1
|
Mugo RM, Oser L, Midha A, Adjah J, Kundik A, Laubschat A, Höfler P, Musimbi ZD, Hayani R, Schlosser-Brandenburg J, Hartmann S, Rausch S. Acute Ascaris infection impairs the effector functions of natural killer cells in single and Salmonella co-infected pigs. Sci Rep 2024; 14:14586. [PMID: 38918457 PMCID: PMC11199589 DOI: 10.1038/s41598-024-64497-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
Natural killer (NK) cells play a key role in defense against Salmonella infections during the early phase of infection. Our previous work showed that the excretory/secretory products of Ascaris suum repressed NK activity in vitro. Here, we asked if NK cell functionality was influenced in domestic pigs during coinfection with Ascaris and Salmonella enterica serotype Typhimurium. Ascaris coinfection completely abolished the IL-12 and IL-18 driven elevation of IFN-γ production seen in CD16 + CD8α + perforin + NK cells of Salmonella single-infected pigs. Furthermore, Ascaris coinfection prohibited the Salmonella-driven rise in NK perforin levels and CD107a surface expression. In line with impaired effector functions, NK cells from Ascaris-single and coinfected pigs displayed elevated expression of the inhibitory KLRA1 and NKG2A receptors genes, contrasting with the higher expression of the activating NKp46 and NKp30 receptors in NK cells during Salmonella single infection. These differences were accompanied by the highly significant upregulation of T-bet protein expression in NK cells from Ascaris-single and Ascaris/Salmonella coinfected pigs. Together, our data strongly indicate a profound repression of NK functionality by an Ascaris infection which may hinder infected individuals from adequately responding to a concurrent bacterial infection.
Collapse
Affiliation(s)
- Robert M Mugo
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Larissa Oser
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Ankur Midha
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Joshua Adjah
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Arkadi Kundik
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Alexandra Laubschat
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Philipp Höfler
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Zaneta D Musimbi
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Rima Hayani
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | | | - Susanne Hartmann
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Rausch
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Moorton M, Tng PYL, Inoue R, Netherton CL, Gerner W, Schmidt S. Investigation of activation-induced markers (AIM) in porcine T cells by flow cytometry. Front Vet Sci 2024; 11:1390486. [PMID: 38868498 PMCID: PMC11168203 DOI: 10.3389/fvets.2024.1390486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024] Open
Abstract
Activation-induced markers (AIMs) are frequently analyzed to identify re-activated human memory T cells. However, in pigs the analysis of AIMs is still not very common. Based on available antibodies, we designed a multi-color flow cytometry panel comprising pig-specific or cross-reactive antibodies against CD25, CD69, CD40L (CD154), and ICOS (CD278) combined with lineage/surface markers against CD3, CD4, and CD8α. In addition, we included an antibody against tumor necrosis factor alpha (TNF-α), to study the correlation of AIM expression with the production of this abundant T cell cytokine. The panel was tested on peripheral blood mononuclear cells (PBMCs) stimulated with phorbol 12-myristate 13-acetate (PMA)/ionomycin, Staphylococcus enterotoxin B (SEB) or PBMCs from African swine fever virus (ASFV) convalescent pigs, restimulated with homologous virus. PMA/ionomycin resulted in a massive increase of CD25/CD69 co-expressing T cells of which only a subset produced TNF-α, whereas CD40L expression was largely associated with TNF-α production. SEB stimulation triggered substantially less AIM expression than PMA/ionomycin but also here CD25/CD69 expressing T cells were identified which did not produce TNF-α. In addition, CD40L-single positive and CD25+CD69+CD40L+TNF-α- T cells were identified. In ASFV restimulated T cells TNF-α production was associated with a substantial proportion of AIM expressing T cells but also here ASFV-reactive CD25+CD69+TNF-α- T cells were identified. Within CD8α+ CD4 T cells, several CD25/CD40L/CD69/ICOS defined phenotypes expanded significantly after ASFV restimulation. Hence, the combination of AIMs tested will allow the identification of primed T cells beyond the commonly used cytokine panels, improving capabilities to identify the full breadth of antigen-specific T cells in pigs.
