1
|
Mansour AM, Khaled RM, Shehab OR. A comprehensive survey of Mn(I) carbonyls as CO-releasing molecules reported over the last two decades. Dalton Trans 2024; 53:19022-19057. [PMID: 39543968 DOI: 10.1039/d4dt02091j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Over the last two decades, manganese(I) carbonyl complexes have been widely investigated as carbon monoxide releasing molecules (CORMs) to transfer small quantities of CO to biological targets to have beneficial impacts such as preventing ischemia reperfusion injury and reducing organ transplant rejection. Furthermore, these complexes exhibit beneficial anti-coagulative, anti-apoptotic, anti-inflammatory, and anti-proliferative properties. Owing to their highly controlled substitution chemistry and oxidative durability, Mn(I) carbonyl moieties were combined with a wide range of auxiliary ligands, including biomolecules. This review focused on tri- and tetracarbonyl Mn(I) complexes that were exposed to light, changed the redox status, or underwent thermal activation to release carbon monoxide. Kinetic parameters, stability in the dark, number of CO release equivalents, CO detection tools, and the nature of solvents used in the studies are reported and tabulated. An overview of all the previously published Mn(I) CORMs is specifically provided to define the method of action of these promising biologically active compounds and discuss their possible therapeutic applications in relation to their CO-releasing and biocompatibility characteristics.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates.
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Rabaa M Khaled
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| |
Collapse
|
2
|
Water-Soluble Carbon Monoxide-Releasing Molecules (CORMs). Top Curr Chem (Cham) 2022; 381:3. [PMID: 36515756 DOI: 10.1007/s41061-022-00413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/12/2022] [Indexed: 12/15/2022]
Abstract
Carbon monoxide-releasing molecules (CORMs) are promising candidates for producing carbon monoxide in the mammalian body for therapeutic purposes. At higher concentrations, CO has a harmful effect on the mammalian organism. However, lower doses at a controlled rate can provide cellular signaling for mandatory pharmacokinetic and pathological activities. To date, exploring the therapeutic implications of CO dose as a prodrug has attracted much attention due to its therapeutic significance. There are two different methods of CO insertion, i.e., indirect and direct exogenous insertion. Indirect exogenous insertion of CO suggests an advantage of reduced toxicity over direct exogenous insertion. For indirect exogenous insertion, researchers are facing the issue of tissue selectivity. To solve this issue, developers have considered the newly produced CORMs. Herein, metal carbonyl complexes (MCCs) are covalently linked with CO molecules to produce different CORMs such as CORM-1, CORM-2, and CORM-3, etc. All these CORMs required exogenous CO insertion to achieve the therapeutic targets at the optimized rate under peculiar conditions or/and triggering. Meanwhile, the metal residue was generated from i-CORMs, which can propagate toxicity. Herein, we explain CO administration, water-soluble CORMs, tissue accumulation, and cytotoxicity of depleted CORMs and the kinetic profile of CO release.
