1
|
Lv Z, Ali A, Wang N, Ren H, Liu L, Yan F, Shad M, Hao H, Zhang Y, Rahman FU. Co-targeting CDK 4/6 and C-MYC/STAT3/CCND1 axis and inhibition of tumorigenesis and epithelial-mesenchymal-transition in triple negative breast cancer by Pt(II) complexes bearing NH 3 as trans-co-ligand. J Inorg Biochem 2024; 259:112661. [PMID: 39018748 DOI: 10.1016/j.jinorgbio.2024.112661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
In search of potential anticancer agents, we synthesized SNO-donor salicylaldimine main ligand-based Pt(II) complexes bearing NH3 as co-ligand at trans-position (C1-C6). These complexes showed similarity in structure with transplatin as the two N donor atoms of the main ligand and NH3 co-ligand were coordinated to Pt in trans position to each other. Each complex with different substituents on the main ligand was characterized thoroughly by detailed spectroscopic and spectrophotometric methods. Four of these complexes were studied in solid state by single crystal X-ray analysis. The stability of reference complex C1 was measured in solution state in DMSO‑d6 or its mixture with D2O using 1H NMR methods. These complexes were further investigated for their anticancer activity in triple-negative-breast (TNBC) cells including MDA-MB-231, MDA-MB-468 and MDA-MB-436 cells. All these complexes showed satisfactory cytotoxic effect as revealed by the MTT results. Importantly, the highly active complex C4 anticancer effect was compared to the standard chemotherapeutic agents including cisplatin, oxaliplatin and 5-fluorouracil (5-FU). Functionally, C4 suppressed invasion, spheroids formation ability and clonogenic potential of cancer cells. C4 showed synergistic anticancer effect when used in combination with palbociclib, JQ1 and paclitaxel in TNBC cells. Mechanistically, C4 inhibited cyclin-dependent kinase (CDK)4/6 pathway and targeted the expressions of MYC/STAT3/CCND1/CNNE1 axis. Furthermore, C4 suppressed the EMT signaling pathway that suggested a role of C4 in the inhibition of TNBC metastasis. Our findings may pave further in detailed mechanistic study on these complexes as potential chemotherapeutic agents in different types of human cancers.
Collapse
Affiliation(s)
- Zhimin Lv
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Amjad Ali
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK, Pakistan; Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Na Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Haojie Ren
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Lijing Liu
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Fufu Yan
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Man Shad
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China; School of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China; School of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France.
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| |
Collapse
|
2
|
Mossa FB, Bakry N, El-Sawi MR. Potential ameliorative effects of bilberry (Vaccinium myrtillus L.) fruit extract on cisplatin-induced reproductive damage in adult male albino rats. Clin Exp Reprod Med 2024; 51:192-204. [PMID: 39210717 PMCID: PMC11372312 DOI: 10.5653/cerm.2023.06380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/19/2023] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Cisplatin (CP) is a widely used chemotherapeutic agent, but its severe side effects impact testicular function. We investigated the potential protective effects of bilberry extract against CP-induced testicular toxicity. METHODS Forty adult male albino rats were divided into four groups. Control animals received a single oral dose of 0.9% saline. Bilberry-treated rats received oral bilberry extract (200 mg/kg body weight [BW] dissolved in 1 mL of saline) daily for 10 consecutive days. CP-treated animals were administered a single intraperitoneal dose (7.5 mg/kg BW). Finally, a bilberry+CP group received oral bilberry extract (200 mg/kg BW) daily for 10 consecutive days, with one intraperitoneal dose of CP (7.5 mg/kg BW) on day 2. We assessed sperm count, motility, viability, and abnormalities, along with testis weight, testis weight-to-BW ratio, antioxidant activity, levels of oxidative stress markers (malondialdehyde [MDA] and hydrogen peroxide [H2O2]), sex hormones (follicle-stimulating hormone [FSH], luteinizing hormone [LH], and testosterone), and apoptotic and anti-apoptotic markers, and DNA damage. Testicular tissue underwent histopathological examination. RESULTS Among CP-treated rats, significantly lower values were observed for testis weight; testis weight-to-BW ratio; levels of FSH, LH, testosterone, superoxide dismutase, catalase, glutathione S-transferase, glutathione, and B-cell lymphoma 2; and sperm count, motility, and proportion of normal sperm. CP administration was associated with higher MDA, H2O2, p53, Bax, cytochrome c, caspase 9, and caspase 3 levels, along with elevated tail moment. However, bilberry extract administration significantly improved all altered parameters. CONCLUSION Bilberry treatment demonstrated protective effects and reduced CP-induced testicular toxicity via antioxidant activity and cytoprotection.
Collapse
Affiliation(s)
- Fatma B Mossa
- Physiology Division, Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Nadia Bakry
- Bone Marrow Transplantation and Cord Blood Unit, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Mamdouh Rashad El-Sawi
- Physiology Division, Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Barbanente A, Papadia P, Di Cosola AM, Pacifico C, Natile G, Hoeschele JD, Margiotta N. Interactions with DNA Models of the Oxaliplatin Analog ( cis-1,3-DACH)PtCl 2. Int J Mol Sci 2024; 25:7392. [PMID: 39000496 PMCID: PMC11242235 DOI: 10.3390/ijms25137392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
It is generally accepted that adjacent guanine residues in DNA are the primary target for platinum antitumor drugs and that differences in the conformations of the Pt-DNA adducts can play a role in their antitumor activity. In this study, we investigated the effect of the carrier ligand cis-1,3-diaminocyclohexane (cis-1,3-DACH) upon formation, stability, and stereochemistry of the (cis-1,3-DACH)PtG2 and (cis-1,3-DACH)Pt(d(GpG)) adducts (G = 9-EthlyGuanine, guanosine, 5'- and 3'-guanosine monophosphate; d(GpG) = deoxyguanosil(3'-5')deoxyguanosine). A peculiar feature of the cis-1,3-DACH carrier ligand is the steric bulk of the diamine, which is asymmetric with respect to the Pt-coordination plane. The (cis-1,3-DACH)Pt(5'GMP)2 and (cis-1,3-DACH)Pt(3'GMP)2 adducts show preference for the ΛHT and ∆HT conformations, respectively (HT stands for Head-to-Tail). Moreover, the increased intensity of the circular dichroism signals in the cis-1,3-DACH derivatives with respect to the analogous cis-(NH3)2 species could be a consequence of the greater bite angle of the cis-1,3-DACH carrier ligand with respect to cis-(NH3)2. Finally, the (cis-1,3-DACH)Pt(d(GpG)) adduct is present in two isomeric forms, each one giving a pair of H8 resonances linked by a NOE cross peak. The two isomers were formed in comparable amounts and had a dominance of the HH conformer but with some contribution of the ΔHT conformer which is related to the HH conformer by having the 3'-G base flipped with respect to the 5'-G residue.
Collapse
Affiliation(s)
- Alessandra Barbanente
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Paride Papadia
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Anna Maria Di Cosola
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Concetta Pacifico
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Giovanni Natile
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - James D Hoeschele
- Department of Chemistry, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Nicola Margiotta
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
4
|
Anglana C, Rojas M, Girelli CR, Barozzi F, Quiroz-Troncoso J, Alegría-Aravena N, Montefusco A, Durante M, Fanizzi FP, Ramírez-Castillejo C, Di Sansebastiano GP. Methanolic Extracts of D. viscosa Specifically Affect the Cytoskeleton and Exert an Antiproliferative Effect on Human Colorectal Cancer Cell Lines, According to Their Proliferation Rate. Int J Mol Sci 2023; 24:14920. [PMID: 37834370 PMCID: PMC10573359 DOI: 10.3390/ijms241914920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Numerous studies have reported the pharmacological effects exhibited by Dittrichia viscosa, (D. viscosa) including antioxidant, cytotoxic, antiproliferative, and anticancer properties. In our research, our primary objective was to validate a prescreening methodology aimed at identifying the fraction that demonstrates the most potent antiproliferative and anticancer effects. Specifically, we investigated the impact of various extract fractions on the cytoskeleton using a screening method involving transgenic plants. Tumors are inherently heterogeneous, and the components of the cytoskeleton, particularly tubulin, are considered a strategic target for antitumor agents. To take heterogeneity into account, we used different lines of colorectal cancer, specifically one of the most common cancers regardless of gender. In patients with metastasis, the effectiveness of chemotherapy has been limited by severe side effects and by the development of resistance. Additional therapies and antiproliferative molecules are therefore needed. In our study, we used colon-like cell lines characterized by the expression of gastrointestinal differentiation markers (such as the HT-29 cell line) and undifferentiated cell lines showing the positive regulation of epithelial-mesenchymal transition and TGFβ signatures (such as the DLD-1, SW480, and SW620 cell lines). We showed that all three of the D. viscosa extract fractions have an antiproliferative effect but the pre-screening on transgenic plants anticipated that the methanolic fraction may be the most promising, targeting the cytoskeleton specifically and possibly resulting in fewer side effects. Here, we show that the preliminary use of screening in transgenic plants expressing subcellular markers can significantly reduce costs and focus the advanced characterization only on the most promising therapeutic molecules.