Collapse
Affiliation(s)
- Madison Moorton
- The Pirbright Institute, Woking, United Kingdom
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | | | - Ryo Inoue
- Laboratory of Animal Science, Setsunan University, Osaka, Japan
| | | | | | | |
Collapse
|
3
|
Oser L, Midha A, Schlosser-Brandenburg J, Rausch S, Mugo RM, Kundik A, Elizalde-Velázquez LE, Adjah J, Musimbi ZD, Klopfleisch R, Helm CS, von Samson-Himmelstjerna G, Hartmann S, Ebner F. Ascaris suum infection in juvenile pigs elicits a local Th2 response in a setting of ongoing Th1 expansion. Front Immunol 2024; 15:1396446. [PMID: 38799456 PMCID: PMC11116563 DOI: 10.3389/fimmu.2024.1396446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
Ascaris spp. undergo extensive migration within the body before establishing patent infections in the small intestinal tract of humans and pigs. However, whether larval migration is critical for inducing efficient type 2 responses remains poorly understood. Therefore, we investigated systemic versus local adaptive immune responses along the hepato-tracheal migration of Ascaris suum during primary, single infections in conventionally raised pigs. Neither the initial invasion of gut tissue nor migration through the liver resulted in discernable Th2 cell responses. In contrast, lung-stage larvae elicited a Th2-biased pulmonary response, which declined after the larvae had left the lungs. In the small intestine, we observed an accumulation of Th2 cells upon the arrival of fourth-stage larvae (L4) to the small intestinal lumen. In parallel, we noticed robust and increasing Th1 responses in circulation, migration-affected organs, and draining lymph nodes. Phenotypic analysis of CD4+ T cells specifically recognizing A. suum antigens in the circulation and lung tissue of infected pigs confirmed that the majority of Ascaris-specific T cells produced IL-4 (Th2) and, to a much lesser extent, IL-4/IFN-g (Th2/1 hybrids) or IFN-g alone (Th1). These data demonstrate that lung-stage but not the early liver-stage larvae lead to a locally restricted Th2 response. Significant Th2 cell accumulation in the small intestine occurs only when L4 complete the body migration. In addition, Th2 immunity seems to be hampered by the concurrent, nonspecific Th1 bias in growing pigs. Together, the late onset of Th2 immunity at the site of infection and the Th1-biased systemic immunity likely enable the establishment of intestinal infections by sufficiently large L4 stages and pre-adult worms, some of which resist expulsion mechanisms.
Collapse
Affiliation(s)
- Larissa Oser
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Ankur Midha
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Josephine Schlosser-Brandenburg
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Rausch
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Robert M. Mugo
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Arkadi Kundik
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Luis E. Elizalde-Velázquez
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Joshua Adjah
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Zaneta D. Musimbi
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Christina S. Helm
- Department of Veterinary Medicine, Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Georg von Samson-Himmelstjerna
- Department of Veterinary Medicine, Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Susanne Hartmann
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Friederike Ebner
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
- Infection Pathogenesis, School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
4
|
Wolstenholme AJ, Andersen EC, Choudhary S, Ebner F, Hartmann S, Holden-Dye L, Kashyap SS, Krücken J, Martin RJ, Midha A, Nejsum P, Neveu C, Robertson AP, von Samson-Himmelstjerna G, Walker R, Wang J, Whitehead BJ, Williams PDE. Getting around the roundworms: Identifying knowledge gaps and research priorities for the ascarids. ADVANCES IN PARASITOLOGY 2024; 123:51-123. [PMID: 38448148 PMCID: PMC11143470 DOI: 10.1016/bs.apar.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The ascarids are a large group of parasitic nematodes that infect a wide range of animal species. In humans, they cause neglected diseases of poverty; many animal parasites also cause zoonotic infections in people. Control measures include hygiene and anthelmintic treatments, but they are not always appropriate or effective and this creates a continuing need to search for better ways to reduce the human, welfare and economic costs of these infections. To this end, Le Studium Institute of Advanced Studies organized a two-day conference to identify major gaps in our understanding of ascarid parasites with a view to setting research priorities that would allow for improved control. The participants identified several key areas for future focus, comprising of advances in genomic analysis and the use of model organisms, especially Caenorhabditis elegans, a more thorough appreciation of the complexity of host-parasite (and parasite-parasite) communications, a search for novel anthelmintic drugs and the development of effective vaccines. The participants agreed to try and maintain informal links in the future that could form the basis for collaborative projects, and to co-operate to organize future meetings and workshops to promote ascarid research.
Collapse
Affiliation(s)
- Adrian J Wolstenholme
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, ISP, Nouzilly, France.
