1
|
Wu M, Fletcher EL, Chinnery HR, Downie LE, Mueller SN. Redefining our vision: an updated guide to the ocular immune system. Nat Rev Immunol 2024; 24:896-911. [PMID: 39215057 DOI: 10.1038/s41577-024-01064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Balanced immune responses in the eyes are crucial to preserve vision. The ocular immune system has long been considered distinct, owing to the so-called 'immune privilege' of its component tissues. More recently, intravital imaging and transcriptomic techniques have reshaped scientific understanding of the ocular immune landscape, such as revealing the specialization of immune cell populations in the various tissues of the eye. As knowledge of the phenotypes of corneal and retinal immune cells has evolved, links to both the systemic immune system, and the central and peripheral nervous systems, have been identified. Using intravital imaging, T cells have recently been found to reside in, and actively patrol, the healthy human cornea. Disease-associated retinal microglia with links to retinal degeneration have also been identified. This Review provides an updated guide to the ocular immune system, highlighting current knowledge of the immune cells that are present in steady-state and specific diseased ocular tissues, as well as evidence for their relationship to systemic disease. In addition, we discuss emerging intravital imaging techniques that can be used to visualize immune cell morphology and dynamics in living human eyes and how these could be applied to advance understanding of the human immune system.
Collapse
Affiliation(s)
- Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Carlton, Victoria, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia.
- Lions Eye Institute, Nedlands, Western Australia, Australia.
- Optometry, The University of Western Australia, Crawley, Western Australia, Australia.
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia.
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Fan NW, Zhu Q, Wang S, Ortiz G, Huckfeldt RM, Chen Y. Long-lived autoreactive memory CD4 + T cells mediate the sustained retinopathy in chronic autoimmune uveitis. FASEB J 2023; 37:e22855. [PMID: 36906286 PMCID: PMC10478160 DOI: 10.1096/fj.202202164r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 03/13/2023]
Abstract
Chronic uveitis comprises heterogeneous clinical entities characterized by sustained and recurrent intraocular inflammation that is believed to be driven by autoimmune responses. The management of chronic uveitis is challenging with the limited availability of efficacious treatments, and the underlying mechanisms mediating disease chronicity remain poorly understood as the majority of experimental data are derived from the acute phase of the disease (the first 2-3 weeks post-induction). Herein, we investigated the key cellular mechanisms underlying chronic intraocular inflammation using our recently established murine model of chronic autoimmune uveitis. We demonstrate unique long-lived CD44hi IL-7R+ IL-15R+ CD4+ memory T cells in both retina and secondary lymphoid organs after 3 months postinduction of autoimmune uveitis. These memory T cells functionally exhibit antigen-specific proliferation and activation in response to retinal peptide stimulation in vitro. Critically, these effector-memory T cells are capable of effectively trafficking to the retina and accumulating in the local tissues secreting both IL-17 and IFN-γ upon adoptively transferred, leading to retinal structural and functional damage. Thus, our data reveal the critical uveitogenic functions of memory CD4+ T cells in sustaining chronic intraocular inflammation, suggesting that memory T cells can be a novel and promising therapeutic target for treating chronic uveitis in future translational studies.
