1
|
Vidovič C, Peschel LM, Buchsteiner M, Belaj F, Mösch‐Zanetti NC. Structural Mimics of Acetylene Hydratase: Tungsten Complexes Capable of Intramolecular Nucleophilic Attack on Acetylene. Chemistry 2019; 25:14267-14272. [PMID: 31603595 PMCID: PMC6899645 DOI: 10.1002/chem.201903264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 12/22/2022]
Abstract
Bioinspired complexes employing the ligands 6-tert-butylpyridazine-3-thione (SPn) and pyridine-2-thione (SPy) were synthesized and fully characterized to mimic the tungstoenzyme acetylene hydratase (AH). The complexes [W(CO)(C2 H2 )(CHCH-SPy)(SPy)] (4) and [W(CO)(C2 H2 )(CHCH-SPn)(SPn)] (5) were formed by intramolecular nucleophilic attack of the nitrogen donors of the ligand on the coordinated C2 H2 molecule. Labelling experiments using C2 D2 with the SPy system revealed the insertion reaction proceeding via a bis-acetylene intermediate. The starting complex [W(CO)(C2 H2 )(SPy)2 ] (6) for these studies was accessed by the new acetylene precursor mixture [W(CO)(C2 H2 )n (MeCN)3-n Br2 ] (n=1 and 2; 7). All complexes represent rare examples in the field of W-C2 H2 chemistry with 4 and 5 being the first of their kind. In the ongoing debate on the enzymatic mechanism, the findings support activation of acetylene by the tungsten center.
Collapse
Affiliation(s)
- Carina Vidovič
- Institute of Chemistry—Inorganic ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| | - Lydia M. Peschel
- Institute of Chemistry—Inorganic ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| | - Michael Buchsteiner
- Institute of Chemistry—Inorganic ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| | - Ferdinand Belaj
- Institute of Chemistry—Inorganic ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| | - Nadia C. Mösch‐Zanetti
- Institute of Chemistry—Inorganic ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| |
Collapse
|
2
|
Chrysochos N, Ahmadi M, Wahlefeld S, Rippers Y, Zebger I, Mroginski MA, Schulzke C. Comparison of molybdenum and rhenium oxo bis-pyrazine-dithiolene complexes - in search of an alternative metal centre for molybdenum cofactor models. Dalton Trans 2019; 48:2701-2714. [PMID: 30720825 DOI: 10.1039/c8dt04237c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pair of structurally precise analogues of molybdenum and rhenium complexes, [Et4N]/K2[MoO(prdt)2] and K[ReO(prdt)2] (prdt = pyrazine-2,3-dithiolene), were synthesized. These complexes serve as structural models for the active sites of bacterial molybdenum cofactor containing enzymes. They were comprehensively characterized and investigated by NMR, computationally supported IR and resonance Raman spectroscopy, cyclic voltammetry, mass spectrometry, elemental analysis and single-crystal X-ray diffraction. All compiled data are discussed in the context of comparing chemical and electronic structures and consequences thereof. This study constitutes the first investigation of a potential alternative Moco model system bearing rhenium as the central metal in an identical coordination environment to its molybdenum analogue. Structural evaluation revealed a slightly stronger M[double bond, length as m-dash]O bond in the rhenium complex in accordance with spectroscopic results, i.e. observed bond strengths. Thermodynamic parameters for the redox processes MoIV ↔ MoV and ReIV ↔ ReV were obtained by temperature dependent cyclic voltammetry. In contrast to molybdenum, rhenium loses entropy upon reduction and its redox potential is more temperature sensitive, indicating more significant differences than the respective diagonal relationship between the two metals in the periodic table might suggest and questioning rhenium's suitability as a functional artificial active site metal.