Collapse
|
3
|
|
4
|
Divya D, Govindarajan R, Nagarajaprakash R, Fayzullin RR, Vidhyapriya P, Sakthivel N, Manimaran B. Multicomponent Self-Assembly of Diaminobenzoquinonato-Bridged Manganese(I) Metallosupramolecular Rectangles: Host–Guest Interactions, Anticancer Activity, and Visible-Light-Induced CO Releasing Studies. Inorg Chem 2022; 61:15377-15391. [DOI: 10.1021/acs.inorgchem.2c01829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dhanaraj Divya
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| | | | - Ramamurthy Nagarajaprakash
- Chemical Sciences Research Group, Division of Research & Development, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Robert R. Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | | | - Natarajan Sakthivel
- Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - Bala. Manimaran
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
5
|
Wang M, Murata K, Koike Y, Jonusauskas G, Furet A, Bassani DM, Saito D, Kato M, Shimoda Y, Miyata K, Onda K, Ishii K. A Red‐Light‐Driven CO‐Releasing Complex: Photoreactivities and Excited‐State Dynamics of Highly Distorted Tricarbonyl Rhenium Phthalocyanines. Chemistry 2022; 28:e202200716. [DOI: 10.1002/chem.202200716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Mengfei Wang
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Kei Murata
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Yosuke Koike
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | | | - Amaury Furet
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 F-33400 Talence France
| | - Dario M. Bassani
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 F-33400 Talence France
| | - Daisuke Saito
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
- Department of Applied Chemistry for Environment School of Biological and Environmental Sciences Kwansei Gakuin University 2-1 Gakuen Sanda-shi Hyogo 669-1337 Japan
| | - Masako Kato
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
- Department of Applied Chemistry for Environment School of Biological and Environmental Sciences Kwansei Gakuin University 2-1 Gakuen Sanda-shi Hyogo 669-1337 Japan
| | - Yuushi Shimoda
- Department of Chemistry Faculty of Science Kyushu University 7-4-4 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kiyoshi Miyata
- Department of Chemistry Faculty of Science Kyushu University 7-4-4 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Ken Onda
- Department of Chemistry Faculty of Science Kyushu University 7-4-4 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kazuyuki Ishii
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| |
Collapse
|
6
|
Yuan Z, De La Cruz LK, Yang X, Wang B. Carbon Monoxide Signaling: Examining Its Engagement with Various Molecular Targets in the Context of Binding Affinity, Concentration, and Biologic Response. Pharmacol Rev 2022; 74:823-873. [PMID: 35738683 DOI: 10.1124/pharmrev.121.000564] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carbon monoxide (CO) has been firmly established as an endogenous signaling molecule with a variety of pathophysiological and pharmacological functions, including immunomodulation, organ protection, and circadian clock regulation, among many others. In terms of its molecular mechanism(s) of action, CO is known to bind to a large number of hemoproteins with at least 25 identified targets, including hemoglobin, myoglobin, neuroglobin, cytochrome c oxidase, cytochrome P450, soluble guanylyl cyclase, myeloperoxidase, and some ion channels with dissociation constant values spanning the range of sub-nM to high μM. Although CO's binding affinity with a large number of targets has been extensively studied and firmly established, there is a pressing need to incorporate such binding information into the analysis of CO's biologic response in the context of affinity and dosage. Especially important is to understand the reservoir role of hemoglobin in CO storage, transport, distribution, and transfer. We critically review the literature and inject a sense of quantitative assessment into our analyses of the various relationships among binding affinity, CO concentration, target occupancy level, and anticipated pharmacological actions. We hope that this review presents a picture of the overall landscape of CO's engagement with various targets, stimulates additional research, and helps to move the CO field in the direction of examining individual targets in the context of all of the targets and the concentration of available CO. We believe that such work will help the further understanding of the relationship of CO concentration and its pathophysiological functions and the eventual development of CO-based therapeutics. SIGNIFICANCE STATEMENT: The further development of carbon monoxide (CO) as a therapeutic agent will significantly rely on the understanding of CO's engagement with therapeutically relevant targets of varying affinity. This review critically examines the literature by quantitatively analyzing the intricate relationships among targets, target affinity for CO, CO level, and the affinity state of carboxyhemoglobin and provide a holistic approach to examining the molecular mechanism(s) of action for CO.
