1
|
Ramirez-Vidal P, Canevesi RLS, Sdanghi G, Schaefer S, Maranzana G, Celzard A, Fierro V. A Step Forward in Understanding the Hydrogen Adsorption and Compression on Activated Carbons. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12562-12574. [PMID: 33661600 DOI: 10.1021/acsami.0c22192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Hydrogen adsorption on activated carbons (ACs) is a promising alternative to compression and liquefaction for storing hydrogen. Herein, we have studied hydrogen adsorption on six commercial ACs (CACs) with surface areas ranging from 996 to 2216 m2 g-1 in a temperature range of 77 to 273 K and pressures up to 15 MPa. Excess hydrogen adsorption capacities of 2.3 to 5.8 wt % were obtained at 77 K and 4 MPa. We demonstrated that, contrary to what is normally done, hydrogen capacity is more accurately predicted by the surface area determined by the nonlocal density functional theory method applied to N2 and CO2 adsorption data than by the Brunauer-Emmett-Teller (BET) area. The modified Dubinin-Astakhov (MDA) equation was used to fit the experimental adsorption data, and the relationship between the MDA parameters (nmax, Va, α, and β) and the textural properties of the CACs was determined for the first time. We concluded that the nmax and Va parameters are related to the BET area, while the α and β parameters are related to the average micropore size and total pore volume, respectively. α and β were used to evaluate the enthalpy and entropy of adsorption and we show that these parameters can be used to assess the best carbon for hydrogen storage or compression.
Collapse
Affiliation(s)
| | | | - Giuseppe Sdanghi
- Université de Lorraine, CNRS, IJL, Epinal F-88000, France
- Université de Lorraine, CNRS, LEMTA, Nancy F-54000, France
| | | | - Gaël Maranzana
- Université de Lorraine, CNRS, LEMTA, Nancy F-54000, France
| | - Alain Celzard
- Université de Lorraine, CNRS, IJL, Epinal F-88000, France
| | - Vanessa Fierro
- Université de Lorraine, CNRS, IJL, Epinal F-88000, France
| |
Collapse
|
2
|
Hadjiivanov KI, Panayotov DA, Mihaylov MY, Ivanova EZ, Chakarova KK, Andonova SM, Drenchev NL. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chem Rev 2020; 121:1286-1424. [DOI: 10.1021/acs.chemrev.0c00487] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Dimitar A. Panayotov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Mihail Y. Mihaylov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Elena Z. Ivanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Kristina K. Chakarova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Stanislava M. Andonova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nikola L. Drenchev
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
3
|
Veccham SP, Head-Gordon M. Density Functionals for Hydrogen Storage: Defining the H2Bind275 Test Set with Ab Initio Benchmarks and Assessment of 55 Functionals. J Chem Theory Comput 2020; 16:4963-4982. [PMID: 32603109 DOI: 10.1021/acs.jctc.0c00292] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Efficient and high-capacity storage materials are indispensable for a hydrogen-based economy. In silico tools can accelerate the process of discovery of new adsorbent materials with optimal hydrogen adsorption enthalpies. Density functional theory is well-poised to become a very useful tool for enabling high-throughput screening of potential materials. In this work, we have identified density functional approximations that provide good performance for hydrogen binding applications following a two-pronged approach. First, we have compiled a data set (H2Bind275) that comprehensively represents the hydrogen binding problem capturing the chemical and mechanistic diversity in the binding sites encountered in hydrogen storage materials. We have also computed reference interaction energies for this data set using coupled-cluster theory. Second, we have assessed the performance of 55 density functional approximations for predicting H2 interaction energies and have identified two hybrid density functionals (ωB97X-V and ωB97M-V), two double hybrid density functionals (DSD-PBEPBE-D3(BJ) and PBE0-DH), and one semilocal density functional (B97M-V) as the best performing ones. We have recommended the addition of empirical dispersion corrections to systematically underbinding density functionals such as revPBE, BLYP, and B3LYP for improvements in performance at negligible additional cost. We have also recommended the usage of the def2-TZVPP basis set as it represents a good compromise between accuracy and cost, limiting the finite basis set errors to less than 1 kJ/mol.
Collapse
Affiliation(s)
- Srimukh Prasad Veccham
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Rivera-Torrente M, Mandemaker LDB, Filez M, Delen G, Seoane B, Meirer F, Weckhuysen BM. Spectroscopy, microscopy, diffraction and scattering of archetypal MOFs: formation, metal sites in catalysis and thin films. Chem Soc Rev 2020; 49:6694-6732. [DOI: 10.1039/d0cs00635a] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A comprehensive overview of characterization tools for the analysis of well-known metal–organic frameworks and physico-chemical phenomena associated to their applications.
