1
|
García-García A, Medina-O'donnell M, Rojas S, Cano-Morenilla M, Morales J, Quesada-Moreno MM, Sainz J, Vitorica-Yrezabal IJ, Rodríguez-Diéguez A, Navarro A, Reyes-Zurita FJ. Modulating anti-inflammatory and anticancer properties by designing a family of metal-complexes based on 5-nitropicolinic acid. Dalton Trans 2024; 53:8988-9000. [PMID: 38721696 DOI: 10.1039/d4dt00265b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
A new family of six complexes based on 5-nitropicolinic acid (5-npic) and transition metals has been obtained: [M(5-npic)2]n (MII = Mn (1) and Cd (2)), [Cu(5-npic)2]n (3), and [M(5-npic)2(H2O)2] (MII = Co (4), Ni (5), and Zn (6)), which display 1D, 2D, and mononuclear structures, respectively, thanks to different coordination modes of 5-npic. After their physicochemical characterization by single-crystal X-ray diffraction (SCXRD), elemental analyses (EA), and spectroscopic techniques, quantum chemical calculations using Time-Dependent Density Functional Theory (TD-DFT) were performed to further study the luminescence properties of compounds 2 and 6. The potential anticancer activity of all complexes was tested against three tumor cell lines, B16-F10, HT29, and HepG2, which are models widely used for studying melanoma, colon cancer, and liver cancer, respectively. The best results were found for compounds 2 and 4 against B16-F10 (IC50 = 26.94 and 45.10 μg mL-1, respectively). In addition, anti-inflammatory studies using RAW 264.7 cells exhibited promising activity for 2, 3, and 6 (IC50 NO = 5.38, 24.10, and 17.63 μg mL-1, respectively). This multidisciplinary study points to complex 2, based on CdII, as a promising anticancer and anti-inflammatory material.
Collapse
Affiliation(s)
- Amalia García-García
- Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| | - Marta Medina-O'donnell
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| | - Sara Rojas
- Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| | - Mariola Cano-Morenilla
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| | - Juan Morales
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| | - María Mar Quesada-Moreno
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| | - Juan Sainz
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
- Genomic Oncology Area, Centre for Genomics and Oncological Research (GENYO), Pfizer-University of Granada-Andalusian Regional Government, Av. de la Ilustración 114, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs. Granada, Av. de Madrid 15, 18012, Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Iñigo J Vitorica-Yrezabal
- Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| | - Amparo Navarro
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| | - Fernando J Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| |
Collapse
|
2
|
Synthesis, Crystal Structure, and Hirshfeld Surface Analysis of Hexachloroplatinate and Tetraclorouranylate of 3-Carboxypyridinium—Halogen Bonds and π-Interactions vs. Hydrogen Bonds. CRYSTALS 2022. [DOI: 10.3390/cryst12020271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This work aimed to synthesize new platinum and uranium compounds with nicotinic acid. In this article we describe the synthesis of two new anionic complexes (HNic)2[PtCl6] and (HNic)2[UO2Cl4] using wet chemistry methods. The structure of the obtained single crystals was established by single-crystal X-ray diffraction. The Hirshfeld surface analysis of the obtained complexes and their analogue (HNic)2[SiF6] was carried out for the analysis of intermolecular interactions. Hydrogen bonds (H···Hal/Hal···H and O···H/H···O) make the main contribution to intermolecular interactions in all compounds. Other important contacts in cations in all compounds are H···H, C···H/H···C and C···Hal/Hal···C; in anions H···Hal/Hal···H. The Pt-containing complex has a halogen-π interaction and halogen bonds, but Si-containing complex has a π–π staking interaction; these types of interactions are not observed in the U-containing compound.