Collapse
Affiliation(s)
- Nai-Wen Fan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Qiurong Zhu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Shudan Wang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Gustavo Ortiz
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Rachel M. Huckfeldt
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
3
|
Prednisone acetate modulates Th1/Th2 and Th17/Treg cell homeostasis in experimental autoimmune uveitis via orchestrating the Notch signaling pathway. Int Immunopharmacol 2023; 116:109809. [PMID: 36753985 DOI: 10.1016/j.intimp.2023.109809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
Uveitis is an immune eye disease that can seriously impair vision. Glucocorticoids (GCS) have been extensively used to treat uveitis, though the mechanisms have not been fully elucidated. In this study, we investigated the regulatory effects of prednisone acetate (PA) on the Th1/Th2 and Th17/Treg balance in experimental autoimmune uveitis (EAU) through modulating the Notch signaling pathway. Briefly, Lewis rats were randomly divided into the normal control (NC), EAU, and EAU + PA groups. Rats in EAU and EAU + PA groups were induced EAU, while those in the EAU + PA group were treated with PA. Clinical and histopathological scores were employed to assess the progression of EAU. The expression levels of Notch signaling-related molecules (Notch1, Notch2, Dll3, Dll4, and Rbpj) and Th-associated cytokines (IFN-γ, IL-4, IL-10, and IL-17) were assessed via quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). In addition, the frequencies of Th1, Th2, Th17 and Treg cells were detected by flow cytometry. These experimental results indicated that activation of the Notch signaling pathway occurred in EAU rats and resulted in a severe imbalance of the Th17/Treg and Th1/Th2 ratios. PA treatment significantly alleviated ocular inflammation, inhibited activation of the Notch signaling pathway, and declined Th1, and Th17 cell differentiation, thereby restoring the Th1/Th2 and Th17/Treg balance. Collectively, PA can positively enhance the systemic immune response and improve the intraocular microenvironmental homeostasis by inhibiting activation of the Notch signaling pathway and by restoring Th1/Th2 and Th17/Treg balance, thus achieving the goal of treating uveitis.
Collapse
|
4
|
Zhang M, Zhang X. T cells in ocular autoimmune uveitis: Pathways and therapeutic approaches. Int Immunopharmacol 2023; 114:109565. [PMID: 36535124 DOI: 10.1016/j.intimp.2022.109565] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Autoimmune uveitis is a non-infectious intraocular condition that affects the uveal tract of the eye and threatens vision if not treated properly. Increasing evidence suggests that activated CD4+ T cells are associated with progressive and permanent destruction of photoreceptors in ocular autoimmune diseases. As such, the purpose of this review is to offer an overview of the role of CD4+ T cells in autoimmune uveitis as well as a justification for the current development and assessment of innovative autoimmune uveitis medications targeting CD4+ T cells. With an emphasis on T helper (Th)17, Th1, and Th2 cells, follicular helper CD4+ T cells, and regulatory T cells, this review presents a summary of recent research related to the pathways and signaling that encourage CD4+ T cells to develop into specialized effector cells. We also describe immunotherapeutic approaches based on CD4+ T cell subsets and their potential as therapeutic agents for autoimmune disorders.
Collapse
Affiliation(s)
- Mi Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
5
|
Lorenzo MM, Devlin J, Saini C, Cho KS, Paschalis EI, Chen DF, e Silva RN, Chen SH, Margeta MA, Ondeck C, Valle DSD, Chodosh J, Ciolino JB, Pineda R, Pasquale LR, Shen LQ. The Prevalence of Autoimmune Diseases in Patients with Primary Open-Angle Glaucoma Undergoing Ophthalmic Surgeries. Ophthalmol Glaucoma 2022; 5:128-136. [PMID: 34416426 PMCID: PMC8854449 DOI: 10.1016/j.ogla.2021.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To assess the prevalence of autoimmune disease (AiD) in patients with primary open-angle glaucoma (POAG) undergoing ophthalmic surgery. DESIGN Retrospective, cross-sectional study. PARTICIPANTS Patients with POAG undergoing any ophthalmic surgery and control subjects undergoing cataract surgery at the Massachusetts Eye and Ear from March 2019 to April 2020. METHODS All available medical records with patient demographics, ocular, and medical conditions were reviewed. Differences in AiD prevalence were assessed and adjusted for covariates using multiple logistic regression. Additionally, a subgroup analysis comparing the POAG patients with and without AiD was performed. MAIN OUTCOME MEASURES To assess the prevalence of AiD based on the American Autoimmune Related Diseases Association list. RESULTS A total of 172 patients with POAG and 179 controls were included. The overall prevalence of AiD was 17.4% in the POAG group and 10.1% in the controls (P = 0.044); 6.4% of POAG patients and 3.4% of controls had more than 1 AiD (P = 0.18). The most prevalent AiDs in POAG group were rheumatoid arthritis (4.6%) and psoriasis (4.1%), which were also the most common in controls (2.8% each). In a fully adjusted multiple logistic regression analysis accounting for steroid use, having an AiD was associated with 2.62-fold increased odds of POAG relative to controls (95% confidence interval, 1.27-5.36, P = 0.009); other risk factors for POAG derived from the analysis included age (odds ratio [OR], 1.04, P = 0.006), diabetes mellitus (OR, 2.31, P = 0.008), and non-White ethnicity (OR, 4.75, P < 0.001). In a case-only analysis involving the eye with worse glaucoma, there was no statistical difference in visual field mean deviation or retinal nerve fiber layer (RNFL) thickness in POAG patients with AiD (n = 30) and without AiD (n = 142, P > 0.13, for both). CONCLUSIONS A higher prevalence of AiD was found in POAG patients compared with control patients undergoing ophthalmic surgery. The presence of AiD was associated with increased risk for POAG after adjusting for covariates. Additional factors may have prevented a difference in RNFL thickness in POAG patients with and without AiD. Autoimmunity should be explored further in the pathogenesis of POAG.