Collapse
Affiliation(s)
- Chiara Anglana
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Makarena Rojas
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Fabrizio Barozzi
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Josefa Quiroz-Troncoso
- Oncology Group IDISSC and Biomedical Technology Centre (CTB), Biotecnology-B.V. Departament ETSIAAB, Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - Nicolás Alegría-Aravena
- Oncology Group IDISSC and Biomedical Technology Centre (CTB), Biotecnology-B.V. Departament ETSIAAB, Universidad Politécnica de Madrid, 28223 Madrid, Spain
- Deer Production and Biology Group, Regional Development Institute, University of Castilla-La Mancha, 02006 Albacete, Spain
| | - Anna Montefusco
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Miriana Durante
- Institute of Sciences of Food Production (ISPA-CNR), 73100 Lecce, Italy
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Carmen Ramírez-Castillejo
- Oncology Group IDISSC and Biomedical Technology Centre (CTB), Biotecnology-B.V. Departament ETSIAAB, Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - Gian-Pietro Di Sansebastiano
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
5
|
Li J, Wang Z, Chen Z, Xue X, Lin K, Chen H, Pan L, Yuan Y, Ma Z. Silver complexes with substituted terpyridines as promising anticancer metallodrugs and their crystal structure, photoluminescence, and DNA interactions. Dalton Trans 2023; 52:9607-9621. [PMID: 37377144 DOI: 10.1039/d2dt03463h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Six silver hexafluoroantimonate complexes (1-6) with 4'-(4'-substituted-phenyl)-2,2':6',2''-terpyridine compounds bearing hydrogen (L1), methyl (L2), methylsulfonyl (L3), chloro (L4), bromo (L5) and iodo (L6) were prepared and characterized by 1H NMR, 13C NMR, IR, elemental analysis and single crystal X-ray diffraction. All the compounds exhibit interesting photoluminescence properties in the solid state and solution. In vitro data demonstrate that all of them show higher antiproliferative activities than cisplatin against three human carcinoma cell lines, A549, Eca-109 and MCF-7. Compound 3 exhibits the lowest IC50 value (2.298 μM) against A549 cell lines, which is 2.963 μM for 4 against Eca-109 and 1.830 μM for 1 against MCF-7. For silver halogen-substituted terpyridine compounds, their anticancer activities decrease following the sequence of -Cl, -Br, and -I substituents. The comparison results show that their anticancer activity is significantly higher than that of their free ligands. The DNA interaction was studied by fluorescence titration, circular dichroism spectroscopy and molecular modeling methods. Spectrophotometric results reveal that the compounds have strong affinity binding with DNA as intercalators and molecular docking studies indicate that the binding is contributed by the π-π stacking and hydrogen bonds. The DNA binding ability of the complexes has been correlated with their anticancer activities, which could potentially provide a new rationale for the future design of terpyridine-based metal complexes with antitumor potential.
Collapse
Affiliation(s)
- Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, People's Republic of China
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, People's Republic of China
| | - Zhiyuan Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
| | - Zhongting Chen
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, People's Republic of China
| | - Xingyong Xue
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
| | - Kejuan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, Nanning 530004, People's Republic of China
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, People's Republic of China
| | - Yulin Yuan
- Department of Laboratory Medicine, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, People's Republic of China.
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| |
Collapse
|
6
|
Cytotoxicity Evaluation of Unmodified Paddlewheel Dirhodium(II,II)-Acetate/-Formamidinate Complexes and Their Axially Modified Low-Valent Metallodendrimers. Molecules 2023; 28:molecules28062671. [PMID: 36985643 PMCID: PMC10055960 DOI: 10.3390/molecules28062671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Two diphenyl formamidine ligands, four dirhodium(II,II) complexes, and three axially modified low-valent dirhodium(II,II) metallodendrimers were synthesized and evaluated as anticancer agents against the A2780, A2780cis, and OVCAR-3 human ovarian cancer cell lines. The dirhodium(II,II) complexes show moderate cytotoxic activity in the tested tumor cell lines, with acetate and methyl-substituted formamidinate compounds displaying increased cytotoxicity that is relative to cisplatin in the A2780cis cisplatin resistant cell line. Additionally, methyl- and fluoro-substituted formamidinate complexes showed comparable and increased cytotoxic activity in the OVCAR-3 cell line when compared to cisplatin. The low-valent metallodendrimers show some activity, but a general decrease in cytotoxicity was observed when compared to the precursor complexes in all but one case, which is where the more active acetate-derived metallodendrimer showed a lower IC50 value in the OVCAR-3 cell line in comparison with the dirhodium(II,II) tetraacetate.
Collapse
|
7
|
Equilibrium Studies on Pd(II)-Amine Complexes with Bio-Relevant Ligands in Reference to Their Antitumor Activity. Int J Mol Sci 2023; 24:ijms24054843. [PMID: 36902279 PMCID: PMC10003265 DOI: 10.3390/ijms24054843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
This review article presents an overview of the equilibrium studies on Pd-amine complexes with bio-relevant ligands in reference to their antitumor activity. Pd(II) complexes with amines of different functional groups, were synthesized and characterized in many studies. The complex formation equilibria of Pd(amine)2+ complexes with amino acids, peptides, dicarboxylic acids and DNA constituents, were extensively investigated. Such systems may be considered as one of the models for the possible reactions occurring with antitumor drugs in biological systems. The stability of the formed complexes depends on the structural parameters of the amines and the bio-relevant ligands. The evaluated speciation curves can help to provide a pictorial presentation of the reactions in solutions of different pH values. The stability data of complexes with sulfur donor ligands compared with those of DNA constituents, can reveal information regarding the deactivation caused by sulfur donors. The formation equilibria of binuclear complexes of Pd(II) with DNA constituents was investigated to support the biological significance of this class of complexes. Most of the Pd(amine)2+ complexes investigated were studied in a low dielectric constant medium, resembling that of a biological medium. Investigations of the thermodynamic parameters reveal that the formation of the Pd(amine)2+ complex species is exothermic.
Collapse
|
8
|
Ming J, Bhatti MZ, Ali A, Zhang Z, Wang N, Mohyuddin A, Chen J, Zhang Y, Rahman FU. Vitamin B6 based Pt(II) complexes: Biomolecule derived potential cytotoxic agents for thyroid cancer. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6649654. [PMID: 35876659 DOI: 10.1093/mtomcs/mfac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 07/20/2022] [Indexed: 11/14/2022]
Abstract
Vitamin B6 is an essential vitamin that serves as a co-enzyme in a number of enzymatic reactions in metabolism of lipids, amino acids and glucose. In the current study, we synthesized vitamin B6 derived ligand (L) and its complex Pt(L)Cl (C1). The ancillary chloride ligand of C1 was exchanged with pyridine co-ligand and another complex Pt(L)(py).BF4 (C2) was obtained. Both these complexes were obtained in excellent isolated yields and characterized thoroughly by different analytical methods. Thyroid cancer is one of the most common malignancies of the endocrine system, we studied the in vitro anticancer activity and mechanism of these vitamin B6 derived L and Pt(II) complexes in thyroid cancer cell line (FTC). Based on MTT assay, cell proliferation rate was reduced in a dose-dependent manner. According to apoptosis analysis, vitamin B6 based Pt(II) complexes treated cells depicted necrotic effect and TUNEL based apoptosis was observed in cancer cells. Furthermore, qRT-PCR analyses of cancer cells treated with C1 and/or C2 showed regulated expression of anti-apoptotic, pro-apoptosis and autophagy related genes. Western blot results demonstrated that C1 and C2 induced the activation of p53 and the cleavage of Poly (ADP-ribose) polymerase (PARP). These results suggest that these complexes inhibit the growth of FTC cells and induce apoptosis through p53 signaling. Thus, vitamin B6 derived Pt(II) complexes C1 and C2 may be potential cytotoxic agents for the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Jialin Ming
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot People's Republic of China, Inner Mongolia 010031, China
| | - Muhammad Zeeshan Bhatti
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Amjad Ali
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK 25000, Pakistan
| | - Zeqing Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot People's Republic of China, Inner Mongolia 010031, China
| | - Na Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot People's Republic of China, Inner Mongolia 010031, China
| | - Aisha Mohyuddin
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Jiwu Chen
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot People's Republic of China, Inner Mongolia 010031, China
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot People's Republic of China, Inner Mongolia 010031, China
| |
Collapse
|
9
|
Succinimido–Ferrocidiphenol Complexed with Cyclodextrins Inhibits Glioblastoma Tumor Growth In Vitro and In Vivo without Noticeable Adverse Toxicity. Molecules 2022; 27:molecules27144651. [PMID: 35889527 PMCID: PMC9316017 DOI: 10.3390/molecules27144651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
SuccFerr (N-[4-ferrocenyl,5-5-bis (4-hydroxyphenyl)-pent-4-enyl]-succinimide) has remarkable antiproliferative effects in vitro, attributed to the formation of a stabilized quinone methide. The present article reports in vivo results for a possible preclinical study. SuccFerr is lipophilic and insoluble in water, so the development of a formulation to obviate this inconvenience was necessary. This was achieved by complexation with randomly methylated cyclodextrins (RAMEßCDs). This supramolecular water-soluble system allowed the in vivo experiments below to proceed. Application of SuccFerr on the glioblastoma cancer cell line U87 indicates that it affects the cellular cycle by inducing a blockade at G0/G1 phase, linked to apoptosis, and another one at the S phase, associated with senescence. Using healthy Fischer rats, we show that both intravenous and subcutaneous SuccFerr: RAMEßCD administration at 5 mg/kg lacks toxic effects on several organs. To reach lethality, doses higher than 200 mg/kg need to be administered. These results prompted us to perform an ectopic in vivo study at 1 mg/kg i.v. ferrocidiphenol SuccFerr using F98 cells xenografted in rats. Halting of cancer progression was observed after six days of injection, associated with an immunological defense response linked to the active principle. These results demonstrate that the properties of the selected ferrocidiphenol SuccFerr transfer successfully to in vivo conditions, leading to interesting therapeutic perspectives based on this chemistry.