Collapse
|
3
|
Leal J, Santos L, Fernández-Aroca DM, Cuevas JV, Martínez MA, Massaguer A, Jalón FA, Ruiz-Hidalgo MJ, Sánchez-Prieto R, Rodríguez AM, Castañeda G, Durá G, Carrión MC, Barrabés S, Manzano BR. Effect of the aniline fragment in Pt(II) and Pt(IV) complexes as anti-proliferative agents. Standard reduction potential as a more reliable parameter for Pt(IV) compounds than peak reduction potential. J Inorg Biochem 2021; 218:111403. [PMID: 33730639 DOI: 10.1016/j.jinorgbio.2021.111403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
The problems of resistance and side effects associated with cisplatin and other chemotherapeutic drugs have boosted research aimed at finding new compounds with improved properties. The use of platinum(IV) prodrugs is one alternative, although there is some controversy regarding the predictive ability of the peak reduction potentials. In the work described here a series of fourteen chloride Pt(II) and Pt(IV) compounds was synthesised and fully characterised. The compounds contain different bidentate arylazole heterocyclic ligands. Their cytotoxic properties against human lung carcinoma (A549), human breast carcinoma (MCF7) and human colon carcinoma (HCT116 and HT29) cell lines were studied. A clear relationship between the type of ligand and the anti-proliferative properties was found, with the best results obtained for the Pt(II) compound that contains an aniline fragment, (13), thus evidencing a positive effect of the NH2 group. Stability and aquation studies in DMSO, DMF and DMSO/water mixtures were carried out on the active complexes and an in-depth analysis of the two aquation processes, including DFT analysis, of 13 was undertaken. It was verified that DNA was the target and that cell death occurred by apoptosis in the case of 13. Furthermore, the cytotoxic derivatives did not exhibit haemolytic activity. The reduction of the Pt(IV) compounds whose Pt(II) congeners were active was studied by several techniques. It was concluded that the peak reduction potential was not useful to predict the ability for reduction. However, a correlation between the cytotoxic activity and the standard reduction potential was found.
Collapse
Affiliation(s)
- Jorge Leal
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Lucia Santos
- Universidad de Castilla-La Mancha, Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela s/n, 13071 Ciudad Real, Spain
| | - Diego M Fernández-Aroca
- Universidad de Castilla-La Mancha, Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - J Vicente Cuevas
- Universidad de Burgos, Department of Chemistry, Pza. Misael Bañuelos S/N, 09001 Burgos, Spain
| | - M Angeles Martínez
- Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Anna Massaguer
- Departamento de Biologia, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Felix A Jalón
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - M José Ruiz-Hidalgo
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Medicina de Albacete, Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas De Madrid Alberto Sols (CSIC-UAM), Universidad de Castilla-La Mancha, Departamento de Ciencias Médicas, Facultad de Medicina de Albacete, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - Ana M Rodríguez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Gregorio Castañeda
- Universidad de Castilla-La Mancha, Departamento de Química Analítica y Tecnología de los Alimentos, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela s/n, 13071 Ciudad Real, Spain
| | - Gema Durá
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - M Carmen Carrión
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Sílvia Barrabés
- Departamento de Biologia, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Blanca R Manzano
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain.
| |
Collapse
|
4
|
Junwei Z, Fuqiang W, Jiacheng G, Lu XL. Crystal structure of triethylammonium(5-carboxypyridine-2-thiolato-κ 2
N, S)-bis(dimethylsulfoxide-κ 1
S)-(6-sulfidonicotinato-κ 2
N, S)ruthenium(II) trihydrate, C 22H 41N 3O 9RuS 4. Z KRIST-NEW CRYST ST 2019. [DOI: 10.1515/ncrs-2018-0488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C22H41N3O9RuS4, monoclinic, P21/n (no. 14), a = 8.6882(1) Å, b = 25.5660(1) Å, c = 14.1187(1) Å, β = 90.393(1)°, V = 3136.01(4) Å3, Z = 4, R
gt(F) = 0.0220, wR
ref(F
2) = 0.0561, T = 120(1) K.