Collapse
Affiliation(s)
- Nicolas Chrysochos
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, 17487 Greifswald, Germany.
| | | | | | | | | | | | | |
Collapse
|
3
|
Bortoluzzi M, Evangelisti C, Marchetti F, Pampaloni G, Piccinelli F, Zacchini S. Synthesis of a highly reactive form of WO2Cl2, its conversion into nanocrystalline mono-hydrated WO3 and coordination compounds with tetramethylurea. Dalton Trans 2016; 45:15342-15349. [DOI: 10.1039/c6dt02997c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new form of WO2Cl2 was prepared from WCl6. Conversion of WO2Cl2 into nanocrystalline WO3·H2O occurred upon air exposure at room temperature. The first coordination complexes of WO2Cl2 with an alkylurea are reported.
Collapse
Affiliation(s)
- Marco Bortoluzzi
- Università di Venezia Ca’ Foscari
- Dipartimento di Scienze Molecolari e Nanosistemi
- I-30170 Mestre
- Italy
| | | | - Fabio Marchetti
- Università di Pisa
- Dipartimento di Chimica e Chimica Industriale
- I-56124 Pisa
- Italy
| | - Guido Pampaloni
- Università di Pisa
- Dipartimento di Chimica e Chimica Industriale
- I-56124 Pisa
- Italy
| | - Fabio Piccinelli
- Università di Verona
- Dipartimento di Biotecnologie
- Laboratorio di Chimica dello Stato Solido
- I-37134 Verona
- Italy
| | - Stefano Zacchini
- Università di Bologna
- Dipartimento di Chimica Industriale “Toso Montanari”
- I-40136 Bologna
- Italy
| |
Collapse
|
4
|
Hasenaka Y, Okamura TA, Tatsumi M, Inazumi N, Onitsuka K. Behavior of anionic molybdenum(IV, VI) and tungsten(IV, VI) complexes containing bulky hydrophobic dithiolate ligands and intramolecular NH···S hydrogen bonds in nonpolar solvents. Dalton Trans 2015; 43:15491-502. [PMID: 25190301 DOI: 10.1039/c4dt01646g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molybdenum(IV, VI) and tungsten(IV, VI) complexes, (Et4N)2[M(IV)O{1,2-S2-3,6-(RCONH)2C6H2}2] and (Et4N)2[M(VI)O2{1,2-S2-3,6-(RCONH)2C6H2}2] (M = Mo, W; R = (4-(t)BuC6H4)3C), with bulky hydrophobic dithiolate ligands containing NH···S hydrogen bonds were synthesized. These complexes are soluble in nonpolar solvents like toluene, which allows the detection of unsymmetrical coordination structures and elusive intermolecular interactions in solution. The (1)H NMR spectra of the complexes in toluene-d8 revealed an unsymmetrical coordination structure, and proximity of the counterions to the anion moiety was suggested at low temperatures. The oxygen-atom-transfer reaction between the molybdenum(IV) complex and Me3NO in toluene was considerably accelerated in nonpolar solvents, and this increase was attributed to the favorable access of the substrate to the active center in the hydrophobic environment.
Collapse
Affiliation(s)
- Yuki Hasenaka
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | | | |
Collapse
|
5
|
Majumdar A. Structural and functional models in molybdenum and tungsten bioinorganic chemistry: description of selected model complexes, present scenario and possible future scopes. Dalton Trans 2015; 43:8990-9003. [PMID: 24798698 DOI: 10.1039/c4dt00631c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A brief description about some selected model complexes in molybdenum and tungsten bioinorganic chemistry is provided. The synthetic strategies involved and their limitations are discussed. Current status of molybdenum and tungsten bioinorganic modeling chemistry is presented briefly and synthetic problems associated therein are analyzed. Possible future directions which may expand the scope of modeling chemistry are suggested.