Collapse
|
10
|
Shahzad K, Asad M, Asiri AM, Irfan M, Iqbal MA. In-vitro anticancer profile of recent ruthenium complexes against liver cancer. REV INORG CHEM 2022. [DOI: 10.1515/revic-2021-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Ruthenium complexes are considered as the most favorable alternatives to traditional platinum-based cancer drugs owing to their acceptable toxicity level, selectivity, variant oxidation states and ability to treat platinum-resistant cancer cells. They have similar ligand exchange kinetics as platinum drugs but can be tailored according to our desire by ligands influence. In the current study, we illustrate the in-vitro anticancer profile of some ruthenium complexes (2016–2021) against human hepatocellular carcinoma (HepG2). The anticancer activity of ruthenium complexes is determined by comparing their IC50 values with one another and positive controls. Fortunately, some ruthenium complexes including 3, 4, 6, 14, 15, 20, 42, and 48 exhibit surpassed in-vitro anticancer profile than that of positive controls promising as potential candidates against liver cancer. We also explored the structure-activity relationship (SAR) which is a key factor in the rational designing and synthesis of new ruthenium drugs. It covers the factors affecting anticancer activity including lipophilicity, planarity, area and bulkiness, the steric influence of different ligands, and electronic effects induced by ligands, stability, aqueous solubility and bioavailability to the target sites. The data reported here will provide strong support in the plausible design and synthesis of ruthenium anticancer drugs in the upcoming days.
Collapse
Affiliation(s)
- Khurram Shahzad
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Mohammad Asad
- Center of Excellence for Advanced Materials Research (CEAMR) , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Chemistry Department , Faculty of Science, King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR) , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Chemistry Department , Faculty of Science, King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| | - Muhammad Irfan
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
- Organometallic and Coordination Chemistry Laboratory , University of Agriculture , Faisalabad , 38000 , Pakistan
| |
Collapse
|
11
|
Rousselle B, Massot A, Privat M, Dondaine L, Trommenschlager A, Bouyer F, Bayardon J, Ghiringhelli F, Bettaieb A, Goze C, Paul C, Malacea-Kabbara R, Bodio E. Conception and evaluation of fluorescent phosphine-gold complexes: from synthesis to in vivo investigations. ChemMedChem 2022; 17:e202100773. [PMID: 35254001 DOI: 10.1002/cmdc.202100773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/02/2022] [Indexed: 11/11/2022]
Abstract
A phosphine gold(I) and phosphine-phosphonium gold(I) complexes bearing a fluorescent coumarin moiety were synthesized and characterized. Both complexes displayed interesting photophysical properties: good molar absorption coefficient, good quantum yield of fluorescence, and ability to be tracked in vitro thanks to two-photon imaging. Their in vitro and in vivo biological properties were evaluated onto cancer cell lines both human and murine and into CT26 tumor-bearing BALB/c mice. They displayed moderate to strong antiproliferative properties and the phosphine-phosphonium gold(I) complex induced significant in vivo anti-cancer effect.
Collapse
Affiliation(s)
- Benjamin Rousselle
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB, FRANCE
| | - Aurélie Massot
- EPHE PSL: Ecole Pratique des Hautes Etudes, LIIC, FRANCE
| | - Malorie Privat
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB and LIIC, FRANCE
| | - Lucile Dondaine
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB and LIIC, FRANCE
| | | | - Florence Bouyer
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, INSERM 1231, FRANCE
| | - Jérôme Bayardon
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB, FRANCE
| | - François Ghiringhelli
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, INSERM UMR 1231, FRANCE
| | - Ali Bettaieb
- EPHE PSL: Ecole Pratique des Hautes Etudes, LIIC, FRANCE
| | - Christine Goze
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB, FRANCE
| | - Catherine Paul
- EPHE PSL: Ecole Pratique des Hautes Etudes, LIIC, FRANCE
| | | | - Ewen Bodio
- Burgundy University, Institut de Chimie Moleculaire de l'Universite de Bourgogne - UMR CNRS 6302, 9 avenue Alain Savary, BP 47870, 21078, Dijon, FRANCE
| |
Collapse
|
12
|
Mohanty M, Sahu G, Banerjee A, Lima S, Patra SA, Crochet A, Sciortino G, Sanna D, Ugone V, Garribba E, Dinda R. Mo(VI) Potential Metallodrugs: Explaining the Transport and Cytotoxicity by Chemical Transformations. Inorg Chem 2022; 61:4513-4532. [PMID: 35213131 DOI: 10.1021/acs.inorgchem.2c00113] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transport and cytotoxicity of molybdenum-based drugs have been explained with the concept of chemical transformation, a very important idea in inorganic medicinal chemistry that is often overlooked in the interpretation of the biological activity of metal-containing systems. Two monomeric, [MoO2(L1)(MeOH)] (1) and [MoO2(L2)(EtOH)] (2), and two mixed-ligand dimeric MoVIO2 species, [{MoO2(L1-2)}2(μ-4,4'-bipy)] (3-4), were synthesized and characterized. The structures of the solid complexes were solved through SC-XRD, while their transformation in water was clarified by UV-vis, ESI-MS, and DFT. In aqueous solution, 1-4 lead to the penta-coordinated [MoO2(L1-2)] active species after the release of the solvent molecule (1 and 2) or removal of the 4,4'-bipy bridge (3 and 4). [MoO2(L1-2)] are stable in solution and react with neither serum bioligand nor cellular reductants. The binding affinity of 1-4 toward HSA and DNA were evaluated through analytical and computational methods and in both cases a non-covalent interaction is expected. Furthermore, the in vitro cytotoxicity of the complexes was also determined and flow cytometry analysis showed the apoptotic death of the cancer cells. Interestingly, μ-4,4'-bipy bridged complexes 3 and 4 were found to be more active than monomeric 1 and 2, due to the mixture of species generated, that is [MoO2(L1-2)] and the cytotoxic 4,4'-bipy released after their dissociation. Since in the cytosol neither the reduction of MoVI to MoV/IV takes place nor the production of reactive oxygen species (ROS) through Fenton-like reactions of 1-4 with H2O2 occurs, the mechanism of cytotoxicity should be attributable to the direct interaction with DNA that happens with a minor-groove binding which results in cell death through an apoptotic mechanism.
Collapse
Affiliation(s)
- Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Atanu Banerjee
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Aurélien Crochet
- Department of Chemistry, Fribourg Center for Nanomaterials, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Giuseppe Sciortino
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Valeria Ugone
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
13
|
Zeghouan O, Mahesha, Sellami S, Kashi I, Bouchameni C, Lokanath N. Analysis of structural conformation and supramolecular self-assembly of novel oxalate-bridged tetranuclear Cu(II) complex by combined crystallographic and computational studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Bai X, Ali A, Wang N, Liu Z, Lv Z, Zhang Z, Zhao X, Hao H, Zhang Y, Rahman FU. Inhibition of SREBP-mediated lipid biosynthesis and activation of multiple anticancer mechanisms by platinum complexes: Ascribe possibilities of new antitumor strategies. Eur J Med Chem 2022; 227:113920. [PMID: 34742012 DOI: 10.1016/j.ejmech.2021.113920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022]
Abstract
Cancer is one of the most aggressive diseases with poor prognosis and survival rates. Lipids biogenesis play key role in cancer progression, metastasis and tumor development. Suppression of SREBP-mediated lipid biogenesis pathway has been linked with cancer inhibition. Platinum complexes bearing good anticancer effect and multiple genes activation properties are considered important and increase the chances for development of new platinum-based drugs. In this study, we synthesized pyridine co-ligand functionalized cationic complexes and characterized them using multiple spectroscopic and spectrophotometric methods. Two of these complexes were studied in solid state by single crystal X-ray analysis. The stability of these complexes were measured in solution state using 1H NMR methods. These complexes were further investigated for their anticancer activity against human breast, lung and liver cancer cells. MTT assay showed potential cytotoxic activity in dose-dependent manner and decrease survival rates of cancer cells was observed upon treatment with these complexes. Biological assays results revealed higher cytotoxicity as compared to cisplatin and oxaliplatin. Further we studied C2, C6 and C8 in detailed mechanistic anticancer analyses. Clonogenic assay showed decrease survival of MCF-7, HepG2 and A549 cancer cells treated with C2, C6 and C8 as compared to control cells treated with DMSO. TUNEL assay showed more cell death, these complexes suppressed invasion and migration ability of cancer cells and decreased tumor spheroids formation, thus suggesting a potential role in inhibition of cancer metastasis and cancer stem cells formation. Mechanistically, these complexes inhibited sterol regulatory element-binding protein 1 (SREBP-1) expression in cancer cells in dose-dependent manner and thereby reduced lipid biogenesis to suppress cancer progression. Furthermore, expression level was decreased for the key genes LDLR, FASN and HMGCR, those required for sterol biosynthesis. Taken together, these complexes suppressed cancer cell growth, migration, invasion and spheroids formation by inhibiting SREBP-1 mediated lipid biogenesis pathway.
Collapse
Affiliation(s)
- Xue Bai
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Amjad Ali
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK, Pakistan; Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Na Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Zongwei Liu
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Zhimin Lv
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Zeqing Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Xing Zhao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China; School of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France.
