organs, although growing reports show important implications in development or homeostasis of neural tissues, muscle, heart, bone, ovary, or the endothelium, among others. Even less is understood about the consequences on these tissues of RUNX1 gene dosage alterations in the context of Down syndrome. In this review, we summarize the current knowledge on RUNX1 activities outside blood/leukemia, while suggesting for the first time their potential relation to specific Trisomy 21 co-occurring conditions. CONCLUSION Our concise review on the emerging RUNX1 roles in different tissues outside the hematopoietic context provides a number of well-funded hypotheses that will open new research avenues toward a better understanding of RUNX1-mediated transcription in health and disease, contributing to novel potential diagnostic and therapeutic strategies for Down syndrome-associated conditions.
Collapse
Affiliation(s)
- Esteban J Rozen
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
| | - Christopher D Ozeroff
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave., Boulder, CO, 80309, USA
| | - Mary Ann Allen
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
Sadeghi Shaker M, Rokni M, Mahmoudi M, Farhadi E. Ras family signaling pathway in immunopathogenesis of inflammatory rheumatic diseases. Front Immunol 2023; 14:1151246. [PMID: 37256120 PMCID: PMC10225558 DOI: 10.3389/fimmu.2023.1151246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023] Open
Abstract
The Ras (rat sarcoma virus) is a GTP-binding protein that is considered one of the important members of the Ras-GTPase superfamily. The Ras involves several pathways in the cell that include proliferation, migration, survival, differentiation, and fibrosis. Abnormalities in the expression level and activation of the Ras family signaling pathway and its downstream kinases such as Raf/MEK/ERK1-2 contribute to the pathogenic mechanisms of rheumatic diseases including immune system dysregulation, inflammation, and fibrosis in systemic sclerosis (SSc); destruction and inflammation of synovial tissue in rheumatoid arthritis (RA); and autoantibody production and immune complexes formation in systemic lupus erythematosus (SLE); and enhance osteoblast differentiation and ossification during skeletal formation in ankylosing spondylitis (AS). In this review, the basic biology, signaling of Ras, and abnormalities in this pathway in rheumatic diseases including SSc, RA, AS, and SLE will be discussed.
Collapse
Affiliation(s)
- Mina Sadeghi Shaker
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Rokni
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
A Focused Review of Ras Guanine Nucleotide-Releasing Protein 1 in Immune Cells and Cancer. Int J Mol Sci 2023; 24:ijms24021652. [PMID: 36675167 PMCID: PMC9864139 DOI: 10.3390/ijms24021652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Four Ras guanine nucleotide-releasing proteins (RasGRP1 through 4) belong to the family of guanine nucleotide exchange factors (GEFs). RasGRPs catalyze the release of GDP from small GTPases Ras and Rap and facilitate their transition from an inactive GDP-bound to an active GTP-bound state. Thus, they regulate critical cellular responses via many downstream GTPase effectors. Similar to other RasGRPs, the catalytic module of RasGRP1 is composed of the Ras exchange motif (REM) and Cdc25 domain, and the EF hands and C1 domain contribute to its cellular localization and regulation. RasGRP1 can be activated by a diacylglycerol (DAG)-mediated membrane recruitment and protein kinase C (PKC)-mediated phosphorylation. RasGRP1 acts downstream of the T cell receptor (TCR), B cell receptors (BCR), and pre-TCR, and plays an important role in the thymocyte maturation and function of peripheral T cells, B cells, NK cells, mast cells, and neutrophils. The dysregulation of RasGRP1 is known to contribute to numerous disorders that range from autoimmune and inflammatory diseases and schizophrenia to neoplasia. Given its position at the crossroad of cell development, inflammation, and cancer, RASGRP1 has garnered interest from numerous disciplines. In this review, we outline the structure, function, and regulation of RasGRP1 and focus on the existing knowledge of the role of RasGRP1 in leukemia and other cancers.