Collapse
Affiliation(s)
- Miguel Rivera-Torrente
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Laurens D. B. Mandemaker
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Matthias Filez
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Guusje Delen
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Beatriz Seoane
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| |
Collapse
|
5
|
Müller K. Technologies for the Storage of Hydrogen Part 1: Hydrogen Storage in the Narrower Sense. CHEMBIOENG REVIEWS 2019. [DOI: 10.1002/cben.201900009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Karsten Müller
- Friedrich-Alexander-Universität Erlangen-NürnbergInstitute of Separation Science and Technology Egerlandstrasse 3 91058 Erlangen Germany
- Forschungszentrum Jülich GmbHHelmholtz-Institut Erlangen-Nürnberg for Renewable Energy (IEK-11) Egerlandstrasse 3 91058 Erlangen Germany
| |
Collapse
|
6
|
Müller K. Technologien zur Speicherung von Wasserstoff. Teil 1: Wasserstoffspeicherung im engeren Sinn. CHEM-ING-TECH 2019. [DOI: 10.1002/cite.201800043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Karsten Müller
- Friedrich-Alexander-Universität Erlangen-NürnbergLehrstuhl für Thermische Verfahrenstechnik Egerlandstraße 3 91058 Erlangen Deutschland
| |
Collapse
|
7
|
Malouche A, Zlotea C, Szilágyi PÁ. Interactions of Hydrogen with Pd@MOF Composites. Chemphyschem 2019; 20:1282-1295. [DOI: 10.1002/cphc.201801092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Abdelmalek Malouche
- Institut de Chimie et des Matériaux Paris-Est (UMR 7182)Université Paris EstCNRSUPEC 2–8 Rue Henri Dunant F-94320 Thiais France
| | - Claudia Zlotea
- Institut de Chimie et des Matériaux Paris-Est (UMR 7182)Université Paris EstCNRSUPEC 2–8 Rue Henri Dunant F-94320 Thiais France
| | - Petra Ágota Szilágyi
- School of Engineering and Materials ScienceQueen Mary University of London Mile End Road E1 4NS London United Kingdom
| |
Collapse
|
8
|
Zhao H, Ren FD, Wang YH. Theoretical insight into the BH 3·HCN adsorption on the Co(100) and Co(110) surfaces as hydrogen storage. J Mol Model 2017; 23:126. [PMID: 28321654 DOI: 10.1007/s00894-017-3298-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/27/2017] [Indexed: 10/19/2022]
Abstract
Fifteen configurations and adsorption energies of the adsorption sites of BH3∙∙∙HCN on Co(100) and Co(110) surfaces were investigated using the density functional theory. The results show that after BH3∙∙∙HCN is adsorbed, although there is no general behavior for the H∙∙∙H distances, the adsorption energies of BH3∙∙∙HCN are always far stronger than those of H2 on Co surfaces, suggesting that the dihydrogen-bonded complex, one kind of prospective material for reversible hydrogen storage, can be tightly adsorbed on the surfaces of metals. Thus, the attempts to store the significant amounts of H2 can be successful by the way that the dihydrogen-bonded complexes are adsorbed on the surfaces of metals. The stability and binding mechanism was analyzed by the Mulliken charge population and reduced density gradients (RDGs) methods. Graphical Abstract BH3···HCN adsorption on Co surface.
Collapse
Affiliation(s)
- He Zhao
- School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China. .,State Key Lab of Advanced Welding & Joining, Harbin Institute of Technology, Harbin, 150001, China.
| | - Fu-de Ren
- School of Chemical and Environment Engineering, North University of China, Taiyuan, 030051, China
| | - Yan-Hong Wang
- School of Chemical and Environment Engineering, North University of China, Taiyuan, 030051, China
| |
Collapse
|
9
|
Bordiga S, Lamberti C, Bonino F, Travert A, Thibault-Starzyk F. Probing zeolites by vibrational spectroscopies. Chem Soc Rev 2015; 44:7262-341. [PMID: 26435467 DOI: 10.1039/c5cs00396b] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review addresses the most relevant aspects of vibrational spectroscopies (IR, Raman and INS) applied to zeolites and zeotype materials. Surface Brønsted and Lewis acidity and surface basicity are treated in detail. The role of probe molecules and the relevance of tuning both the proton affinity and the steric hindrance of the probe to fully understand and map the complex site population present inside microporous materials are critically discussed. A detailed description of the methods needed to precisely determine the IR absorption coefficients is given, making IR a quantitative technique. The thermodynamic parameters of the adsorption process that can be extracted from a variable-temperature IR study are described. Finally, cutting-edge space- and time-resolved experiments are reviewed. All aspects are discussed by reporting relevant examples. When available, the theoretical literature related to the reviewed experimental results is reported to support the interpretation of the vibrational spectra on an atomic level.