Collapse
Affiliation(s)
- Zheng Junwei
- China Jiliang University, College of Life Sciences , Hangzhou 310018 , P.R. China
| | - Wang Fuqiang
- China Jiliang University, College of Modern Sciences and Technology , Hangzhou 310018 , P.R. China
| | - Gu Jiacheng
- China Jiliang University, College of Modern Sciences and Technology , Hangzhou 310018 , P.R. China
| | - Xiu Lian Lu
- China Jiliang University, College of Modern Sciences and Technology , Hangzhou 310018 , P.R. China
| |
Collapse
|
5
|
Quental L, Raposinho P, Mendes F, Santos I, Navarro-Ranninger C, Alvarez-Valdes A, Huang H, Chao H, Rubbiani R, Gasser G, Quiroga AG, Paulo A. Combining imaging and anticancer properties with new heterobimetallic Pt(ii)/M(i) (M = Re, 99mTc) complexes. Dalton Trans 2018; 46:14523-14536. [PMID: 28164201 DOI: 10.1039/c7dt00043j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this article, we report on the development of new metal-based anticancer agents with imaging, chemotherapeutic and photosensitizing properties. Hence, a new heterobimetallic complex (Pt-LQ-Re) was prepared by connecting a non-conventional trans-chlorido Pt(ii) complex to a photoactive Re tricarbonyl unit (LQ-Re), which can be replaced by 99mTc to allow for in vivo imaging. We describe the photophysical and biological properties of the new complexes, in the dark and upon light irradiation (DNA interaction, cellular localization and uptake, and cytotoxicity). Furthermore, planar scintigraphic images of mice injected with Pt-LQ-Tc clearly showed that the radioactive compound is taken up by the excretory system organs, namely liver and kidneys, without significant retention in other tissues. All in all, the strategy of conjugating a chemotherapeutic compound with a PDT photosensitizer endows the resulting complexes with an intrinsic cytotoxic activity in the dark, driven by the non-classical platinum core, and a selective activity upon light irradiation. Most importantly, the possibility of integrating a SPECT imaging radiometal (99mTc) in the structure of these new heterobimetallic complexes might allow for in vivo non-invasive visualization of their tumoral accumulation, a crucial issue to predict therapeutic outcomes.
Collapse
Affiliation(s)
- Letícia Quental
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Herrera JM, Mendes F, Gama S, Santos I, Navarro Ranninger C, Cabrera S, Quiroga AG. Design and biological evaluation of new platinum(II) complexes bearing ligands with DNA-targeting ability. Inorg Chem 2014; 53:12627-34. [PMID: 25402634 DOI: 10.1021/ic502373n] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A novel series of platinum(II) complexes bearing aliphatic amines and ligands with DNA-targeting properties was synthesized to achieve more potent and selective metallodrugs. We developed six new platinum-based drugs, which contain methylamine, 1a-c, and isopropylamine, 2a-c, both in the trans position to a selected targeting ligand: naphthalimide. The activity of the complexes has been evaluated in order to confirm the improvements from our proposed approach, and the complexes demonstrate better cytotoxic activity on cancer cell lines when compared with the ligands and, importantly, with cisplatin. Further studies were performed to assess their subcellular localization and binding mode to DNA.
Collapse
Affiliation(s)
- Jacqueline M Herrera
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid , Francisco Tomás y Valiente 7, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
Understanding trans platinum complexes as potential antitumor drugs beyond targeting DNA. J Inorg Biochem 2012; 114:106-12. [DOI: 10.1016/j.jinorgbio.2012.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/05/2012] [Accepted: 06/05/2012] [Indexed: 11/20/2022]
|
8
|
Rakić GM, Grgurić-Šipka S, Kaluđerović GN, Bette M, Filipović L, Aranđelović S, Radulović S, Tešić ŽL. The synthesis, spectroscopic, X-ray characterization and in vitro cytotoxic testing results of activity of five new trans-platinum(IV) complexes with functionalized pyridines. Eur J Med Chem 2012; 55:214-9. [DOI: 10.1016/j.ejmech.2012.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/05/2012] [Accepted: 07/15/2012] [Indexed: 11/24/2022]
|