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China.
| |
Collapse
|
15
|
Pal M, Wadawale A, Chauhan N, Majumdar A, Subramanian M, Bhuvanesh N, Dey S. Anticancer potential of Pd and Pt metallo-macrocycles of phosphines and 4,4΄-dipyridyldiselenide. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Bera B, Mondal S, Gharami S, Naskar R, Das Saha K, Mondal TK. Palladium( ii) and platinum( ii) complexes with ONN donor pincer ligand: synthesis, characterization and in vitro cytotoxicity study. NEW J CHEM 2022. [DOI: 10.1039/d2nj01894b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New Pd(ii) and Pt(ii) complexes with ONN donor pincer ligand are synthesized. Antiproliferative activity of the complexes is explored towards HCT116, HepG2, MCF-7 and A549 cell lines.
Collapse
Affiliation(s)
- Biswajit Bera
- Department of Chemistry, Jadavpur University, Kolkata-700032, India
| | - Sanchaita Mondal
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700 032, India
| | - Saswati Gharami
- Department of Chemistry, Jadavpur University, Kolkata-700032, India
| | - Rahul Naskar
- Department of Chemistry, Jadavpur University, Kolkata-700032, India
| | - Krishna Das Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700 032, India
| | - Tapan K. Mondal
- Department of Chemistry, Jadavpur University, Kolkata-700032, India
| |
Collapse
|
17
|
Synthetic approaches for BF2-containing adducts of outstanding biological potential. A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Fluorophore Tagged Mixed Ligand Copper(II) Complexes: Synthesis, Structural Characterization, Protein Binding, DNA Cleavage and Anticancer Activity. ChemistrySelect 2021. [DOI: 10.1002/slct.202103314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Transition metal complexes of triazole-based bioactive ligands: synthesis, spectral characterization, antimicrobial, anticancer and molecular docking studies. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [PMCID: PMC8608565 DOI: 10.1007/s11164-021-04621-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the present research work, four new heterocyclic Schiff base ligands (1–4) were synthesized by the condensation of 4-(4-amino-5-mercapto-4H-1,2,4-triazol-3-yl)phenol with salicylaldehyde derivatives in 1:1 molar ratio. The synthesized Schiff base ligands were allowed for complexation with Co(II), Ni(II), Cu(II), Zn(II) metal ions. The structure of the newly synthesized compounds (1–20) was elucidated with the help of various spectral and physicochemical techniques. Spectroscopic data confirm the tridentate nature of ligands which coordinate to the metal via deprotonated oxygen, azomethine nitrogen and thiol sulphur. Conductivity data showed the non-electrolytic nature of complexes. Furthermore, the synthesized compounds were evaluated for their in-vitro antimicrobial activity against four pathogenic bacterial strains and two pathogenic fungal strains. The observed results of microbial activity reveals that compound 3 and its complexes (13–16) were found most potent against the pathogenic strains. In addition, the anticancer activity of all the synthesized compounds was evaluated against human carcinoma cell lines i.e. HCT-116, DU145 and A549 using MTT assay. Among the tested compounds 12, 19, and 20 were found to show promising potency against the cancer cell lines. To rationalize the preferred modes of interaction of most potent compounds with the active site of human EGFR protein (PDB id: 5XGM), molecular docking studies were performed.
Collapse
|
20
|
Bai X, Ali A, Lv Z, Wang N, Zhao X, Hao H, Zhang Y, Rahman FU. Platinum complexes inhibit HER-2 enriched and triple-negative breast cancer cells metabolism to suppress growth, stemness and migration by targeting PKM/LDHA and CCND1/BCL2/ATG3 signaling pathways. Eur J Med Chem 2021; 224:113689. [PMID: 34293698 DOI: 10.1016/j.ejmech.2021.113689] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/31/2021] [Accepted: 07/04/2021] [Indexed: 12/17/2022]
Abstract
Triple-negative-breast cancer (TNBC) and HER-2 enriched positive aggressive types of breast cancer and are highly metastatic in nature. Anticancer agents those target TNBC and HER-2 enriched positive breast cancers are considered important in the field of breast cancer research. In search of the effective anticancer agents, we synthesized Pt(II) complexes to target these cancers. Platinum complexes (C1-C8) were prepared in single step by the reaction of commercially available K2PtCl4 with the readily prepared ligands (L1-L8). All these compounds were characterized successfully by different spectroscopic and spectrophotometric analyses. Structures of C1, C3 and C8 were characterized by single crystal X-ray analysis that confirmed the exact chelation mode of the SNO-triply coordinated ligand. All these complexes inhibited the in vitro growth of MCF-7 (luminal-like), MDA-MB-231 (TNBC) and SKBR3 (HER-2 enriched) breast cancer cells. C1, C3 and C7 induced cell death and suppressed the clonogenic potential of these cancer cells. Importantly, C1, C3 and C7 showed potentials to suppress cancer stem cells/mammosphere formation and cell migration ability of MDA-MB-231 and SKBR3 breast cancer cells. These complexes also induced cellular senescence in MDA-MB-231 and SKBR3 cells, thus suggesting a cell retardation mechanism. Similarly, these complexes induced DNA damage by activating p-H2AX expression and promoted autophagy via ATG3/LC3B axis activation in MDA-MB-231 and SKBR3 cells. Furthermore, these complexes decreased the expression of oncogenic proteins such as BCL2 and cylin-D1 those are involved in cancer cell survival and cell cycle progression. To further gain insight, we found that C1 and C7 targeted glycolytic pathways by regulating PKM and LDHA expression, which are involved in glycolysis. Moreover, C1 and C7 suppressed the formation of ATP production that is required for cancer cell growth. Taken together, the easy synthesis and biological assays results point towards the importance of these complexes in MDA-MB-231 (TNBC) and SKBR3 (HER-2 enriched) breast cancer cells by targeting multiple signaling pathways those are considered important during breast cancer progression. This study produces bases for further deeper in vitro or in vivo study that could lead to the effective breast cancer agents which we are working on.
Collapse
Affiliation(s)
- Xue Bai
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Amjad Ali
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK, Pakistan; Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Zhimin Lv
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Na Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Xing Zhao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China; School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France.
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China.
| |
Collapse
|
21
|
Synthesis, characterization, and miRNA-mediated PI3K suppressing activity of novel cisplatin-derived complexes of selenones. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
22
|
Resveratrol Modulation of Apoptosis and Cell Cycle Response to Cisplatin in Head and Neck Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms22126322. [PMID: 34204834 PMCID: PMC8231609 DOI: 10.3390/ijms22126322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
In head and neck cancers, the effectiveness of cisplatin (CisPt) treatment is limited by its toxicity, especially when higher doses are necessary, and the possible occurrence of cisplatin resistance. This study evaluated the effects of resveratrol (RSV) on the expression of different genes involved in the response of human tumor cells (FaDu, PE/CA-PJ49) to cisplatin therapy. Our results revealed that RSV induced apoptosis amplification in both FaDu and PE/CA-PJ49 cells and modulated the expression of specific genes differently than in normal HaCaT cells. In FaDu cells, combined CisPt + RSV treatment induced an increase in apoptosis, which was associated with an increase in c-MYC and TP53 and a decrease in BCL-2 expression. While CisPt + RSV treatment induced apoptosis in PE/CA-PJ49 cells by inhibition of BCL-2 associated with high levels of MDM-2 and subsequently led to inhibition of TP53 gene expression. Decreased c-MYC expression in PE/CA-PJ49 treated with CisPt + RSV was accompanied by cell cycle blockage in G0/G1 phase. In conclusion, RSV influences tumor cell response to CisPt by inducing apoptosis and modulating gene expression. In addition, in normal HaCaT cells, RSV was able to reduce the harmful effects of CisPt.
Collapse
|
23
|
Li J, Yan H, Wang Z, Liu R, Luo B, Yang D, Chen H, Pan L, Ma Z. Copper chloride complexes with substituted 4'-phenyl-terpyridine ligands: synthesis, characterization, antiproliferative activities and DNA interactions. Dalton Trans 2021; 50:8243-8257. [PMID: 34036954 DOI: 10.1039/d0dt03989f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Eleven copper chloride coordination compounds (1-11) with 4'-(4'-substituted-phenyl)-2,2':6',2''-terpyridine ligands bearing hydrogen (L1), cyano (L2), p-hydroxyl (L3), m-hydroxyl (L4), o-hydroxyl (L5), methoxyl (L6), iodo (L7), bromo (L8), chloro (L9), fluoro (L10) or methylsulfonyl (L11) were prepared and characterized by IR spectroscopy, elemental analysis and single crystal X-ray diffraction. Antiproliferative activities against tumor cells were investigated and DNA interactions were studied by circular dichroism spectroscopy and molecular modeling methods. In vitro data demonstrate that all the compounds exhibit higher antiproliferative activities as compared to cisplatin against five human carcinoma cell lines: A549, Bel-7402, Eca-109, HeLa and MCF-7. Compound 6 with methoxyl shows the best anti-proliferation activity. Spectrophotometric results reveal the strong affinity of the compounds for binding with DNA as intercalators and induce DNA conformational transitions. The results of molecular docking studies show that the compounds interact with DNA through π-π stacking, van der Waals forces, hydrophobic interactions and hydrogen bonds. The binding energies between compound 11 and three macromolecules, including DNA duplex, oligonucleotide and DNA-Topo I complex, are the lowest. The binding stability of compounds containing hydroxyl, methoxy and methylsulfonyl groups with biological macromolecules mainly relies on the hydrogen bonds. The ability of a compound to form hydrogen bonds can promote its binding to biological targets, thereby exhibiting high antiproliferative activity.