Collapse
Affiliation(s)
- Amit Majumdar
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
6
|
Gomez-Mingot M, Porcher JP, Todorova TK, Fogeron T, Mellot-Draznieks C, Li Y, Fontecave M. Bioinspired Tungsten Dithiolene Catalysts for Hydrogen Evolution: A Combined Electrochemical, Photochemical, and Computational Study. J Phys Chem B 2015; 119:13524-33. [PMID: 25844501 DOI: 10.1021/acs.jpcb.5b01615] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bis(dithiolene)tungsten complexes, W(VI)O2 (L = dithiolene)2 and W(IV)O (L = dithiolene)2, which mimic the active site of formate dehydrogenases, have been characterized by cyclic voltammetry and controlled potential electrolysis in acetonitrile. They are shown to be able to catalyze the electroreduction of protons into hydrogen in acidic organic media, with good Faradaic yields (75-95%) and good activity (rate constants of 100 s(-1)), with relatively high overpotentials (700 mV). They also catalyze proton reduction into hydrogen upon visible light irradiation, in combination with [Ru(bipyridine)3](2+) as a photosensitizer and ascorbic acid as a sacrificial electron donor. On the basis of detailed DFT calculations, a reaction mechanism is proposed in which the starting W(VI)O2 (L = dithiolene)2 complex acts as a precatalyst and hydrogen is further formed from a key reduced W-hydroxo-hydride intermediate.
Collapse
Affiliation(s)
- Maria Gomez-Mingot
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Université Pierre et Marie Curie-Paris 6, Collège de France , 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Jean-Philippe Porcher
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Université Pierre et Marie Curie-Paris 6, Collège de France , 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Tanya K Todorova
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Université Pierre et Marie Curie-Paris 6, Collège de France , 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Thibault Fogeron
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Université Pierre et Marie Curie-Paris 6, Collège de France , 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Caroline Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Université Pierre et Marie Curie-Paris 6, Collège de France , 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Yun Li
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Université Pierre et Marie Curie-Paris 6, Collège de France , 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Université Pierre et Marie Curie-Paris 6, Collège de France , 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
7
|
Pérez-Pla F, Llopis E, Piles M. The different kinetic and mechanistic behaviors of molybdenum and tungsten in the reduction of tris(benzene-1,2-dithiolato)Mo(VI) and W(VI) complexes by ascorbic acid in aqueous media. INT J CHEM KINET 2011. [DOI: 10.1002/kin.20524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Majumdar A, Sarkar S. Bioinorganic chemistry of molybdenum and tungsten enzymes: A structural–functional modeling approach. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2010.11.027] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Monteiro B, Cunha-Silva L, Gago S, Klinowski J, Almeida Paz FA, Rocha J, Gonçalves IS, Pillinger M. Crystal and supramolecular structures of dioxomolybdenum(VI) and dioxotungsten(VI) complexes of dihydroxybenzoic acids. Polyhedron 2010. [DOI: 10.1016/j.poly.2009.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Sugimoto H, Tsukube H. Chemical analogues relevant to molybdenum and tungsten enzyme reaction centres toward structural dynamics and reaction diversity. Chem Soc Rev 2008; 37:2609-19. [PMID: 19020675 DOI: 10.1039/b610235m] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent characterisation of molybdenum and tungsten enzymes revealed novel structural types of reaction centres, as well as providing new subjects of interest as synthetic chemical analogues. This tutorial review highlights the structure/reactivity relationships of the enzyme reaction centres and chemical analogues. Chemical analogues for the oxygen atom transfer enzymes have been well expanded in structure and reactivity. Other types of chemical analogues that exhibit different coordination chemistry have recently been presented for reaction centres of the hydroxylation and dehydrogenation enzymes and others.
Collapse
Affiliation(s)
- Hideki Sugimoto
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan.
| | | |
Collapse
|
11
|
Sugimoto H, Sugimoto K. New bis(pyranodithiolene) tungsten(IV) and (VI) complexes as chemical analogues of the active sites of tungsten enzymes. INORG CHEM COMMUN 2008. [DOI: 10.1016/j.inoche.2007.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
|