Collapse
Affiliation(s)
- Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Ladie Kimberly De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
7
|
Thomas JM, Vidhyapriya P, Sivan AK, Sakthivel N, Sivasankar C. Synthesis, spectroscopic, CO‐releasing ability, and anticancer activity studies of [Mn(CO)
3
(L–L)Br] complexes: Experimental and density functional theory studies. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jisha Mary Thomas
- Catalysis and Energy Laboratory, Department of Chemistry Pondicherry University (A Central University) Puducherry India
| | - Pitchavel Vidhyapriya
- Department of Biotechnology Pondicherry University (A Central University) Puducherry India
| | - Akhil K. Sivan
- Catalysis and Energy Laboratory, Department of Chemistry Pondicherry University (A Central University) Puducherry India
| | - Natarajan Sakthivel
- Department of Biotechnology Pondicherry University (A Central University) Puducherry India
| | - Chinnappan Sivasankar
- Catalysis and Energy Laboratory, Department of Chemistry Pondicherry University (A Central University) Puducherry India
| |
Collapse
|
8
|
Rajagopal A, Biddulph J, Tabrizi L, Fitzgerald-Hughes D, Pryce MT. Photoactive organometallic compounds as antimicrobial agents. ADVANCES IN INORGANIC CHEMISTRY 2022. [DOI: 10.1016/bs.adioch.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Hu J, Fang Y, Huang X, Qiao R, Quinn JF, Davis TP. Engineering macromolecular nanocarriers for local delivery of gaseous signaling molecules. Adv Drug Deliv Rev 2021; 179:114005. [PMID: 34687822 DOI: 10.1016/j.addr.2021.114005] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
In addition to being notorious air pollutants, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have also been known as endogenous gaseous signaling molecules (GSMs). These GSMs play critical roles in maintaining the homeostasis of living organisms. Importantly, the occurrence and development of many diseases such as inflammation and cancer are highly associated with the concentration changes of GSMs. As such, GSMs could also be used as new therapeutic agents, showing great potential in the treatment of many formidable diseases. Although clinically it is possible to directly inhale GSMs, the precise control of the dose and concentration for local delivery of GSMs remains a substantial challenge. The development of gaseous signaling molecule-releasing molecules provides a great tool for the safe and convenient delivery of GSMs. In this review article, we primarily focus on the recent development of macromolecular nanocarriers for the local delivery of various GSMs. Learning from the chemistry of small molecule-based donors, the integration of these gaseous signaling molecule-releasing molecules into polymeric matrices through physical encapsulation, post-modification, or direct polymerization approach renders it possible to fabricate numerous macromolecular nanocarriers with optimized pharmacokinetics and pharmacodynamics, revealing improved therapeutic performance than the small molecule analogs. The development of GSMs represents a new means for many disease treatments with unique therapeutic outcomes.
Collapse
|
10
|
Kumar U, Ramakrishna B, Varghese J, Vidhyapriya P, Sakthivel N, Manimaran B. Self-Assembled Manganese(I)-Based Selenolato-Bridged Tetranuclear Metallorectangles: Host-Guest Interaction, Anticancer, and CO-Releasing Studies. Inorg Chem 2021; 60:13284-13298. [PMID: 34357751 DOI: 10.1021/acs.inorgchem.1c01636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Supramolecular one-step self-assembly of dimanganese decacarbonyl, diaryl diselenide, and linear dipyridyl ligands (L = pyrazine (pz), 4,4'-bipyridine (bpy), and trans-1,2-bis(4-pyridyl)ethylene (bpe)) has resulted in the formation of selenolato-bridged manganese(I)-based metallorectangles. The synthesis of tetranuclear Mn(I)-based metallorectangles [{(CO)3Mn(μ-SeR)2Mn(CO)3}2(μ-L)2] (1-6) was facilitated by the oxidative addition of diaryl diselenide to dimanganese decacarbonyl with the simultaneous coordination of linear bidentate pyridyl linker in an orthogonal fashion. Formation of metallorectangles 1-6 was ascertained using IR, UV-vis, NMR spectroscopic techniques, and elemental analyses. The molecular mass of compounds 2, 4, and 6 were determined by ESI-mass spectrometry. Solid-state structural elucidation of 2, 3, and 6 by single-crystal X-ray diffraction methods revealed a rectangular framework wherein selenolato-bridges and pyridyl ligands define the shorter and longer edges, respectively. Also, the guest binding capability of metallorectangles 3 and 5 with different aromatic guests was studied using UV-vis absorption and emission spectrophotometric titration methods that affirmed strong host-guest binding interactions. The formation of the host-guest complex between metallorectangle 3 and pyrene has been explicitly corroborated by the single-crystal X-ray structure of 3•pyrene. Moreover, select metallorectangles 1-4 and 6 were studied to explore their anticancer activity, while CO-releasing ability of metallorectangle 2 was further appraised using equine heart myoglobin assay.