Collapse
Affiliation(s)
- Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Thushara N, Darshani T, Samarakoon SR, Perera IC, Fronczek FR, Sameera WMC, Perera T. Synthesis, characterization and biological evaluation of dipicolylamine sulfonamide derivatized platinum complexes as potential anticancer agents. RSC Adv 2021; 11:17658-17668. [PMID: 35480201 PMCID: PMC9033217 DOI: 10.1039/d1ra00842k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022] Open
Abstract
Three new Pt complexes, [PtCl2(N(SO2(2-nap))dpa)], [PtCl2(N(SO2(1-nap))dpa)] and [PtCl2(N(SO2pip)dpa)], containing a rare 8-membered ring were synthesized in good yield and high purity by utilizing the ligands N(SO2(2-nap))dpa, N(SO2(1-nap))dpa and N(SO2pip)dpa, which contain a dipicolylamine moiety. Structural studies of all three complexes confirmed that the ligands are bound in a bidentate mode via Pt–N(pyridyl) bonds forming a rare 8-membered ring. The intense fluorescence displayed by the ligands is quenched upon coordination to Pt. According to time dependent density functional theory (TDDFT) calculations, the key excitations of N(SO2(2-nap))dpa and [PtCl2(N(SO2(1-nap))dpa)] involve the 2-nap-ligand-centered π → π* excitations. While all six compounds have shown antiproliferative activity against human breast cancer cells (MCF-7), the N(SO2pip)dpa and N(SO2(2-nap))dpa ligands and [PtCl2((NSO2pip)dpa)] complex have shown significantly high cytotoxicity, directing them to be further investigated as potential anti-cancer drug leads. Three new Pt complexes, [PtCl2(N(SO2(2-nap))dpa)], [PtCl2(N(SO2(1-nap))dpa)] and [PtCl2(N(SO2pip)dpa)], containing a rare 8-membered ring were synthesized in good yield and high purity by utilizing ligands which contain a dipicolylamine moiety.![]()
Collapse
Affiliation(s)
- Nadini Thushara
- Department of Chemistry, University of Sri Jayewardenepura Sri Lanka
| | - Taniya Darshani
- Department of Chemistry, University of Sri Jayewardenepura Sri Lanka
| | - Sameera R Samarakoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo Sri Lanka
| | - Inoka C Perera
- Department of Zoology and Environment Sciences, University of Colombo Sri Lanka
| | - Frank R Fronczek
- Department of Chemistry, Louisiana State University Baton Rouge LA USA
| | - W M C Sameera
- Institute of Low Temperature Science, Hokkaido University N19-W8, Kita-ku Sapporo Hokkaido 060-0819 Japan
| | - Theshini Perera
- Department of Chemistry, University of Sri Jayewardenepura Sri Lanka
| |
Collapse
|
25
|
Idlas P, Lepeltier E, Jaouen G, Passirani C. Ferrocifen Loaded Lipid Nanocapsules: A Promising Anticancer Medication against Multidrug Resistant Tumors. Cancers (Basel) 2021; 13:2291. [PMID: 34064748 PMCID: PMC8151583 DOI: 10.3390/cancers13102291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Resistance of cancer cells to current chemotherapeutic drugs has obliged the scientific community to seek innovative compounds. Ferrocifens, lipophilic organometallic compounds composed of a tamoxifen scaffold covalently bound to a ferrocene moiety, have shown very interesting antiproliferative, cytotoxic and immunologic effects. The formation of ferrocenyl quinone methide plays a crucial role in the multifaceted activity of ferrocifens. Lipid nanocapsules (LNCs), meanwhile, are nanoparticles obtained by a free organic solvent process. LNCs consist of an oily core surrounded by amphiphilic surfactants and are perfectly adapted to encapsulate these hydrophobic compounds. The different in vitro and in vivo experiments performed with this ferrocifen-loaded nanocarrier have revealed promising results in several multidrug-resistant cancer cell lines such as glioblastoma, breast cancer and metastatic melanoma, alone or in combination with other therapies. This review provides an exhaustive summary of the use of ferrocifen-loaded LNCs as a promising nanomedicine, outlining the ferrocifen mechanisms of action on cancer cells, the nanocarrier formulation process and the in vivo results obtained over the last two decades.
Collapse
Affiliation(s)
- Pierre Idlas
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, 49000 Angers, France; (P.I.); (E.L.)
| | - Elise Lepeltier
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, 49000 Angers, France; (P.I.); (E.L.)
| | - Gérard Jaouen
- Sorbonne Universités, Université IPCM, Paris 6, UMR 8232, IPCM, 4 place Jussieu, 75005 Paris, France;
- PSL University, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - Catherine Passirani
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, 49000 Angers, France; (P.I.); (E.L.)
| |
Collapse
|
26
|
Synthesis and characterization of ethylenediamine platinum(II) complexes containing thiourea derivatives. X-ray crystal structures of [Pt(en)(2-imidazolidinethione)2](NO3)2 and [Pt(en)(1-phenyl-2-thiourea)2](NO3)2. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Wongsuwan S, Chatwichien J, Pinchaipat B, Kumphune S, Harding DJ, Harding P, Boonmak J, Youngme S, Chotima R. Synthesis, characterization and anticancer activity of Fe(II) and Fe(III) complexes containing N-(8-quinolyl)salicylaldimine Schiff base ligands. J Biol Inorg Chem 2021; 26:327-339. [PMID: 33606116 DOI: 10.1007/s00775-021-01857-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/04/2021] [Indexed: 01/03/2023]
Abstract
A series of Fe(II) complexes (1-4) and Fe(III) complexes (5-8) from Fe(II)/(III) chloride and N-(8-quinolyl)-X-salicylaldimine Schiff base ligands (Hqsal-X2/X: X = Br, Cl) were successfully synthesized and characterized by spectroscopic (FT-IR, 1H-NMR), mass spectrometry, thermogravimetric analysis (TGA), and single crystal X-ray crystallographic techniques. The interaction of complexes 1-8 with calf thymus DNA (CT-DNA) was determined by UV-Vis and fluorescence spectroscopy. The complexes exhibited good DNA-binding activity via intercalation. The molecular docking between a selected complex and DNA was also investigated. The in vitro anticancer activity of the Schiff base ligands and their complexes were screened against the A549 human lung adenocarcinoma cell line. The complexes showed anticancer activity toward A549 cancer cells while the free ligands and iron chloride salts showed no inhibitory effects at 100 µM. In this series, complex [Fe(qsal-Cl2)2]Cl 6 showed the highest anticancer activity aginst A549 cells (IC50 = 10 µM). This is better than two well-known anticancer agents (Etoposide and Cisplatin). Furthermore, the possible mechanism for complexes 1-8 penetrating A549 cells through intracellular ROS generation was investigated. The complexes containing dihalogen substituents 1, 2, 5, and 6 can increase ROS in A549 cells, leading to DNA or macromolecular damage and cell-death induction.
Collapse
Affiliation(s)
- Sutthida Wongsuwan
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Jaruwan Chatwichien
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Bussaba Pinchaipat
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Sarawut Kumphune
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200, Thailand
| | - David J Harding
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, 80160, Nakhon Si Thammarat, Thailand
| | - Phimphaka Harding
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, 80160, Nakhon Si Thammarat, Thailand
| | - Jaursup Boonmak
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sujittra Youngme
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ratanon Chotima
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
28
|
Leal J, Santos L, Fernández-Aroca DM, Cuevas JV, Martínez MA, Massaguer A, Jalón FA, Ruiz-Hidalgo MJ, Sánchez-Prieto R, Rodríguez AM, Castañeda G, Durá G, Carrión MC, Barrabés S, Manzano BR. Effect of the aniline fragment in Pt(II) and Pt(IV) complexes as anti-proliferative agents. Standard reduction potential as a more reliable parameter for Pt(IV) compounds than peak reduction potential. J Inorg Biochem 2021; 218:111403. [PMID: 33730639 DOI: 10.1016/j.jinorgbio.2021.111403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
The problems of resistance and side effects associated with cisplatin and other chemotherapeutic drugs have boosted research aimed at finding new compounds with improved properties. The use of platinum(IV) prodrugs is one alternative, although there is some controversy regarding the predictive ability of the peak reduction potentials. In the work described here a series of fourteen chloride Pt(II) and Pt(IV) compounds was synthesised and fully characterised. The compounds contain different bidentate arylazole heterocyclic ligands. Their cytotoxic properties against human lung carcinoma (A549), human breast carcinoma (MCF7) and human colon carcinoma (HCT116 and HT29) cell lines were studied. A clear relationship between the type of ligand and the anti-proliferative properties was found, with the best results obtained for the Pt(II) compound that contains an aniline fragment, (13), thus evidencing a positive effect of the NH2 group. Stability and aquation studies in DMSO, DMF and DMSO/water mixtures were carried out on the active complexes and an in-depth analysis of the two aquation processes, including DFT analysis, of 13 was undertaken. It was verified that DNA was the target and that cell death occurred by apoptosis in the case of 13. Furthermore, the cytotoxic derivatives did not exhibit haemolytic activity. The reduction of the Pt(IV) compounds whose Pt(II) congeners were active was studied by several techniques. It was concluded that the peak reduction potential was not useful to predict the ability for reduction. However, a correlation between the cytotoxic activity and the standard reduction potential was found.
