1
|
Xie G, Chen X, Gao Y, Yang M, Zhou S, Lu L, Wu H, Lu Q. Age-Associated B Cells in Autoimmune Diseases: Pathogenesis and Clinical Implications. Clin Rev Allergy Immunol 2025; 68:18. [PMID: 39960645 PMCID: PMC11832777 DOI: 10.1007/s12016-025-09021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
As a heterogeneous B cell subset, age-associated B cells (ABCs) exhibit distinct transcription profiles, extrafollicular differentiation processes, and multiple functions in autoimmunity. TLR7 and TLR9 signals, along with IFN-γ and IL-21 stimulation, are both essential for ABC differentiation, which is also regulated by chemokine receptors including CXCR3 and CCR2 and integrins including CD11b and CD11c. Given their functions in antigen uptake and presentation, autoantibody and proinflammatory cytokine secretion, and T helper cell activation, ABCs display potential in the prognosis, diagnosis, and therapy for autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, multiple sclerosis, neuromyelitis optica spectrum disorders, and ankylosing spondylitis. Specifically targeting ABCs by inhibiting T-bet and CD11c and activating CD11b and ARA2 represents potential therapeutic strategies for SLE and RA. Although single-cell sequencing technologies have recently revealed the heterogeneous characteristics of ABCs, further investigations to explore and validate ABC-target therapies are still warranted.
Collapse
Affiliation(s)
- Guangyang Xie
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Xiaojing Chen
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Yixia Gao
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Suqing Zhou
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| | - Haijing Wu
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, China.
| | - Qianjin Lu
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China.
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Fahlberg MD, Forward S, Assita ER, Mazzola M, Kiem A, Handley M, Yun SH, Kwok SJJ. Overcoming fixation and permeabilization challenges in flow cytometry by optical barcoding and multi-pass acquisition. Cytometry A 2024; 105:838-848. [PMID: 39467031 DOI: 10.1002/cyto.a.24904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
The fixation and permeabilization of cells are essential for labeling intracellular biomarkers in flow cytometry. However, these chemical treatments often alter fragile targets, such as cell surface and fluorescent proteins (FPs), and can destroy chemically-sensitive fluorescent labels. This reduces measurement accuracy and introduces compromises into sample workflows, leading to losses in data quality. Here, we demonstrate a novel multi-pass flow cytometry approach to address this long-standing problem. Our technique utilizes individual cell barcoding with laser particles, enabling sequential analysis of the same cells with single-cell resolution maintained. Chemically-fragile protein markers and their fluorochrome conjugates are measured prior to destructive sample processing and adjoined to subsequent measurements of intracellular markers after fixation and permeabilization. We demonstrate the effectiveness of our technique in accurately measuring intracellular FPs and methanol-sensitive antigens and fluorophores, along with various surface and intracellular markers. This approach significantly enhances assay flexibility, enabling accurate and comprehensive cellular analysis without the constraints of conventional one-time measurement flow cytometry. This innovation paves new avenues in flow cytometry for a wide range of applications in immuno-oncology, stem cell research, and cell biology.
Collapse
Affiliation(s)
| | | | | | - Michael Mazzola
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Anna Kiem
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Maris Handley
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Seok-Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
3
|
Fahlberg MD, Forward S, Assita ER, Mazzola M, Kiem A, Handley M, Yun SH, Kwok SJJ. Overcoming fixation and permeabilization challenges in flow cytometry by optical barcoding and multi-pass acquisition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607771. [PMID: 39185194 PMCID: PMC11343140 DOI: 10.1101/2024.08.13.607771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The fixation and permeabilization of cells are essential for labeling intracellular biomarkers in flow cytometry. However, these chemical treatments often alter fragile targets, such as cell surface and fluorescent proteins, and can destroy chemically-sensitive fluorescent labels. This reduces measurement accuracy and introduces compromises into sample workflows, leading to losses in data quality. Here, we demonstrate a novel multi-pass flow cytometry approach to address this long-standing problem. Our technique utilizes individual cell barcoding with laser particles, enabling sequential analysis of the same cells with single-cell resolution maintained. Chemically-fragile protein markers and their fluorochrome conjugates are measured prior to destructive sample processing and adjoined to subsequent measurements of intracellular markers after fixation and permeabilization. We demonstrate the effectiveness of our technique in accurately measuring intracellular fluorescent proteins and methanol-sensitive antigens and fluorophores, along with various surface and intracellular markers. This approach significantly enhances assay flexibility, enabling accurate and comprehensive cell analysis without the constraints of conventional one-time measurement flow cytometry. This innovation paves new avenues in flow cytometry for a wide range of applications in immuno-oncology, stem cell research, and cell biology.