Collapse
Affiliation(s)
- Udit Kumar
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| | - Buthanapalli Ramakrishna
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Tamil Nadu 600127, India
| | - Jisna Varghese
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| | | | - Natarajan Sakthivel
- Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - Bala Manimaran
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
11
|
|
12
|
Yang X, Lu W, Hopper CP, Ke B, Wang B. Nature's marvels endowed in gaseous molecules I: Carbon monoxide and its physiological and therapeutic roles. Acta Pharm Sin B 2021; 11:1434-1445. [PMID: 34221861 PMCID: PMC8245769 DOI: 10.1016/j.apsb.2020.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/03/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
Nature has endowed gaseous molecules such as O2, CO2, CO, NO, H2S, and N2 with critical and diverse roles in sustaining life, from supplying energy needed to power life and building blocks for life's physical structure to mediating and coordinating cellular functions. In this article, we give a brief introduction of the complex functions of the various gaseous molecules in life and then focus on carbon monoxide as a specific example of an endogenously produced signaling molecule to highlight the importance of this class of molecules. The past twenty years have seen much progress in understanding CO's mechanism(s) of action and pharmacological effects as well as in developing delivery methods for easy administration. One remarkable trait of CO is its pleiotropic effects that have few parallels, except perhaps its sister gaseous signaling molecules such as nitric oxide and hydrogen sulfide. This review will delve into the sophistication of CO-mediated signaling as well as its validated pharmacological functions and possible therapeutic applications.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Christopher P. Hopper
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
- Institut für Experimentelle Biomedizin, Universitätsklinikum Würzburg, Würzburg, Bavaria 97080, Germany
| | - Bowen Ke
- Department of Anesthesiology, West China Hospital, Chengdu 610041, China
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
13
|
Silva AF, Calhau IB, Gomes AC, Valente AA, Gonçalves IS, Pillinger M. A hafnium-based metal-organic framework for the entrapment of molybdenum hexacarbonyl and the light-responsive release of the gasotransmitter carbon monoxide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112053. [PMID: 33947547 DOI: 10.1016/j.msec.2021.112053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022]
Abstract
A carbon monoxide-releasing material (CORMA) has been prepared by inclusion of molybdenum hexacarbonyl in a hafnium-based metal-organic framework (MOF) with the UiO-66 architecture. Mo(CO)6 was adsorbed from solution to give supported materials containing 6.0-6.6 wt% Mo. As confirmed by powder X-ray diffraction (PXRD) and SEM coupled with energy dispersive X-ray spectroscopy, neither the crystallinity nor the morphology of the porous host was affected by the loading process. While the general shape of the N2 physisorption isotherms (77 K) did not change significantly after encapsulation of Mo(CO)6, the micropore volume decreased by ca. 20%. Thermogravimetric analysis of the as-prepared materials revealed a weight loss step around 160 °C associated with the decomposition of Mo(CO)6 to subcarbonyl species. Confirmation for the presence of encapsulated Mo(CO)6 complexes was provided by FT-IR and 13C{1H} cross-polarization magic-angle spinning NMR spectroscopies. To test the capability of these materials to behave as CORMAs and transfer CO to heme proteins, the standard myoglobin (Mb) assay was used. While stable in the dark, photoactivation with low-power UV light (365 nm) liberated CO from the encapsulated hexacarbonyl molecules in Mo(6.0)/UiO-66(Hf), leading to a maximum amount of 0.26 mmol CO released per gram of material. Under the simulated physiological conditions of the Mb assay (37 °C, pH 7.4 buffer), minimal leaching of molybdenum occurred, PXRD showed only slight amorphization, and FT-IR spectroscopy confirmed the high chemical stability of the MOF host.