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Shivani Choudhary
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Friederike Ebner
- Department of Molecular Life Sciences, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Susanne Hartmann
- Institute for Immunology, Freie Universität Berlin, Berlin, Germany
| | - Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Richard J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Ankur Midha
- Institute for Immunology, Freie Universität Berlin, Berlin, Germany
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Cedric Neveu
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, ISP, Nouzilly, France
| | - Alan P Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | | | - Robert Walker
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jianbin Wang
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | | | - Paul D E Williams
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
5
|
Schnabel CL, Fletemeyer B, Lübke S, Marti E, Wagner B, Alber G. CD154 Expression Indicates T Cell Activation Following Tetanus Toxoid Vaccination of Horses. Front Immunol 2022; 13:805026. [PMID: 35493462 PMCID: PMC9043809 DOI: 10.3389/fimmu.2022.805026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the relevance of adaptive immunity against equine pathogens antigen-specific T cell responses of horses are not well characterized and the lack of insight into T cell responses hampers the understanding of the pathogeneses of important diseases. In this study we used tetanus toxoid (TT) as a well-defined antigen to characterize antigen-reactive T cells. Six healthy adult horses received a routine booster against tetanus with an immune stimulating complex (ISCOM)-based vaccine and were followed for 28 days. TT-specific serum antibodies were quantified by ELISA and increased in all horses by day 7 after vaccination. CD154 is an established indicator of antigen-reactive T helper cells in other species, but has not been characterized in horses. CD154 detection in equine PBMC by an anti-human CD154 antibody (clone 5C8) was confirmed by Western blots and then applied for flow cytometry. As a common indicator of equine T cell activation, cytokine induction was studied in parallel. T cells were analyzed by multicolor flow cytometry of PBMC after re-stimulation with TT in vitro. Reactive T helper (Th) cells were characterized by increased frequencies of CD4+CD154+ lymphocytes in in vitro TT-re-stimulated PBMC on day 14 after vaccination of the horses compared to pre-vaccination. The majority of all CD154+ cells after TT re-stimulation were CD4+ Th cells, but CD154 was also induced on CD4- cells albeit in lower frequencies. CD154+CD4+ Th cells were enriched in cytokine-expressing cells compared to CD154-CD4+ Th cells. Similar to the CD4+CD154+ frequencies, CD4+IL-4+, CD4+IFN-γ+ and CD4+TNF-α+ were increased after vaccination, but IL-4+ increased later than IFN-γ+ and CD4+TNF-α+, which already exceeded pre-vaccination frequencies on day 7. CD4+CD154+ frequencies correlated positively with those of CD4+IL-4+ (Th2) on day 14, and negatively with CD4+IFN-γ+ induction on day 7, but did not correlate with CD4+TNF-α+ frequencies or TT-specific antibody concentrations. CD154 appears to be a useful marker of antigen-reactive equine Th cells in combination with cytokine expression. The T cell analyses established here with TT can be applied to other antigens relevant for infections or allergies of horses and in horse models for translational research.
Collapse
Affiliation(s)
- Christiane L Schnabel
- Institute of Immunology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Babette Fletemeyer
- Institute of Immunology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Sabrina Lübke
- Institute of Immunology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Eliane Marti
- Clinical Immunology Group, Department for Clinical Research and Veterinary Public Health (VPH), Vetsuisse Faculty of the University of Bern, Bern, Switzerland
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Gottfried Alber
- Institute of Immunology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
6
|
Schlosser-Brandenburg J, Ebner F, Klopfleisch R, Kühl AA, Zentek J, Pieper R, Hartmann S. Influence of Nutrition and Maternal Bonding on Postnatal Lung Development in the Newborn Pig. Front Immunol 2021; 12:734153. [PMID: 34484245 PMCID: PMC8415798 DOI: 10.3389/fimmu.2021.734153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022] Open
Abstract
Background Microbial colonization and immune cell maturation coincide at mucosal sites and are decisive for postnatal lung development. How external factors influence neonatal pulmonary immune development is poorly understood. Objective To elucidate the impact of key determinants in early life, nutrition, and maternal bonding, on postnatal lung maturation in a human-relevant animal model. To investigate the underlying immunological changes of impaired lung maturation and study the mechanisms of conversion. Methods Newborn piglets were kept with or without isolation from their mothers and fed bovine milk-based infant formula or received milk of sow. Lung growth, histomorphology, respiratory immune responses, and lung microbiota were analyzed. Mother- and sow-milk-deprived piglets received maternal material or were reintroduced to the maternal environment at varying intervals to study options for reversal. Results Formula feeding combined with isolation of newborn piglets resulted in disturbed postnatal lung maturation. Reduced lung growth correlated with dampened IL-33 expression, impaired lung myeloid cell activation, and decreased Th1 differentiation, along with diminished richness and diversity of the lung microbiota. Transfer of bacteria-enriched maternal material reversed the negative effects on pulmonary immune maturation. Early (within 3 days) but not late (within 7 days) reintroduction to the mother allowed restoration of normal lung development. Conclusion Our findings reveal that lung growth, respiratory immunity, and microbial lung colonization in newborns depend on postnatal diet and maternal contact, and targeting these key regulators could promote lung development during this critical life stage. Summary Disturbances in natural diet and reduced maternal contact during the neonatal period impair postnatal lung maturation. In pediatrics, timely breast milk feeding and intensive maternal bonding represent valuable intervention measures to promote early postnatal lung development.
