1
|
Petrone L, Peruzzu D, Altera AMG, Salmi A, Vanini V, Cuzzi G, Coppola A, Mellini V, Gualano G, Palmieri F, Panda S, Peters B, Sette A, Arlehamn CSL, Goletti D. Therapy modulates the response to T cell epitopes over the spectrum of tuberculosis infection. J Infect 2024; 89:106295. [PMID: 39343243 DOI: 10.1016/j.jinf.2024.106295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Identifying stage-specific antigens is essential for developing tuberculosis (TB) diagnostics and vaccines. In a low TB endemic country, we characterized, the Mycobacterium tuberculosis (Mtb)-specific immune response to a pool of Mtb-derived epitopes (ATB116), demonstrated as associated with TB disease. METHODS In this prospective observational cross-sectional study, we enrolled healthy donors (HD), subjects with TB disease, and TB infection (TBI) at baseline and therapy completion. T-cell response after whole blood stimulation with the peptide pools was characterized by ELISA, flow cytometry, and multiplex assay. RESULTS ATB116-specific IFN-γ response (by ELISA) significantly associates with Mtb regardless of infection/disease (p < 0.0001) and decreases during TB therapy (p = 0.0002). Flow cytometry confirms that ATB116-specific CD4+ T-cell response associated with Mtb regardless of infection/disease (p < 0.0001) and shows a significantly higher frequency of IFN-γ/IL-2 and central memory T-cells in TBI compared to TB (p = 0.016; p = 0.0242, respectively). CD4+ T cell-specific response decreases after TB therapy completion. The antigen-specific CD8+ T-cell response mirrors the CD4+ response. Finally, the multiplex assay analysis showed that ATB116 induces several immune factors in both TB and TBI. CONCLUSION We characterized the immune response to Mtb peptide pools that is modulated by TB therapy. These results are important for our understanding of TB immunopathogenesis and vaccine design.
Collapse
Affiliation(s)
- Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Daniela Peruzzu
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Anna Maria Gerarda Altera
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy; UOS Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Andrea Coppola
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Valeria Mellini
- Respiratory Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Gina Gualano
- Respiratory Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Fabrizio Palmieri
- Respiratory Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Sudhasini Panda
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Bjoern Peters
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA; Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA; Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy.
| |
Collapse
|
2
|
Li D, Wu R, Wang J, Ye J, Yu Q, Feng D, Han P. A Prognostic Index Derived From LASSO-Selected Preoperative Inflammation and Nutritional Markers for Non-Muscle-Invasive Bladder Cancer. Clin Genitourin Cancer 2024:102061. [PMID: 38519296 DOI: 10.1016/j.clgc.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND There is an urgent need to identify a robust predictor for BCG response in patients with non-muscle-invasive bladder cancer (NMIBC). We aimed to employ the Lasso regression model for the selection and construction of an index (BCGI) utilizing inflammation and nutrition indicators to predict the response to BCG therapy. METHODS After acquiring the ethics approval, we searched the electric medical records in our institution and performed data screening. Then, we developed the BCGI using a Lasso regression model and subsequently evaluated its performance in both the train and internal test datasets through Kaplan-Meier survival curves and Cox regression analysis. Then, we also evaluated the prognostic value of BCGI alongside the EAU2021 model. RESULTS The training dataset and internal test dataset contained 295 and 196 patients, respectively. Referring to the Lasso results, BCGI consisted of hemoglobin, albumin, and platelet count, which could significantly predict the recurrence of NMIBC patients who accepted BCG in train (P = .012) and test (P = .004) datasets. The BCGI also exhibited statistically prognostic value in no smoking history, World Health Organization high grade, and T1 subgroups, both in train and test datasets. In multivariable analysis, BCGI exhibited independent prognostic value in train (P = .012) and test (P = .012) datasets. Finally, we constructed a nomogram that consisted of smoking history, T stage, World Health Organization grade, tumor size, and BCGI. Then, BCGI demonstrated significant independent prognostic value in NMIBC patients treated with BCG, a result not observed with the EAU2021 score or classification. CONCLUSION Based on the results, we reasonably suggest that BCGI may be a useful predictor for NMIBC patients who accepted BCG. Furthermore, we have demonstrated the efficacy of constructing a prognostic index using clinical factors and a Lasso regression model, a versatile approach applicable to various medical conditions.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Junjiang Ye
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qingxin Yu
- Ningbo Diagnostic Pathology Center, Ningbo City, Zhejiang Province, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Zhou M, Feng Y, Zhang X, Chen J, Yao N, Fu S, Ni T, Chen Y, Xie F, Roy S, Liu J, Yang Y, He Y, Zhao Y, Yang N. Platelet-derived microparticles adoptively transfer integrin β3 to promote antitumor effect of tumor-infiltrating T cells. Oncoimmunology 2024; 13:2304963. [PMID: 38235317 PMCID: PMC10793703 DOI: 10.1080/2162402x.2024.2304963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
Approximately two-thirds of hepatocellular carcinoma (HCC) is considered a "cold tumor" characterized by few tumor-infiltrating T cells and an abundance of immunosuppressive cells. Cilengitide, an integrin αvβ3 inhibitor, has failed in clinical trials as a potential anticancer drug. This failure implies that integrin αvβ3 may play an important role in immune cells. However, the expression and potential role of integrin αvβ3 in T cells of HCC patients remain unknown. Here, we established two HCC models and found that cilengitide had a dual effect on the HCC microenvironment by exerting both antitumor effect and immunosuppressive effect on T cells. This may partly explain the failure of cilengitide in clinical trials. In clinical specimens, HCC-infiltrating T cells exhibited deficient expression and activation of integrin β3, which was associated with poor T-cell infiltration into tumors. Additionally, integrin β3 functioned as a positive immunomodulatory molecule to facilitate T-cell infiltration and T helper 1-type immune response in vitro. Furthermore, T cells and platelet-derived microparticles (PMPs) co-culture assay revealed that PMPs adoptively transferred integrin β3 to T cells and positively regulated T cell immune response. This process was mediated by clathrin-dependent endocytosis and macropinocytosis. Our data demonstrate that integrin β3 deficiency on HCC-infiltrating T cells may be involved in shaping the immunosuppressive tumor microenvironment. PMPs transfer integrin β3 to T cells and positively regulate T cell immune response, which may provide a new insight into immune therapy of HCC.