Collapse
Affiliation(s)
- Andreia F Silva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel B Calhau
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana C Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Anabela A Valente
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel S Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Martyn Pillinger
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
14
|
Yang XX, Ke BW, Lu W, Wang BH. CO as a therapeutic agent: discovery and delivery forms. Chin J Nat Med 2021; 18:284-295. [PMID: 32402406 DOI: 10.1016/s1875-5364(20)30036-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 02/08/2023]
Abstract
Carbon monoxide (CO) as one of the three important endogenously produced signaling molecules, termed as "gasotransmitter," has emerged as a promising therapeutic agent for treating various inflammation and cellular-stress related diseases. In this review, we discussed CO's evolution from a well-recognized toxic gas to a signaling molecule, and the effort to develop different approaches to deliver it for therapeutic application. We also summarize recently reported chemistry towards different CO delivery forms.
Collapse
Affiliation(s)
- Xiao-Xiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta GA 30303, USA
| | - Bo-Wen Ke
- Department of Anesthesiology, West China Hospital, Chengdu 610000, China
| | - Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta GA 30303, USA
| | - Bing-He Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta GA 30303, USA.
| |
Collapse
|
15
|
Opoku-Damoah Y, Zhang R, Ta HT, Amilan Jose D, Sakla R, Xu ZP. Lipid-encapsulated upconversion nanoparticle for near-infrared light-mediated carbon monoxide release for cancer gas therapy. Eur J Pharm Biopharm 2021; 158:211-221. [DOI: 10.1016/j.ejpb.2020.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/15/2020] [Accepted: 11/22/2020] [Indexed: 12/16/2022]
|
16
|
Maiti B, Ng G, Abramov A, Boyer C, Díaz DD. Methionine-based carbon monoxide releasing polymer for the prevention of biofilm formation. Polym Chem 2021. [DOI: 10.1039/d1py00546d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new water-soluble methionine-based CO releasing polymer shows slow and spontaneous release of CO with sustained-release kinetics, preventing biofilm formation against Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Binoy Maiti
- Institut für Organische Chemie
- Universität Regensburg
- 93053 Regensburg
- Germany
| | - Gervase Ng
- Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Australia
- Sydney
- Australia
| | - Alex Abramov
- Institut für Organische Chemie
- Universität Regensburg
- 93053 Regensburg
- Germany
| | - Cyrille Boyer
- Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Australia
- Sydney
- Australia
| | - David Díaz Díaz
- Institut für Organische Chemie
- Universität Regensburg
- 93053 Regensburg
- Germany
- Departamento de Química Orgánica
| |
Collapse
|
17
|
Ishmail FZ, Melis DR, Mbaba M, Smith GS. Diversification of quinoline-triazole scaffolds with CORMs: Synthesis, in vitro and in silico biological evaluation against Plasmodium falciparum. J Inorg Biochem 2020; 215:111328. [PMID: 33340802 DOI: 10.1016/j.jinorgbio.2020.111328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
A discrete series of tricarbonyl manganese and rhenium complexes conjugated to a quinoline-triazole hybrid scaffold were synthesised and their inhibitory activities evaluated against Plasmodium falciparum. In general, the complexes show moderate activity with improved inhibitory activities for the photoactivatable manganese(I) tricarbonyl complexes in the malaria parasite. All complexes are active in the dark against the NF54 CQS (chloroquine-sensitive) and K1 MDR (multidrug-resistant) strains of Plasmodium falciparum, with IC50 values in the low micromolar range. Of significance, the complexes retain their activity in the MDR strain with resistance indices ranging between 1.1 and 2.1. The Mn(I) analogues display photodissociation of all three CO ligands upon irradiation at 365 nm. More importantly, the complexes show increased antimalarial activity in vitro upon photoactivation, something not observed by the clinically used reference drug, chloroquine. As a purported mechanism of action, the compounds were evaluated as β-haematin inhibitors. To further understand the interactions of the complexes, in silico hemozoin docking simulations were performed, attesting to the fact that CO-release could be vital for blocking the hemozoin formation pathway. These results show that this strategy may be a valuable, novel route to design antimalarial agents with higher efficacy.