Collapse
Affiliation(s)
| | | | | | - Michael Mazzola
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anna Kiem
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Maris Handley
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Seok-Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA
| | | |
Collapse
|
4
|
Fiske BE, Wemlinger SM, Crute BW, Getahun A. The Src-family kinase Lyn plays a critical role in establishing and maintaining B cell anergy by suppressing PI3K-dependent signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595208. [PMID: 38826354 PMCID: PMC11142063 DOI: 10.1101/2024.05.21.595208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Although the Src family kinase (SFK) Lyn is known to be involved in induction and maintenance of peripheral B cell tolerance, the molecular basis of its action in this context remains unclear. This question has been approached using conventional as well as B cell-targeted knockouts of Lyn, with varied conclusions likely confused by collateral loss of Lyn functions in B cell and myeloid cell development and activation. Here we utilized a system in which Lyn gene deletion is tamoxifen inducible and B cell restricted. This system allows acute elimination of Lyn in B cells without off-target effects. This genetic tool was employed in conjunction with immunoglobulin transgenic mice in which peripheral B cells are autoreactive. DNA reactive Ars/A1 B cells require continuous inhibitory signaling, mediated by the inositol phosphatase SHIP-1 and the tyrosine phosphatase SHP-1, to maintain an unresponsive (anergic) state. Here we show that Ars/A1 B cells require Lyn to establish and maintain B cell unresponsiveness. Lyn primarily functions by restricting PI3K-dependent signaling pathways. This Lyn-dependent mechanism complements the impact of reduced mIgM BCR expression to restrict BCR signaling in Ars/A1 B cells. Our findings suggest that a subset of autoreactive B cells requires Lyn to become anergic and that the autoimmunity associated with dysregulated Lyn function may, in part, be due to an inability of these autoreactive B cells to become tolerized.
Collapse
|
5
|
Ottens K, Schneider J, Satterthwaite AB. B-1a Cells, but Not Marginal Zone B Cells, Are Implicated in the Accumulation of Autoreactive Plasma Cells in Lyn-/- Mice. Immunohorizons 2024; 8:47-56. [PMID: 38189742 PMCID: PMC10835670 DOI: 10.4049/immunohorizons.2300089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024] Open
Abstract
Mice deficient in Lyn, a tyrosine kinase that limits B cell activation, develop a lupus-like autoimmune disease characterized by the accumulation of splenic plasma cells and the production of autoantibodies. Lyn-/- mice have reduced numbers of marginal zone (MZ) B cells, a B cell subset that is enriched in autoreactivity and prone to plasma cell differentiation. We hypothesized that this is due to unchecked terminal differentiation of this potentially pathogenic B cell subpopulation. However, impairing MZ B cell development in Lyn-/- mice did not reduce plasma cell accumulation or autoantibodies, and preventing plasma cell differentiation did not restore MZ B cell numbers. Instead, Lyn-/- mice accumulated B-1a cells when plasma cell differentiation was impaired. Similar to MZ B cells, B-1a cells tend to be polyreactive or weakly autoreactive and are primed for terminal differentiation. Our results implicate B-1a cells, but not MZ B cells, as contributors to the autoreactive plasma cell pool in Lyn-/- mice.
Collapse
Affiliation(s)
- Kristina Ottens
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Jalyn Schneider
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Anne B. Satterthwaite
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|