1
|
Soltani S, Jamshidi A, Mahmoudi M, Farhadi E. Potential Roles for B cells and Autoantibodies in Ankylosing Spondylitis. Curr Rheumatol Rev 2024; 20:157-164. [PMID: 37870058 DOI: 10.2174/0115733971243468231012044909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 08/26/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023]
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease that predominantly affects young males. AS is a condition in which the spine and sacroiliac joints become inflamed. More specifically, most AS patients experience spine malformations over time, resulting in functional incapability. The etiopathogenesis of AS is a complex combination of genetic predisposition and environmental factors. Extensive studies on AS have revealed the central role of genetics and immune reactions in its etiology. However, an utmost agreement has yet to be created. The available evidence suggests that both autoinflammation and T-cell-mediated autoimmune processes have significant roles in the disease process of AS. So far, B cells have obtained moderately little attention in AS pathogenesis, primarily because of the absence of disease-defining autoantibodies. However, against general dogma, evidence is mounting showing B cell involvement. Disruptions depict this in circulating B cell populations, the increased expression of immunoglobulin (Ig)G, IgA, and IgM, and B cell infiltration within the axial skeleton of AS patients. Meanwhile, compared to many other inflammatory autoimmune disorders, AS has no disease-specific autoantibodies that help disease diagnosis. This study has provided an overview of the B lymphocytes and antibodies' role in AS pathogenesis. It also introduces autoantibodies that can be the prognosis and diagnosis biomarkers of AS.
Collapse
Affiliation(s)
- Samaneh Soltani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Del Vescovo S, Venerito V, Iannone C, Lopalco G. Uncovering the Underworld of Axial Spondyloarthritis. Int J Mol Sci 2023; 24:6463. [PMID: 37047435 PMCID: PMC10095023 DOI: 10.3390/ijms24076463] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Axial spondyloarthritis (axial-SpA) is a multifactorial disease characterized by inflammation in sacroiliac joints and spine, bone reabsorption, and aberrant bone deposition, which may lead to ankylosis. Disease pathogenesis depends on genetic, immunological, mechanical, and bioenvironmental factors. HLA-B27 represents the most important genetic factor, although the disease may also develop in its absence. This MHC class I molecule has been deeply studied from a molecular point of view. Different theories, including the arthritogenic peptide, the unfolded protein response, and HLA-B27 homodimers formation, have been proposed to explain its role. From an immunological point of view, a complex interplay between the innate and adaptive immune system is involved in disease onset. Unlike other systemic autoimmune diseases, the innate immune system in axial-SpA has a crucial role marked by abnormal activity of innate immune cells, including γδ T cells, type 3 innate lymphoid cells, neutrophils, and mucosal-associated invariant T cells, at tissue-specific sites prone to the disease. On the other hand, a T cell adaptive response would seem involved in axial-SpA pathogenesis as emphasized by several studies focusing on TCR low clonal heterogeneity and clonal expansions as well as an interindividual sharing of CD4/8 T cell receptors. As a result of this immune dysregulation, several proinflammatory molecules are produced following the activation of tangled intracellular pathways involved in pathomechanisms of axial-SpA. This review aims to expand the current understanding of axial-SpA pathogenesis, pointing out novel molecular mechanisms leading to disease development and to further investigate potential therapeutic targets.