Collapse
|
8
|
Wang S, Wang M, Peng H, Tian Y, Guo H, Wang J, Yu H, Xue E, Chen X, Wang X, Fan M, Zhang Y, Wang X, Qin X, Wu Y, Li J, Ye Y, Chen D, Hu Y, Wu T. Synergism of cell adhesion regulatory genes and instant air pollutants on blood pressure elevation. CHEMOSPHERE 2023; 312:136992. [PMID: 36334751 DOI: 10.1016/j.chemosphere.2022.136992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Accumulating evidence suggests that an instant exposure to particulate matter (PM) may elevate blood pressure (BP), where cell-adhesion regulatory genes may be involved in the interplay. However, few studies to date critically examined their interaction, and it remained unclear whether these genes modified the association. To assess the association between instant PM exposure and BP, and to examine whether single-nucleotide polymorphisms (SNPs) mapped in four cell adhesion regulatory genes modify the relationship, a cross-sectional study was performed, based on the baseline of an ongoing family-based cohort in Beijing, China. A total of 4418 persons from 2089 families in Northern China were included in the analysis. Four tagged SNPs in cell adhesion regulatory genes were selected among ZFHX3, CXCL12, RASGRP1 and MIR146A. A generalized additive model (GAM) with a Gaussian link was adopted to estimate the change in blood pressure after instant PM2.5 or PM10 exposure. A cross-product term of PM2.5/PM10 and genotype was incorporated into the GAM model to test for interaction. The study observed that an instant exposure to either PM2.5 or PM10 was found to be associated with elevated systolic blood pressure (SBP). On average, a 10 μg/m3 increase in instant exposure to PM2.5 and PM10 concentration corresponded to 0.140% (95% CI: 0.014%-0.265%, P = 0.029) and 0.173% (95% CI: 0.080%-0.266%, P < 0.001) higher SBP. However, diastolic blood pressure (DBP) was not elevated as the PM2.5 or PM10 concentration increased (P > 0.05). A synergetic interaction on SBP was observed between SNPs in four cell adhesion regulatory genes (rs2910164 in MIR146A, rs2297630 in CXCL12, rs7403531 in RASGRP1, and rs7193343 in ZFHX3) and instant PM2.5 exposure (Pfor interaction <0.05). Briefly, as carriers of risk alleles in each of these four genes increased, an enhanced association was found between instant PM2.5 exposure and SBP.
Collapse
Affiliation(s)
- Siyue Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Mengying Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Hexiang Peng
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yaohua Tian
- Department of Maternal and Child Health, School of Public Health, Huazhong University of Science and Technology, 430030, China
| | - Huangda Guo
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Jiating Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Huan Yu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Enci Xue
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Xi Chen
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Xueheng Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Meng Fan
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaochen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xueying Qin
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yiqun Wu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Jin Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Ying Ye
- Department of Local Diseases Control and Prevention, Fujian Provincial Center for Disease Control and Prevention, Fuzhou, 350001, China
| | - Dafang Chen
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yonghua Hu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| | - Tao Wu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health Commission of the People's China.
| |
Collapse
|
9
|
Identification of Immune-Related Genes and Small-Molecule Drugs in Interstitial Cystitis/Bladder Pain Syndrome Based on the Integrative Machine Learning Algorithms and Molecular Docking. J Immunol Res 2022; 2022:2069756. [PMID: 36619718 PMCID: PMC9812613 DOI: 10.1155/2022/2069756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/29/2022] Open
Abstract
Background Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic, severely distressing clinical syndrome characterized by bladder pain and pressure perceptions. The origin and pathophysiology of IC/BPS are currently unclear, making it difficult to diagnose and formulate successful treatments. Our study is aimed at investigating the role of immune-related genes in the diagnosis, progression, and therapy of IC/BPS. Method The gene expression datasets GSE11783, GSE11839, GSE28242, and GSE57560 were retrieved from the GEO database for further analysis. Immune-related IC/BPS differentially expressed genes (DEGs) were identified by limma. Three distinct machine learning approaches, least absolute shrinkage and selection operator (LASSO), support vector machine-recursive feature elimination (SVM-RFE), and random forest (RF), were used to find the immune-related IC characteristic genes. Nomogram and receiving operator curves (ROC) were plotted to measure characteristic effectiveness. Using the CMap database and the molecular docking approach, potential small-molecule medicines were found and verified. Consensus cluster analysis was also performed to separate the IC/BPS samples into immunological subtypes. Results A total of 24 immune-related IC/BPS-DEGs were identified. When compared to the normal control group, the IC/BPS cohort had significantly more immune cell infiltration. Integrative machine learning methods discovered 5 IC/BPS characteristic genes (RASGRP1, PPBP, RBP4, CR2, and PROS2) that may predict IC/BPS diagnosis and immune cell infiltration. Furthermore, two immunological subgroups with substantial variations in immune cell infiltration across IC/BPS samples were identified, which were named cluster1 and cluster2, with the hallmark genes having greater expression in cluster2. Finally, bumetanide was shown to have the potential to be a medication for the treatment of IC/BPS, and it performed well in terms of its molecular binding with RASGRP1. Conclusion We found and validated 5 immune-related IC/BPS genes (RASGRP1, PPBP, RBP4, CR2, and PROS2) and 2 IC/BPS immune subtypes. In addition, bumetanide was discovered to be a potential drug for treating IC/BPS, which may provide new insight into the diagnosis and immune therapy of IC/BPS patients.