Collapse
Affiliation(s)
- Maltish M. Lorenzo
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Julia Devlin
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Chhavi Saini
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Kin-Sang Cho
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States.,Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Eleftherios I. Paschalis
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States.,Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Dong Feng Chen
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States.,Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | | | - Sherleen H. Chen
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Milica A. Margeta
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Courtney Ondeck
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States.,VA Boston Hospital, Boston, MA, United States
| | - David Solá-Del Valle
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Joseph B. Ciolino
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Roberto Pineda
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Louis R. Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lucy Q. Shen
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Chen N, Chen S, Zhang Z, Cui X, Wu L, Guo K, Shao H, Ma JX, Zhang X. Overexpressing Kallistatin Aggravates Experimental Autoimmune Uveitis Through Promoting Th17 Differentiation. Front Immunol 2021; 12:756423. [PMID: 34733288 PMCID: PMC8558411 DOI: 10.3389/fimmu.2021.756423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/29/2021] [Indexed: 12/01/2022] Open
Abstract
Kallistatin or kallikrein-binding protein (KBP) has been reported to regulate angiogenesis, inflammation and tumor progression. Autoimmune uveitis is a common, sight-threatening inflammatory intraocular disease. However, the roles of kallistatin in autoimmunity and autoreactive T cells are poorly investigated. Compared to non-uveitis controls, we found that plasma levels of kallistatin were significantly upregulated in patients with Vogt-Koyanagi-Harada (VKH) disease, one of the non-infectious uveitis. Using an experimental autoimmune uveitis (EAU) model induced by human interphotoreceptor retinoid-binding protein peptide 651-670 (hIRBP651-670), we examined the effects of kallistatin on the pathogenesis of autoimmune diseases. Compared to wild type (WT) mice, kallistatin transgenic (KS) mice developed severe uveitis with dominant Th17 infiltrates in the eye. In addition, the proliferative antigen-specific T cells isolated from KS EAU mice produced increased levels of IL-17A, but not IFN-γ or IL-10 cytokines. Moreover, splenic CD4+ T cells from naïve KS mice expressed higher levels of Il17a mRNA compared to WT naïve mice. Under Th17 polarization conditions, KS mice exhibited enhanced differentiation of naïve CD4+ T cells into Th17 cells compared to WT controls. Together, our results indicate that kallistatin promotes Th17 differentiation and is a key regulator of aggravating autoinflammation in EAU. Targeting kallistatin might be a potential to treat autoimmune disease.