Collapse
Affiliation(s)
- Jorge Leal
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Lucia Santos
- Universidad de Castilla-La Mancha, Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela s/n, 13071 Ciudad Real, Spain
| | - Diego M Fernández-Aroca
- Universidad de Castilla-La Mancha, Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - J Vicente Cuevas
- Universidad de Burgos, Department of Chemistry, Pza. Misael Bañuelos S/N, 09001 Burgos, Spain
| | - M Angeles Martínez
- Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Anna Massaguer
- Departamento de Biologia, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Felix A Jalón
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - M José Ruiz-Hidalgo
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Medicina de Albacete, Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas De Madrid Alberto Sols (CSIC-UAM), Universidad de Castilla-La Mancha, Departamento de Ciencias Médicas, Facultad de Medicina de Albacete, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - Ana M Rodríguez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Gregorio Castañeda
- Universidad de Castilla-La Mancha, Departamento de Química Analítica y Tecnología de los Alimentos, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela s/n, 13071 Ciudad Real, Spain
| | - Gema Durá
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - M Carmen Carrión
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Sílvia Barrabés
- Departamento de Biologia, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Blanca R Manzano
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain.
| |
Collapse
|
29
|
Merkul E, Muns JA, Sijbrandi NJ, Houthoff H, Nijmeijer B, Rheenen G, Reedijk J, Dongen GAMS. An Efficient Conjugation Approach for Coupling Drugs to Native Antibodies via the Pt
II
Linker
Lx
for Improved Manufacturability of Antibody–Drug Conjugates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Eugen Merkul
- Chemistry Department LinXis BV De Boelelaan 1085c Amsterdam 1081 HV The Netherlands
| | - Joey A. Muns
- Chemistry Department LinXis BV De Boelelaan 1085c Amsterdam 1081 HV The Netherlands
| | - Niels J. Sijbrandi
- Chemistry Department LinXis BV De Boelelaan 1085c Amsterdam 1081 HV The Netherlands
| | - Hendrik‐Jan Houthoff
- Chemistry Department LinXis BV De Boelelaan 1085c Amsterdam 1081 HV The Netherlands
| | - Bart Nijmeijer
- Chemistry Department LinXis BV De Boelelaan 1085c Amsterdam 1081 HV The Netherlands
| | - Gerro Rheenen
- Chemistry Department LinXis BV De Boelelaan 1085c Amsterdam 1081 HV The Netherlands
| | - Jan Reedijk
- Leiden Institute of Chemistry Leiden University PO Box 9502 2300 RA Leiden The Netherlands
| | - Guus A. M. S. Dongen
- Department of Radiology and Nuclear Medicine Amsterdam UMC, location VU medical center Amsterdam The Netherlands
| |
Collapse
|
30
|
Merkul E, Muns JA, Sijbrandi NJ, Houthoff H, Nijmeijer B, van Rheenen G, Reedijk J, van Dongen GAMS. An Efficient Conjugation Approach for Coupling Drugs to Native Antibodies via the Pt II Linker Lx for Improved Manufacturability of Antibody-Drug Conjugates. Angew Chem Int Ed Engl 2021; 60:3008-3015. [PMID: 33185916 PMCID: PMC7986738 DOI: 10.1002/anie.202011593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/29/2020] [Indexed: 12/20/2022]
Abstract
The PtII linker [ethylenediamineplatinum(II)]2+ , coined Lx, has emerged as a novel non-conventional approach to antibody-drug conjugates (ADCs) and has shown its potential in preclinical in vitro and in vivo benchmark studies. A crucial improvement of the Lx conjugation reaction from initially <15 % to ca. 75-90 % conjugation efficiency is described, resulting from a systematic screening of all relevant reaction parameters. NaI, a strikingly simple inorganic salt additive, greatly improves the conjugation efficiency as well as the conjugation selectivity simply by exchanging the leaving chloride ligand on Cl-Lx-drug complexes (which are direct precursors for Lx-ADCs) for iodide, thus generating I-Lx-drug complexes as more reactive species. Using this iodide effect, we developed a general and highly practical conjugation procedure that is scalable: our lead Lx-ADC was produced on a 5 g scale with an outstanding conjugation efficiency of 89 %.
Collapse
Affiliation(s)
- Eugen Merkul
- Chemistry DepartmentLinXis BVDe Boelelaan 1085cAmsterdam1081HVThe Netherlands
| | - Joey A. Muns
- Chemistry DepartmentLinXis BVDe Boelelaan 1085cAmsterdam1081HVThe Netherlands
| | - Niels J. Sijbrandi
- Chemistry DepartmentLinXis BVDe Boelelaan 1085cAmsterdam1081HVThe Netherlands
| | | | - Bart Nijmeijer
- Chemistry DepartmentLinXis BVDe Boelelaan 1085cAmsterdam1081HVThe Netherlands
| | - Gerro van Rheenen
- Chemistry DepartmentLinXis BVDe Boelelaan 1085cAmsterdam1081HVThe Netherlands
| | - Jan Reedijk
- Leiden Institute of ChemistryLeiden UniversityPO Box 95022300RALeidenThe Netherlands
| | - Guus A. M. S. van Dongen
- Department of Radiology and Nuclear MedicineAmsterdam UMC, location VU medical centerAmsterdamThe Netherlands
| |
Collapse
|
31
|
Norouzi P, Ghiasi R, Fazaeli R. Effects of External Electric Field on the Hydrolysis of Cisplatin: A Density Functional Theory Approach. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023620140041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Pan A, Mitra I, Mukherjee S, Ghosh S, Chatterji U, Moi SC. Development of Anticancer Activity of the Pt(II) Complex with N-Heterocyclic Amine: Its In Vitro Pharmacokinetics with Thiol and Thio-Ethers, DNA and BSA Binding, and Cell Cycle Arrest. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Angana Pan
- Department of Chemistry, National Institute of Technology Durgapur, M. G. Avenue, Durgapur-713209, West Bengal, India
| | - Ishani Mitra
- Department of Chemistry, National Institute of Technology Durgapur, M. G. Avenue, Durgapur-713209, West Bengal, India
| | - Subhajit Mukherjee
- Department of Chemistry, National Institute of Technology Durgapur, M. G. Avenue, Durgapur-713209, West Bengal, India
| | - Subarna Ghosh
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Sankar Chandra Moi
- Department of Chemistry, National Institute of Technology Durgapur, M. G. Avenue, Durgapur-713209, West Bengal, India
| |
Collapse
|
33
|
Lee SY, Kim CY, Nam TG. Ruthenium Complexes as Anticancer Agents: A Brief History and Perspectives. Drug Des Devel Ther 2020; 14:5375-5392. [PMID: 33299303 PMCID: PMC7721113 DOI: 10.2147/dddt.s275007] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/03/2020] [Indexed: 12/28/2022] Open
Abstract
Platinum (Pt)-based anticancer drugs such as cisplatin have been used to treat various cancers. However, they have some limitations including poor selectivity and toxicity towards normal cells and increasing chemoresistance. Therefore, there is a need for novel metallo-anticancers, which has not been met for decades. Since the initial introduction of ruthenium (Ru) polypyridyl complex, a number of attempts at structural evolution have been conducted to improve efficacy. Among them, half-sandwich Ru-arene complexes have been the most prominent as an anticancer platform. Such complexes have clearly shown superior anticancer profiles such as increased selectivity toward cancer cells and ameliorating toxicity against normal cells compared to existing Pt-based anticancers. Currently, several Ru complexes are under human clinical trials. For improvement in selectivity and toxicity associated with chemotherapy, Ru complexes as photodynamic therapy (PDT), and photoactivated chemotherapy (PACT), which can selectively activate prodrug moieties in a specific region, have also been investigated. With all these studies on these interesting entities, new metallo-anticancer drugs to at least partially replace existing Pt-based anticancers are anticipated. This review covers a brief description of Ru-based anticancer complexes and perspectives.
Collapse
Affiliation(s)
- Sang Yeul Lee
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do15588, Republic of Korea
| | - Chul Young Kim
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do15588, Republic of Korea
| | - Tae-Gyu Nam
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do15588, Republic of Korea
| |
Collapse
|
34
|
Review of comparative studies of cytotoxic activities of Pt(II), Pd(II), Ru(II)/(III) and Au(III) complexes, their kinetics of ligand substitution reactions and DNA/BSA interactions. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119883] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Schwarzbich S, Horstmann Née Gruschka C, Simon J, Siebe L, Moreth A, Wiegand C, Lavrentieva A, Scheper T, Stammler A, Bögge H, Fischer von Mollard G, Glaser T. Stronger Cytotoxicity for Cancer Cells Than for Fast Proliferating Human Stem Cells by Rationally Designed Dinuclear Complexes. Inorg Chem 2020; 59:14464-14477. [PMID: 32951424 DOI: 10.1021/acs.inorgchem.0c02255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cytostatic metallo-drugs mostly bind to the nucleobases of DNA. A new family of dinuclear transition metal complexes was rationally designed to selectively target the phosphate diesters of the DNA backbone by covalent bonding. The synthesis and characterization of the first dinuclear NiII2 complex of this family are presented, and its DNA binding and interference with DNA synthesis in polymerase chain reaction (PCR) are investigated and compared to those of the analogous CuII2 complex. The NiII2 complex also binds to DNA but forms fewer intermolecular DNA cross-links, while it interferes with DNA synthesis in PCR at lower concentrations than CuII2. To simulate possible competing phosphate-based ligands in vivo, these effects have been studied for both complexes with 100-200-fold excesses of phosphate and ATP, which provided no disturbance. The cytotoxicity of both complexes has been studied for human cancer cells and human stem cells with similar rates of proliferation. CuII2 shows the lowest IC50 values and a remarkable preference for killing the cancer cells. Three different assays show that the CuII2 complex induces apoptosis in cancer cells. These results are discussed to gain insight into the mechanisms of action and demonstrate the potential of this family of dinuclear complexes as anticancer drugs acting by a new binding target.