Collapse
Affiliation(s)
- Silvia Bordiga
- Department of Chemistry, NIS and INSTM Reference Centers, University of Torino, Via Quarello 15, I-10135 Torino, Italy
| | | | | | | | | |
Collapse
|
10
|
Mavrandonakis A, Vogiatzis KD, Boese AD, Fink K, Heine T, Klopper W. Ab Initio Study of the Adsorption of Small Molecules on Metal–Organic Frameworks with Oxo-centered Trimetallic Building Units: The Role of the Undercoordinated Metal Ion. Inorg Chem 2015; 54:8251-63. [DOI: 10.1021/acs.inorgchem.5b00689] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andreas Mavrandonakis
- Department
of Physics and Earth Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Konstantinos D. Vogiatzis
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, D-76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - A. Daniel Boese
- Department of Chemistry, University of Graz, Heinrichstraße
28/IV, 8010 Graz, Austria
| | - Karin Fink
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Thomas Heine
- Department
of Physics and Earth Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, D-76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
11
|
Brønsted acidity of H-MCM-22 as probed by variable-temperature infrared spectroscopy of adsorbed CO and N2. Catal Today 2014. [DOI: 10.1016/j.cattod.2013.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Chavan SM, Zavorotynska O, Lamberti C, Bordiga S. H2 interaction with divalent cations in isostructural MOFs: a key study for variable temperature infrared spectroscopy. Dalton Trans 2014; 42:12586-95. [PMID: 23861014 DOI: 10.1039/c3dt51312b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Systematic studies of H2 adsorption by variable temperature infrared (VTIR) spectroscopy have added value in the characterization of hydrogen storage materials. As a key study to describe the potential of the method, here we report VTIR spectroscopy results of H2 adsorption at isostructural MOFs CPO-27-M (M = Mg, Mn, Co, Ni, Zn). The strongest perturbation of H2 vibrational frequency is due to the interaction with an open metal site. Although ionic radius is an empirical value, the direct correlation between ionic radii of the metal cation and H2 interaction energy is found in MOFs of the same topology. The highest enthalpy of hydrogen adsorption 15 ± 1 kJ mol(-1) was found for Ni(2+). VTIR results of H2 adsorption at isostructural MOFs CPO-27-M (M = Mg, Mn, Co, Ni, Zn) were compared with data obtained from analogous studies performed on a large variety of microporous materials (MOFs and zeolites), underlining the relevance of the approach to get reliable energetic and entropic (ΔH(0) and ΔS(0)) values to be compared with computational data and isosteric heats.
Collapse
Affiliation(s)
- Sachin M Chavan
- Chemistry Department, NIS, Centre of Excellence and INSTM Università di Torino, via Pietro Giuria 7 and via Quarello 11, 10100, Torino, Italy.
| | | | | | | |
Collapse
|
13
|
Casasnovas R, Ortega-Castro J, Donoso J, Frau J, Muñoz F. Theoretical calculations of stability constants and pKa values of metal complexes in solution: application to pyridoxamine–copper(ii) complexes and their biological implications in AGE inhibition. Phys Chem Chem Phys 2013; 15:16303-13. [DOI: 10.1039/c3cp50840d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Higuchi M, Nakamura K, Horike S, Hijikata Y, Yanai N, Fukushima T, Kim J, Kato K, Takata M, Watanabe D, Oshima S, Kitagawa S. Design of Flexible Lewis Acidic Sites in Porous Coordination Polymers by using the Viologen Moiety. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203834] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Higuchi M, Nakamura K, Horike S, Hijikata Y, Yanai N, Fukushima T, Kim J, Kato K, Takata M, Watanabe D, Oshima S, Kitagawa S. Design of Flexible Lewis Acidic Sites in Porous Coordination Polymers by using the Viologen Moiety. Angew Chem Int Ed Engl 2012; 51:8369-72. [DOI: 10.1002/anie.201203834] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Indexed: 11/10/2022]
|
16
|
Areán CO, Cabello CP, Palomino GT. Infrared spectroscopic and thermodynamic study on hydrogen adsorption on the metal organic framework MIL-100(Sc). Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2011.11.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|