Collapse
Affiliation(s)
- Nu Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Shuang Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Zhihui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xuexue Cui
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Lingzi Wu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Kailei Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, School of Medicine, Louisville, KY, United States
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
7
|
Chen YH, Lightman S, Calder VL. CD4 + T-Cell Plasticity in Non-Infectious Retinal Inflammatory Disease. Int J Mol Sci 2021; 22:9584. [PMID: 34502490 PMCID: PMC8431487 DOI: 10.3390/ijms22179584] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 01/14/2023] Open
Abstract
Non-infectious uveitis (NIU) is a potentially sight-threatening disease. Effector CD4+ T cells, especially interferon-γ-(IFNγ) producing Th1 cells and interleukin-17-(IL-17) producing Th17 cells, are the major immunopathogenic cells, as demonstrated by adoptive transfer of disease in a model of experimental autoimmune uveitis (EAU). CD4+FoxP3+CD25+ regulatory T cells (Tregs) were known to suppress function of effector CD4+ T cells and contribute to resolution of disease. It has been recently reported that some CD4+ T-cell subsets demonstrate shared phenotypes with another CD4+ T-cell subset, offering the potential for dual function. For example, Th17/Th1 (co-expressing IFNγ and IL-17) cells and Th17/Treg (co-expressing IL-17 and FoxP3) cells have been identified in NIU and EAU. In this review, we have investigated the evidence as to whether these 'plastic CD4+ T cells' are functionally active in uveitis. We conclude that Th17/Th1 cells are generated locally, are resistant to the immunosuppressive effects of steroids, and contribute to early development of EAU. Th17/Treg cells produce IL-17, not IL-10, and act similar to Th17 cells. These cells were considered pathogenic in uveitis. Future studies are needed to better clarify their function, and in the future, these cell subsets may in need to be taken into consideration for designing treatment strategies for disease.
Collapse
Affiliation(s)
- Yi-Hsing Chen
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (Y.-H.C.); (S.L.)
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Sue Lightman
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (Y.-H.C.); (S.L.)
| | - Virginia L. Calder
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (Y.-H.C.); (S.L.)
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| |
Collapse
|
8
|
Barfüßer C, Wiedemann C, Hoffmann ALC, Hirmer S, Deeg CA. Altered Metabolic Phenotype of Immune Cells in a Spontaneous Autoimmune Uveitis Model. Front Immunol 2021; 12:601619. [PMID: 34385998 PMCID: PMC8353246 DOI: 10.3389/fimmu.2021.601619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
As one of the leading causes of blindness worldwide, uveitis is an important disease. The exact pathogenesis of autoimmune uveitis is not entirely elucidated to date. Equine recurrent uveitis (ERU) represents the only spontaneous animal model for autoimmune uveitis in humans. As the metabolism of immune cells is an emerging field in research and gains more and more significance to take part in the pathogenesis of various diseases, we conducted experiments to investigate the metabolism of immune cells of ERU cases and healthy controls. To our knowledge, the link between a deviant immunometabolism and the pathogenesis of autoimmune uveitis was not investigated so far. We showed that PBMC of ERU cases had a more active metabolic phenotype in basal state by upregulating both the oxidative phosphorylation and the glycolytic pathway. We further revealed an increased compensatory glycolytic rate of PBMC and CD4+ T cells of ERU cases under mitochondrial stress conditions. These findings are in line with metabolic alterations of immune cells in other autoimmune diseases and basic research, where it was shown that activated immune cells have an increased need of energy and molecule demand for their effector function. We demonstrated a clear difference in the metabolic phenotypes of PBMC and, more specifically, CD4+ T cells of ERU cases and controls. These findings are another important step in understanding the pathogenesis of ERU and figuratively, human autoimmune uveitis.
Collapse
Affiliation(s)
- Claudia Barfüßer
- Chair of Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität (LMU) Munich, Martinsried, Germany
| | - Carmen Wiedemann
- Chair of Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität (LMU) Munich, Martinsried, Germany
| | - Anne L C Hoffmann
- Chair of Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität (LMU) Munich, Martinsried, Germany
| | - Sieglinde Hirmer
- Chair of Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität (LMU) Munich, Martinsried, Germany
| | - Cornelia A Deeg
- Chair of Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität (LMU) Munich, Martinsried, Germany
| |
Collapse
|