Collapse
Affiliation(s)
- Josephine Schlosser-Brandenburg
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Friederike Ebner
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, iPATH.Berlin, Berlin, Germany
| | - Jürgen Zentek
- Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Robert Pieper
- Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany.,Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Lauruschkat CD, Etter S, Schnack E, Ebel F, Schäuble S, Page L, Rümens D, Dragan M, Schlegel N, Panagiotou G, Kniemeyer O, Brakhage AA, Einsele H, Wurster S, Loeffler J. Chronic Occupational Mold Exposure Drives Expansion of Aspergillus-Reactive Type 1 and Type 2 T-Helper Cell Responses. J Fungi (Basel) 2021; 7:jof7090698. [PMID: 34575736 PMCID: PMC8471116 DOI: 10.3390/jof7090698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Occupational mold exposure can lead to Aspergillus-associated allergic diseases including asthma and hypersensitivity pneumonitis. Elevated IL-17 levels or disbalanced T-helper (Th) cell expansion were previously linked to Aspergillus-associated allergic diseases, whereas alterations to the Th cell repertoire in healthy occupationally exposed subjects are scarcely studied. Therefore, we employed functional immunoassays to compare Th cell responses to A. fumigatus antigens in organic farmers, a cohort frequently exposed to environmental molds, and non-occupationally exposed controls. Organic farmers harbored significantly higher A. fumigatus-specific Th-cell frequencies than controls, with comparable expansion of Th1- and Th2-cell frequencies but only slightly elevated Th17-cell frequencies. Accordingly, Aspergillus antigen-induced Th1 and Th2 cytokine levels were strongly elevated, whereas induction of IL-17A was minimal. Additionally, increased levels of some innate immune cell-derived cytokines were found in samples from organic farmers. Antigen-induced cytokine release combined with Aspergillus-specific Th-cell frequencies resulted in high classification accuracy between organic farmers and controls. Aspf22, CatB, and CipC elicited the strongest differences in Th1 and Th2 responses between the two cohorts, suggesting these antigens as potential candidates for future bio-effect monitoring approaches. Overall, we found that occupationally exposed agricultural workers display a largely balanced co-expansion of Th1 and Th2 immunity with only minor changes in Th17 responses.
Collapse
Affiliation(s)
- Chris D. Lauruschkat
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
| | - Sonja Etter
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
| | - Elisabeth Schnack
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University of Munich, 80539 Munich, Germany; (E.S.); (F.E.)
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University of Munich, 80539 Munich, Germany; (E.S.); (F.E.)
| | - Sascha Schäuble
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knoell-Institute (HKI), 07745 Jena, Germany; (S.S.); (G.P.)
| | - Lukas Page
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
| | - Dana Rümens
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
| | - Mariola Dragan
- Department of Surgery I, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (M.D.); (N.S.)
| | - Nicolas Schlegel
- Department of Surgery I, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (M.D.); (N.S.)
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knoell-Institute (HKI), 07745 Jena, Germany; (S.S.); (G.P.)
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knoell-Institute (HKI), 07745 Jena, Germany; (O.K.); (A.A.B.)
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knoell-Institute (HKI), 07745 Jena, Germany; (O.K.); (A.A.B.)
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
| | - Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
- Correspondence: ; Tel.: +49-931-201-36412
| |
Collapse
|