Collapse
Affiliation(s)
- Sergio Del Vescovo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| | - Vincenzo Venerito
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| | - Claudia Iannone
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, 20122 Milan, Italy
| | - Giuseppe Lopalco
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| |
Collapse
|
3
|
De Craemer AS, Witte T, Lobaton Ortega T, Hoorens A, De Vos M, Cuvelier C, Vastert SJ, Baraliakos X, Van den Bosch F, Elewaut D. Anti-CD74 IgA antibodies show diagnostic potential for axial spondyloarthritis but are not associated with microscopic gut inflammation. Rheumatology (Oxford) 2023; 62:984-990. [PMID: 35781486 DOI: 10.1093/rheumatology/keac384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES Gut inflammation commonly occurs in axial SpA (axSpA), and is linked to disease activity and outcome. Given the role of IgA in mucosal immunity, we explored the association between anti-CD74 IgA antibodies, gut inflammation and axSpA. METHODS Anti-CD74 IgA was measured by ELISA in serum samples of axSpA patients, fulfilling the 2009 Assessment of SpondyloArthritis international Society classification criteria. A group of fibromyalgia (FM) and RA patients served as non-inflammatory and inflammatory controls. Newly diagnosed axSpA patients underwent ileocolonoscopy; mucosal biopsies were histopathologically assessed as normal, acute or chronically inflamed. Optimal anti-CD74 IgA cut-off values were determined with a receiver operating characteristics curve. RESULTS axSpA patients (n = 281) showed higher anti-CD74 IgA levels [mean (s.d.) 18.8 (12.4) U/ml] compared with 100 FM patients [10.9 (5.0) U/ml, P < 0.001] and 34 RA patients [13.7 (9.6) U/ml, P = 0.02]. The area under the receiver operating characteristics curve for diagnosis (axSpA vs FM) was 0.70, providing a sensitivity of 60% and specificity of 87% (cut-off 15 U/ml). Antibody concentrations were not significantly different between axSpA patients with (n = 40) and without (n = 69) gut inflammation (P = 0.83), yielding an area under the receiver operating characteristics curve of 0.51. Anti-CD74 IgA levels were not associated with degree of bone marrow oedema on MRI of the sacroiliac joints, CRP or any other disease-specific feature such as the use of NSAIDs or biological treatment. CONCLUSION Serum anti-CD74 IgA is a potentially useful diagnostic biomarker for axSpA. However, antibody levels do not correlate with any phenotypical feature, including microscopic gut inflammation, suggesting this to be a disease-specific rather than an inflammatory marker.
Collapse
Affiliation(s)
- Ann-Sophie De Craemer
- Department of Internal Medicine and Pediatrics, Ghent University
- Department of Rheumatology, Ghent University Hospital, Ghent
- Center for Inflammation Research, Molecular Immunology and Inflammation Unit, VIB-UGent, Zwijnaarde, Belgium
| | - Torsten Witte
- Department of Rheumatology and Clinical Immunology, Medical School Hannover, Hannover, Germany
| | - Triana Lobaton Ortega
- Department of Internal Medicine and Pediatrics, Ghent University
- Department of Gastroenterology
| | - Anne Hoorens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Martine De Vos
- Department of Internal Medicine and Pediatrics, Ghent University
- Department of Gastroenterology
| | - Claude Cuvelier
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Sebastiaan J Vastert
- Department of Pediatric Rheumatology and Immunology, Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | | | - Filip Van den Bosch
- Department of Internal Medicine and Pediatrics, Ghent University
- Department of Rheumatology, Ghent University Hospital, Ghent
- Center for Inflammation Research, Molecular Immunology and Inflammation Unit, VIB-UGent, Zwijnaarde, Belgium
| | - Dirk Elewaut
- Department of Internal Medicine and Pediatrics, Ghent University
- Department of Rheumatology, Ghent University Hospital, Ghent
- Center for Inflammation Research, Molecular Immunology and Inflammation Unit, VIB-UGent, Zwijnaarde, Belgium
| |
Collapse
|
4
|
B Cell Involvement in the Pathogenesis of Ankylosing Spondylitis. Int J Mol Sci 2021; 22:ijms222413325. [PMID: 34948121 PMCID: PMC8703482 DOI: 10.3390/ijms222413325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/25/2022] Open
Abstract
Extensive research into ankylosing spondylitis (AS) has suggested the major role of genetics, immune reactions, and the joint-gut axis in its etiology, although an ultimate consensus does not yet exist. The available evidence indicates that both autoinflammation and T-cell-mediated autoimmune processes are actively involved in the disease process of AS. So far, B cells have received relatively little attention in AS pathogenesis; this is largely due to a lack of conventional disease-defining autoantibodies. However, against prevailing dogma, there is a growing body of evidence suggestive of B cell involvement. This is illustrated by disturbances in circulating B cell populations and the formation of auto-reactive and non-autoreactive antibodies, along with B cell infiltrates within the axial skeleton of AS patients. Furthermore, the depletion of B cells, using rituximab, displayed beneficial results in a subgroup of patients with AS. This review provides an overview of our current knowledge of B cells in AS, and discusses their potential role in its pathogenesis. An overarching picture portrays increased B cell activation in AS, although it is unclear whether B cells directly affect pathogenesis, or are merely bystanders in the disease process.