Collapse
Affiliation(s)
- Sabrina Schwarzbich
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Claudia Horstmann Née Gruschka
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Jasmin Simon
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Lena Siebe
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Alexander Moreth
- Lehrstuhl für Biochemie III, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Christiane Wiegand
- Lehrstuhl für Biochemie III, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Antonina Lavrentieva
- Zentrum Angewandte Chemie, Institut für Technische Chemie, Callinstrasse 5, D-30167 Hannover, Germany
| | - Thomas Scheper
- Zentrum Angewandte Chemie, Institut für Technische Chemie, Callinstrasse 5, D-30167 Hannover, Germany
| | - Anja Stammler
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Hartmut Bögge
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Gabriele Fischer von Mollard
- Lehrstuhl für Biochemie III, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| |
Collapse
|
36
|
Synthesis, characterization, photoluminescence, antiproliferative activity, and DNA interaction of cadmium(II) substituted 4′-phenyl-terpyridine compounds. J Inorg Biochem 2020; 210:111165. [DOI: 10.1016/j.jinorgbio.2020.111165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 11/18/2022]
|
37
|
Masternak J, Gilewska A, Barszcz B, Łakomska I, Kazimierczuk K, Sitkowski J, Wietrzyk J, Kamecka A, Milczarek M. Ruthenium(II) and Iridium(III) Complexes as Tested Materials for New Anticancer Agents. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3491. [PMID: 32784666 PMCID: PMC7475896 DOI: 10.3390/ma13163491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 11/17/2022]
Abstract
The oncological use of cisplatin is hindered by its severe side effects and a very important resistance problem. To overcome these problems, scientists have attempted to design new generation transition-metal anticancer complexes. In this study, we present new complexes, ruthenium(II) [(η6-p-cymene)RuCl(py2CO)]PF6 (1), iridium(III) [(η5-Cp)IrCl(py2CO)]PF6 (2), and NH4[IrCl4(py2CO)]·H2O (3), based on di-2-pyridylketone (py2CO). The prepared complexes were characterized by FTIR, 1H, 13C, 15N NMR, UV-Vis, PL and elemental analysis techniques. The single-crystal X-ray structure analysis and comparative data revealed pseudo-octahedral half-sandwich 1 and 2 complexes and octahedral tetrachloroiridate(III) 3 with a rare chelating κ2N,O coordination mode of py2CO. The compounds were tested in vitro against three cancer cell lines-colorectal adenoma (LoVo), myelomonocytic leukaemia (MV-4-11), breast adenocarcinoma (MCF-7), and normal fibroblasts (BALB/3T3). The most promising results were obtained for iridium(III) complex 3 against MV-4-11 (IC50 = 35.8 ± 13.9 µg/mL) without a toxic effect against normal BALB/3T3, which pointed towards its selectivity as a potential anticancer agent. Extensive research into their mode of binding with DNA confirmed for 1 and 2 complexes non-classical binding modes, while the 3D circular dichroism (CD) experiment (ΔTm) suggested that 3 induced the probable formation of covalent bonds with DNA. In addition, the obtained iridium complexes induce ROS, which, in synergy with hydrolysis promoting DNA bonding, may lead to cancer cell death.
Collapse
Affiliation(s)
- Joanna Masternak
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland; (A.G.); (B.B.)
| | - Agnieszka Gilewska
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland; (A.G.); (B.B.)
| | - Barbara Barszcz
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland; (A.G.); (B.B.)
| | - Iwona Łakomska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Katarzyna Kazimierczuk
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 G., 80-233 Gdańsk, Poland;
| | - Jerzy Sitkowski
- Institute of Organic Chemistry, Polish Academic of Science, Kasprzaka 44/52, 01-224 Warszawa, Poland;
- National Medicines Institute, Chełmska 30/34, 00-725 Warszawa, Poland
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wrocław, Poland; (J.W.), (M.M.)
| | - Anna Kamecka
- Institute of Chemistry, Faculty of Sciences, University of Natural Sciences and Humanities in Siedlce, 3 Maja 54, 08-110 Siedlce, Poland;
| | - Magdalena Milczarek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wrocław, Poland; (J.W.), (M.M.)
| |
Collapse
|
38
|
Synthesis, characterization, structures and in vitro antitumor activity of platinum(II) complexes bearing adeninato or methylated adeninato ligands. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Ye R, Tan C, Chen B, Li R, Mao Z. Zinc-Containing Metalloenzymes: Inhibition by Metal-Based Anticancer Agents. Front Chem 2020; 8:402. [PMID: 32509730 PMCID: PMC7248183 DOI: 10.3389/fchem.2020.00402] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/16/2020] [Indexed: 01/13/2023] Open
Abstract
DNA is considered to be the primary target of platinum-based anticancer drugs which have gained great success in clinics, but DNA-targeted anticancer drugs cause serious side-effects and easily acquired drug resistance. This has stimulated the search for novel therapeutic targets. In the past few years, substantial research has demonstrated that zinc-containing metalloenzymes play a vital role in the occurrence and development of cancer, and they have been identified as alternative targets for metal-based anticancer agents. Metal complexes themselves have also exhibited a lot of appealing features for enzyme inhibition, such as: (i) the facile construction of 3D structures that can increase the enzyme-binding selectivity and affinity; (ii) the intriguing photophysical and photochemical properties, and redox activities of metal complexes can offer possibilities to design enzyme inhibitors with multiple modes of action. In this review, we discuss recent examples of zinc-containing metalloenzyme inhibition of metal-based anticancer agents, especially three zinc-containing metalloenzymes overexpressed in tumors, including histone deacetylases (HDACs), carbonic anhydrases (CAs), and matrix metalloproteinases (MMPs).
Collapse
Affiliation(s)
- Ruirong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Caiping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Bichun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rongtao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zongwan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Liu C, Jiang J, Li J, Liang X, Zhou Y, Chen H, Ma Z. Synthesis, structural characterization and antiproliferative potential of copper 4′-phenyl-terpyridine complexes constructed from building block reaction. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Kavukcu SB, Şahin O, Seda Vatansever H, Kurt FO, Korkmaz M, Kendirci R, Pelit L, Türkmen H. Synthesis and cytotoxic activities of organometallic Ru(II) diamine complexes. Bioorg Chem 2020; 99:103793. [PMID: 32278205 DOI: 10.1016/j.bioorg.2020.103793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 01/03/2023]
Abstract
A series of mono and bimetallic ruthenium(II) arene complexes bearing diamine (Ru1-6) were prepared and fully characterized by 1H, 13C, 19F, and 31P NMR spectroscopy and elemental analysis. The crystal structure of the bimetallic complex (Ru5) was determined by X-ray crystallography. Monometallic analogues (Ru1-3) were synthesized to investigate the contributions of ruthenium and the other organic groups (aren, ethylenediamine, butyl) to the activity. The electrochemical behaviors of mono and bimetallic complexes were obtained from the relationship between cyclic voltammetry (CV) and the biological activities of the compounds. The cytotoxic activities of the complexes (Ru1-6) were tested against wide-scale cancer cell lines, namely HeLa, MDA-MB-231, DU-145, LNCaP, Hep-G2, Saos-2, PC-3, and MCF-7, and normal cell lines 3T3-L1 and Vero. Diamine Ru(II) arene complexes have unique biological characteristics and they are promising models for new anticancer drug development. MTT analysis reveals that each synthesized Ru complex showed cytotoxic activity towards the different cancer cells. In particular, three Ru complexes (Ru3, Ru5 and Ru6) showed less toxic effects on the cancer cells than the others. These novel Ru complexes affected both cancer and normal cell lines. As they had a toxic effect on the cells, the dosage applied should be tested before being used for in vivo applications. Cytotoxicity tests have shown that the bimetallic complex Ru6 was effective on all cancer cells. The effect of bimetallic enhancement on cancer cell lines, the systematic variation of the intermetallic distance and the ligand donor properties of the mono and bimetallic complexes were explored based on the cytotoxic activity. The interaction with FS-DNA and the stability/aquation of the complexes (Ru3 and Ru6) were investigated with 1H NMR spectroscopy. The binding modes between the complexes (Ru3 and Ru6) and DNA were investigated via UV-Vis spectroscopy.