Collapse
Affiliation(s)
- Mimi Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yali Feng
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaoli Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianguo Chen
- School of Software Engineering, Sun Yat-Sen University, Zhuhai, China
| | - Naijuan Yao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shan Fu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tianzhi Ni
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yi Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Fei Xie
- Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Sahasrabda Roy
- School of International Education, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jinfeng Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuan Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yingli He
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yingren Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Nan Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
J NH, Venkataraman A, Thiruvengadam K, B B, M K, S S, Balaji S, S E, Smuk M, Hanna LE, Prendergast AJ. Evaluation of platelet indices as markers of tuberculosis among children in India. ERJ Open Res 2024; 10:00734-2023. [PMID: 38410718 PMCID: PMC10895425 DOI: 10.1183/23120541.00734-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/15/2023] [Indexed: 02/28/2024] Open
Abstract
Children with tuberculosis have increased platelet count and platelet/lymphocyte ratio along with decreased mean platelet volume, suggesting that these indices may be useful as adjunct tools in diagnosis of paediatric tuberculosis https://bit.ly/3Ga4AWT.
Collapse
Affiliation(s)
- Nancy Hilda J
- ICMR - National Institute for Research in Tuberculosis, Chennai, India
- Joint first authors
| | - Aishwarya Venkataraman
- ICMR - National Institute for Research in Tuberculosis, Chennai, India
- Blizard Institute, Queen Mary University of London, London, UK
- Joint first authors
| | | | - Brindha B
- ICMR - National Institute for Research in Tuberculosis, Chennai, India
| | - Karthick M
- ICMR - National Institute for Research in Tuberculosis, Chennai, India
| | - Subha S
- ICMR - National Institute for Research in Tuberculosis, Chennai, India
| | - Sarath Balaji
- Institute of Child Health, Madras Medical College, Chennai, India
| | - Elilarasi S
- Institute of Child Health, Madras Medical College, Chennai, India
| | - Melanie Smuk
- Blizard Institute, Queen Mary University of London, London, UK
| | - Luke Elizabeth Hanna
- ICMR - National Institute for Research in Tuberculosis, Chennai, India
- Joint senior authors
| | - Andrew J Prendergast
- Blizard Institute, Queen Mary University of London, London, UK
- Joint senior authors
| |
Collapse
|
5
|
Krishnamoorthy Y, Ezhumalai K, Murali S, Rajaa S, Majella MG, Sarkar S, Lakshminarayanan S, Joseph NM, Soundappan G, Prakash Babu S, Horsburgh C, Hochberg N, Johnson WE, Knudsen S, Pentakota SR, Salgame P, Roy G, Ellner J. Development of prognostic scoring system for predicting 1-year mortality among pulmonary tuberculosis patients in South India. J Public Health (Oxf) 2023; 45:e184-e195. [PMID: 36038507 PMCID: PMC10273380 DOI: 10.1093/pubmed/fdac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/13/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Development of a prediction model using baseline characteristics of tuberculosis (TB) patients at the time of diagnosis will aid us in early identification of the high-risk groups and devise pertinent strategies accordingly. Hence, we did this study to develop a prognostic-scoring model for predicting the death among newly diagnosed drug sensitive pulmonary TB patients in South India. METHODS We undertook a longitudinal analysis of cohort data under the Regional Prospective Observational Research for Tuberculosis India consortium. Multivariable cox regression using the stepwise backward elimination procedure was used to select variables for the model building and the nomogram-scoring system was developed with the final selected model. RESULTS In total, 54 (4.6%) out of the 1181 patients had died during the 1-year follow-up period. The TB mortality rate was 0.20 per 1000 person-days. Eight variables (age, gender, functional limitation, anemia, leukopenia, thrombocytopenia, diabetes, neutrophil-lymphocyte ratio) were selected and a nomogram was built using these variables. The discriminatory power was 0.81 (95% confidence interval: 0.75-0.86) and this model was well-calibrated. Decision curve analysis showed that the model is beneficial at a threshold probability ~15-65%. CONCLUSIONS This scoring system could help the clinicians and policy makers to devise targeted interventions and in turn reduce the TB mortality in India.