Collapse
|
10
|
Tang W, Wang L, Liu Y, Xiao D. RasGRP exacerbates lipopolysaccharides-induced acute kidney injury through regulating ERKs activation. Open Forum Infect Dis 2022; 9:ofac041. [PMID: 35198649 PMCID: PMC8860163 DOI: 10.1093/ofid/ofac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Excessive inflammatory activities are reported to be the primary cause of sepsis-induced acute kidney injury (AKI). Ras guanyl nucleotide-releasing protein (RasGRP) could prevent inflammatory response. However, its role in the regulation of inflammatory response in sepsis-associated AKI remains unclear. Methods Wild-type or RasGRP1-deficient mice were treated with lipopolysaccharide intraperitoneally in combination with D-galactosamine to establish a mouse model of sepsis-associated AKI. Serum inflammatory cytokines were measured using enzyme-linked immunosorbent assay. The messenger RNA (mRNA) levels of interleukin 6, tumor necrosis factor, nitric oxide synthase 2, and interleukin 1β were measured using quantitative reverse-transcription polymerase chain reaction. The morphological change in kidney tubule was determined by hematoxylin-and-eosin staining. The protein levels of RasGRP, extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-Jun N-terminal kinase (JNK) were determined using Western blot. Results RasGRP1 mRNA and protein levels were significantly increased in patients with sepsis-related AKI compared to those in healthy subjects. RasGRP knockout markedly reduced inflammatory cytokines induced by AKI in sepsis when compared with wild-type mice. Additionally, RasGRP deficiency inhibited the phosphorylation of ERK1/2 without altering JNK expression. In conclusion, we demonstrate that RasGRP1 plays a pivotal role in sepsis-associated AKI. Downregulation of RasGRP1 could significantly inhibit inflammatory response by inhibiting the activation of ERK1/2 and mitogen-activated protein kinase pathway, thereby reducing AKI induced by sepsis. Conclusions Our data suggest that RasGRP exacerbates lipopolysaccharide-induced acute kidney injury through regulating ERK activation, which reveals a potential therapeutic target for the treatment of sepsis-induced AKI.
Collapse
Affiliation(s)
- Wen Tang
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Tianshan District, Urumqi 830001, Xinjiang Uygur Autonomous Region, China
| | - Lu Wang
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Tianshan District, Urumqi 830001, Xinjiang Uygur Autonomous Region, China
| | - Yan Liu
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Tianshan District, Urumqi 830001, Xinjiang Uygur Autonomous Region, China
| | - Dong Xiao
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Tianshan District, Urumqi 830001, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
11
|
Claringbould A, Zaugg JB. Enhancers in disease: molecular basis and emerging treatment strategies. Trends Mol Med 2021; 27:1060-1073. [PMID: 34420874 DOI: 10.1016/j.molmed.2021.07.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Enhancers are genomic sequences that play a key role in regulating tissue-specific gene expression levels. An increasing number of diseases are linked to impaired enhancer function through chromosomal rearrangement, genetic variation within enhancers, or epigenetic modulation. Here, we review how these enhancer disruptions have recently been implicated in congenital disorders, cancers, and common complex diseases and address the implications for diagnosis and treatment. Although further fundamental research into enhancer function, target genes, and context is required, enhancer-targeting drugs and gene editing approaches show great therapeutic promise for a range of diseases.
Collapse
Affiliation(s)
- Annique Claringbould
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Judith B Zaugg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|