Collapse
Affiliation(s)
| | - Onur Şahin
- University of Sinop, Scientific and Technological Research Application and Research Center, Sinop, Turkey
| | - Hafize Seda Vatansever
- University of Manisa Celal Bayar, Faculty of Medicine, Department of Histology-Embryology, 45030 Manisa, Turkey; Research Centre of Experimental Health Sciences (DESAM), Near East University, Mersin-10, Cyprus
| | - Feyzan Ozdal Kurt
- University of Manisa Celal Bayar, Faculty of Sciences and Letters, Department of Biology, 45030 Manisa, Turkey
| | - Mehmet Korkmaz
- University of Manisa Celal Bayar, Faculty of Medicine, Department of Medical Biology, 45030 Manisa, Turkey
| | - Remziye Kendirci
- University of Manisa Celal Bayar, Faculty of Medicine, Department of Histology-Embryology, 45030 Manisa, Turkey
| | - Levent Pelit
- University of Ege, Faculty of Science, Department of Chemistry, 35100 Izmir, Turkey
| | - Hayati Türkmen
- University of Ege, Faculty of Science, Department of Chemistry, 35100 Izmir, Turkey.
| |
Collapse
|
42
|
Shang YM, Liu J. Synthesis of a crystalline nanoscale Co(II)-coordination polymer based on the 4,4′-bis(imidazol-1-yl)-biphenyl ligand: structural characterization and liver cancer cell growth inhibition. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1711773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yi-Man Shang
- Department of Immunology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Juncai Liu
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|
43
|
Liu DX, Chen G, Guo HL, Chen DM, Li SH, Zhang WX. Synthesis, Crystal Structure, and Anticancer Activity of a In(III) Coordination Polymer Based on a Flexible 5-(4-Carboxybenzyl)Isophthalic Acid Ligand. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620040113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Dong Y, Wang Y, Zhuang P, Fu X, Zheng Y, Sanche L. Role of Transient Anions in Chemoradiation Therapy: Base Modifications, Cross-Links, and Cluster Damages Induced to Cisplatin-DNA Complexes by 1–20 eV Electrons. J Phys Chem B 2020; 124:3315-3325. [DOI: 10.1021/acs.jpcb.0c00946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yanfang Dong
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yaxiao Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Puxiang Zhuang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| |
Collapse
|
45
|
Jiang J, Li J, Liu C, Liu R, Liang X, Zhou Y, Pan L, Chen H, Ma Z. Study on the substitution effects of zinc benzoate terpyridine complexes on photoluminescence, antiproliferative potential and DNA binding properties. J Biol Inorg Chem 2020; 25:311-324. [PMID: 32112291 DOI: 10.1007/s00775-020-01763-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/08/2020] [Indexed: 01/26/2023]
Abstract
Six zinc(II) complexes, [Zn(OCOPh)2LR] (R = 1, 2, 3, 4, 5, 6) were synthesized by the reaction of zinc benzoate and six para-substituted 4-phenyl-terpyridine complexes and their structures were confirmed by elemental analysis, FT-IR, 1H NMR and X-ray single crystal diffraction analysis. Their photoluminescent properties in solid and in solutions of DMSO were studied. Three human cancer cell lines were used for antiproliferative potential: human lung cancer cell line (A549), human esophageal cancer cell line (Eca-109) and human breast cancer cell line (MCF-7). The results have shown that these zinc complexes have good inhibitory effects on cancer cells, which are better than that of the commonly used clinical drug cisplatin. The ability of the complexes to binding to CT-DNA was studied by UV spectroscopy and fluorescence titration, while the interaction between the complexes and CT-DNA, AT6, GC6 short-chain DNA sequences and G-quadruplex were analyzed by circular dichroism (CD). It is found that these complexes can bind to DNA, and the binding mode is mainly intercalator. The docking of the complexes with the DNA fragment was simulated using molecular docking software. All the results clearly display that the substituents at these ligands of the complexes have the substitution effects on the properties of photoluminescence, antiproliferative potential and DNA binding study.
Collapse
Affiliation(s)
- Jinzhang Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chengzhang Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Rongping Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Xing Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Yanling Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China.
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, 530004, PR China.
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China.
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
46
|
Liang GB, Yu YC, Wei JH, Kuang WB, Chen ZF, Zhang Y. Design, synthesis and biological evaluation of naphthalenebenzimidizole platinum (II) complexes as potential antitumor agents. Eur J Med Chem 2020; 188:112033. [DOI: 10.1016/j.ejmech.2019.112033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 10/25/2022]
|
47
|
Marogoa NR, Kama D, Visser HG, Schutte-Smith M. Crystal structures of chlorido-[dihy-droxybis-(1-imino-eth-oxy)]arsanido-κ 3 N, As, N']platinum(II) and of a polymorph of chlorido-[dihy-droxybis-(1-imino-prop-oxy)arsanido-κ 3 N, As, N']platinum(II). Acta Crystallogr E Crystallogr Commun 2020; 76:180-185. [PMID: 32071743 PMCID: PMC7001821 DOI: 10.1107/s2056989019016463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 11/11/2022]
Abstract
Each central platinum(II) atom in the crystal structures of chlorido-[dihy-droxybis-(1-imino-eth-oxy)arsanido-κ3 N,As,N']platinum(II), [Pt(C4H10AsN2O4)Cl] (1), and of chlorido-[dihy-droxybis-(1-imino-prop-oxy)arsanido-κ3 N,As,N']platinum(II), [Pt(C6H14AsN2O4)Cl] (2), is coordinated by two nitro-gen donor atoms, a chlorido ligand and to arsenic, which, in turn, is coordinated by two oxygen donor ligands, two hydroxyl ligands and the platinum(II) atom. The square-planar and trigonal-bipyramidal coordination environments around platinum and arsenic, respectively, are significantly distorted with the largest outliers being 173.90 (13) and 106.98 (14)° for platinum and arsenic in (1), and 173.20 (14)° and 94.20 (9)° for (2), respectively. One intra-molecular and four classical inter-molecular hydrogen-bonding inter-actions are observed in the crystal structure of (1), which give rise to an infinite three-dimensional network. A similar situation (one intra-molecular and four classical inter-molecular hydrogen-bonding inter-actions) is observed in the crystal structure of (2). Various π-inter-actions are present in (1) between the platinum(II) atom and the centroid of one of the five-membered rings formed by Pt, As, C, N, O with a distance of 3.7225 (7) Å, and between the centroids of five-membered (Pt, As, C, N, O) rings of neighbouring mol-ecules with distances of 3.7456 (4) and 3.7960 (6) Å. Likewise, weak π-inter-actions are observed in (2) between the platinum(II) atom and the centroid of one of the five-membered rings formed by Pt, As, C, N, O with a distance of 3.8213 (2) Å, as well as between the Cl atom and the centroid of a symmetry-related five-membered ring with a distance of 3.8252 (12) Å. Differences between (2) and the reported polymorph [Miodragović et al. (2013 ▸). Angew. Chem. Int. Ed. 52, 10749-10752] are discussed.
Collapse
Affiliation(s)
- Nina R. Marogoa
- University of the Free State, Department of Chemistry, PO Box 339, Nelson Mandela Drive, Bloemfontein, 9301, South Africa
| | - D.V. Kama
- University of the Free State, Department of Chemistry, PO Box 339, Nelson Mandela Drive, Bloemfontein, 9301, South Africa
| | - Hendrik G. Visser
- University of the Free State, Department of Chemistry, PO Box 339, Nelson Mandela Drive, Bloemfontein, 9301, South Africa
| | - M. Schutte-Smith
- University of the Free State, Department of Chemistry, PO Box 339, Nelson Mandela Drive, Bloemfontein, 9301, South Africa
| |
Collapse
|
48
|
Li D, Li LF, Zhang ZF, Shi WB, Pan L, Liu Y. Two new Bi(III) and Ce(III) chelates incorporating 1,10-phenanthroline-2,9-dicarboxylic acid: structure elucidation and anti-lung cancer activity study. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2019.1709505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Di Li
- Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, China
| | - Li-Fei Li
- Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, China
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, China
| | - Zhi-Fang Zhang
- Tong Liao City Hospital, Tongliao, Inner Mongolia, China
| | - Wen-Bo Shi
- Department of Orthopedics, People’s Hospital of Changshan, Quzhou, Zhejiang, China
| | - Lei Pan
- Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, China
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, China
| | - Yang Liu
- Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, China
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, China
| |
Collapse
|
49
|
Welsh A, Rylands LI, Arion VB, Prince S, Smith GS. Synthesis and antiproliferative activity of benzimidazole-based, trinuclear neutral cyclometallated and cationic, N^N-chelated ruthenium(ii) complexes. Dalton Trans 2020; 49:1143-1156. [DOI: 10.1039/c9dt03902c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A series of 2-phenyl and 2-pyridyl tris-benzimidazole ligands was reacted with the [Ru(p-cymene)Cl2]2 dimer to yield the corresponding neutral cyclometallated and cationic trinuclear organoruthenium(ii) complexes.
Collapse
Affiliation(s)
- Athi Welsh
- Department of Chemistry
- University of Cape Town
- Cape Town
- South Africa
| | - Laa-iqa Rylands
- Department of Chemistry
- University of Cape Town
- Cape Town
- South Africa
| | - Vladimir B. Arion
- Institute of Inorganic Chemistry of the University of Vienna
- 1090 Vienna
- Austria
| | - Sharon Prince
- Department of Human Biology
- University of Cape Town
- Faculty of Health Science
- South Africa
| | - Gregory S. Smith
- Department of Chemistry
- University of Cape Town
- Cape Town
- South Africa
| |
Collapse
|
50
|
Chaudhari KR, Kunwar A, Bhuvanesh N, Dey S. Synthesis and anti-proliferative activities of amine capped Pd and Pt macrocycles of 4,4′-dipyridylselenides. NEW J CHEM 2020. [DOI: 10.1039/c9nj06052a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Symmetric macrocyclic complexes characterized as dimeric and their oligomeric form in water and the solid state exhibit high in vitro anticancer activities.
Collapse
Affiliation(s)
- K. R. Chaudhari
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - A. Kunwar
- Homi Bhabha National Institute
- Training School Complex
- Mumbai 400 094
- India
- Radiation and Photo Chemistry Division
| | - N. Bhuvanesh
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - S. Dey
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
- Homi Bhabha National Institute
| |
Collapse
|