Collapse
Affiliation(s)
| | - Komala Ezhumalai
- Department of Preventive & Social Medicine, JIPMER, Puducherry 605 006, India
| | - Sharan Murali
- Department of Preventive & Social Medicine, JIPMER, Puducherry 605 006, India
| | - Sathish Rajaa
- Department of Preventive & Social Medicine, JIPMER, Puducherry 605 006, India
| | | | - Sonali Sarkar
- Department of Preventive & Social Medicine, JIPMER, Puducherry 605 006, India
| | | | | | | | | | - Charles Horsburgh
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Natasha Hochberg
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA 02118, USA
| | - W Evan Johnson
- Department of Medicine and Biostatistics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Selby Knudsen
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA 02118, USA
| | - Sri Ram Pentakota
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Padmini Salgame
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Gautam Roy
- Department of Preventive & Social Medicine, JIPMER, Puducherry 605 006, India
| | - Jerrold Ellner
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| |
Collapse
|
6
|
Yan C, Wu H, Fang X, He J, Zhu F. Platelet, a key regulator of innate and adaptive immunity. Front Med (Lausanne) 2023; 10:1074878. [PMID: 36968817 PMCID: PMC10038213 DOI: 10.3389/fmed.2023.1074878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Platelets, anucleate blood components, represent the major cell type involved in the regulation of hemostasis and thrombosis. In addition to performing haemostatic roles, platelets can influence both innate and adaptive immune responses. In this review, we summarize the development of platelets and their functions in hemostasis. We also discuss the interactions between platelet products and innate or adaptive immune cells, including neutrophils, monocytes, macrophages, T cells, B cells and dendritic cells. Activated platelets and released molecules regulate the differentiation and function of these cells via platelet-derived receptors or secreting molecules. Platelets have dual effects on nearly all immune cells. Understanding the exact mechanisms underlying these effects will enable further application of platelet transfusion.
Collapse
Affiliation(s)
- Cheng Yan
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haojie Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xianchun Fang
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junji He
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Zhu
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Feng Zhu,
| |
Collapse
|
7
|
Urbán-Solano A, Flores-Gonzalez J, Cruz-Lagunas A, Pérez-Rubio G, Buendia-Roldan I, Ramón-Luing LA, Chavez-Galan L. High levels of PF4, VEGF-A, and classical monocytes correlate with the platelets count and inflammation during active tuberculosis. Front Immunol 2022; 13:1016472. [PMID: 36325331 PMCID: PMC9618821 DOI: 10.3389/fimmu.2022.1016472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Platelets play a major role in coagulation and hemostasis; evidence supports the hypothesis that they also contribute to immunological processes. Increased platelet counts have been associated with poor prognosis in tuberculosis (TB). Platelet–monocyte aggregates have been reported in patients with TB, but it is still unclear if only one monocyte subpopulation is correlated to the platelet count; moreover, the platelet–monocyte axis has not been studied during latent tuberculosis (LTB). In this study, mononuclear cells and plasma were obtained from patients diagnosed with active drug-sensitive TB (DS-TB, n = 10) and LTB (n = 10); cytokines and growth factors levels associated to platelets were evaluated, and correlations with monocyte subpopulations were performed to identify a relationship between them, as well as an association with the degree of lung damage. Our data showed that, compared to LTB, DS-TB patients had an increased frequency of platelets, monocytes, and neutrophils. Although DS-TB patients showed no significant difference in the frequency of classical and non-classical monocytes, the classical monocytes had increased CD14 intensity of expression and frequency of TLR-2+. Furthermore, the plasma levels of angiogenic factors such as vascular endothelial growth factor (VEGF-A), platelet-derived growth factor (PDGF-BB), and platelet factor-4 (PF4), and pro-inflammatory cytokines like interleukin 6 (IL-6), interleukin 1 beta (IL-1β), and interferon-γ-inducible protein 10 (IP-10) were increased in DS-TB patients. In addition, PF-4 and VEGF-A correlated positively with the frequency of classical monocytes and the platelet count. Using a principal component analysis, we identified four groups of DS-TB patients according to their levels of pro-inflammatory cytokines, angiogenic factors, and degree of lung damage. This study establishes that there is a correlation between VEGF-A and PF4 with platelets and classical monocytes during active TB, suggesting that those cell subpopulations are the major contributors of these molecules, and together, they control the severity of lung damage by amplification of the inflammatory environment.
Collapse
Affiliation(s)
- Alexia Urbán-Solano
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Julio Flores-Gonzalez
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alfredo Cruz-Lagunas
- Laboratory of Immunobiology and Genetic, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Ivette Buendia-Roldan
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Lucero A. Ramón-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- *Correspondence: Leslie Chavez-Galan, ;
| |
Collapse
|