Collapse
|
5
|
Mentrup T, Schröder B. Signal peptide peptidase-like 2 proteases: Regulatory switches or proteasome of the membrane? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119163. [PMID: 34673079 DOI: 10.1016/j.bbamcr.2021.119163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022]
Abstract
Signal peptide peptidase-like 2 (SPPL) proteases constitute a subfamily of SPP/SPPL intramembrane proteases which are homologues of the presenilins, the catalytic core of the γ-secretase complex. The three SPPL2 proteases SPPL2a, SPPL2b and SPPL2c proteolyse single-span, type II-oriented transmembrane proteins and/or tail-anchored proteins within their hydrophobic transmembrane segments. We review recent progress in defining substrate spectra and in vivo functions of these proteases. Characterisation of the respective knockout mice has implicated SPPL2 proteases in immune cell differentiation and function, prevention of atherosclerotic plaque development and spermatogenesis. Mechanisms how substrates are selected by these enzymes are still incompletely understood. We will discuss current views on how selective SPPL2-mediated cleavage is or whether these proteases may exhibit a generalised role in the turnover of membrane proteins. This has been suggested previously for the mechanistically related γ-secretase for which the term "proteasome of the membrane" has been coined based on its broad substrate spectrum. With regard to individual substrates, potential signalling functions of the resulting cytosolic cleavage fragments remain a controversial aspect. However, it has been clearly shown that SPPL2 proteases can influence cellular signalling and membrane trafficking by controlling levels of their membrane-bound substrate proteins which highlights these enzymes as regulatory switches. Based on this, regulatory mechanisms controlling activity of SPPL2 proteases would need to be postulated, which are just beginning to emerge. These different questions, which are relevant for other families of intramembrane proteases in a similar way, will be critically discussed based on the current state of knowledge.
Collapse
Affiliation(s)
- Torben Mentrup
- Institute for Physiological Chemistry, Technische Universität Dresden, Fiedlerstraße 42, D-01307 Dresden, Germany
| | - Bernd Schröder
- Institute for Physiological Chemistry, Technische Universität Dresden, Fiedlerstraße 42, D-01307 Dresden, Germany.
| |
Collapse
|
6
|
Pouw JN, Leijten EFA, van Laar JM, Boes M. Revisiting B cell tolerance and autoantibodies in seropositive and seronegative autoimmune rheumatic disease (AIRD). Clin Exp Immunol 2020; 203:160-173. [PMID: 33090496 DOI: 10.1111/cei.13542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune rheumatic diseases (AIRD) are categorized seropositive or seronegative, dependent upon the presence or absence of specific autoreactive antibodies, including rheumatoid factor and anti-citrullinated protein antibodies. Autoantibody-based diagnostics have proved helpful in patient care, not only for diagnosis but also for monitoring of disease activity and prediction of therapy responsiveness. Recent work demonstrates that AIRD patients develop autoantibodies beyond those contained in the original categorization. In this study we discuss key mechanisms that underlie autoantibody development in AIRD: defects in early B cell development, genetic variants involved in regulating B cell and T cell tolerance, environmental triggers and antigen modification. We describe how autoantibodies can directly contribute to AIRD pathogenesis through innate and adaptive immune mechanisms, eventually culminating in systemic inflammation and localized tissue damage. We conclude by discussing recent insights that suggest distinct AIRD have incorrectly been denominated seronegative.
Collapse
Affiliation(s)
- J N Pouw
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - E F A Leijten
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J M van Laar
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M Boes
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Pediatrics, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|