Collapse
Affiliation(s)
- Fatima-Zahra Ishmail
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Diana R Melis
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Mziyanda Mbaba
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa.
| |
Collapse
|
18
|
Hopper CP, De La Cruz LK, Lyles KV, Wareham LK, Gilbert JA, Eichenbaum Z, Magierowski M, Poole RK, Wollborn J, Wang B. Role of Carbon Monoxide in Host-Gut Microbiome Communication. Chem Rev 2020; 120:13273-13311. [PMID: 33089988 DOI: 10.1021/acs.chemrev.0c00586] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nature is full of examples of symbiotic relationships. The critical symbiotic relation between host and mutualistic bacteria is attracting increasing attention to the degree that the gut microbiome is proposed by some as a new organ system. The microbiome exerts its systemic effect through a diverse range of metabolites, which include gaseous molecules such as H2, CO2, NH3, CH4, NO, H2S, and CO. In turn, the human host can influence the microbiome through these gaseous molecules as well in a reciprocal manner. Among these gaseous molecules, NO, H2S, and CO occupy a special place because of their widely known physiological functions in the host and their overlap and similarity in both targets and functions. The roles that NO and H2S play have been extensively examined by others. Herein, the roles of CO in host-gut microbiome communication are examined through a discussion of (1) host production and function of CO, (2) available CO donors as research tools, (3) CO production from diet and bacterial sources, (4) effect of CO on bacteria including CO sensing, and (5) gut microbiome production of CO. There is a large amount of literature suggesting the "messenger" role of CO in host-gut microbiome communication. However, much more work is needed to begin achieving a systematic understanding of this issue.
Collapse
Affiliation(s)
- Christopher P Hopper
- Institute for Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Bavaria DE 97080, Germany.,Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, Florida 32611, United States
| | - Ladie Kimberly De La Cruz
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kristin V Lyles
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lauren K Wareham
- The Vanderbilt Eye Institute and Department of Ophthalmology & Visual Sciences, The Vanderbilt University Medical Center and School of Medicine, Nashville, Tennessee 37232, United States
| | - Jack A Gilbert
- Department of Pediatrics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Marcin Magierowski
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Cracow PL 31-531, Poland
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Sheffield S10 2TN, U.K
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg DE 79085, Germany.,Department of Anesthesiology, Perioperative and Pain Management, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Binghe Wang
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
19
|
Water-soluble UV/visible light activated Mn-CO-releasing molecules: Synthesis, structure, CO releasing and biological activities evaluation. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Zhang M, Cheng J, Huang X, Zhang G, Ding S, Hu J, Qiao R. Photo‐Degradable Micelles Capable of Releasing of Carbon Monoxide under Visible Light Irradiation. Macromol Rapid Commun 2020; 41:e2000323. [DOI: 10.1002/marc.202000323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/12/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Mingyang Zhang
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Science at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Jian Cheng
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Science at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Xuming Huang
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane Queensland 4072 Australia
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Science at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Shenggang Ding
- Department of Pediatrics The First Affiliated Hospital of Anhui Medical University Hefei Anhui 230022 China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Science at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
21
|
Rossier J, Delasoie J, Haeni L, Hauser D, Rothen-Rutishauser B, Zobi F. Cytotoxicity of Mn-based photoCORMs of ethynyl-α-diimine ligands against different cancer cell lines: The key role of CO-depleted metal fragments. J Inorg Biochem 2020; 209:111122. [PMID: 32497818 DOI: 10.1016/j.jinorgbio.2020.111122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022]
Abstract
A series of tricarbonyl manganese complexes bearing 4-ethynyl-2,2'-bipyridine and 5-ethynyl-1,10-phenanthroline α-diimine ligands were synthetized, characterized and conjugated to vitamin B12, previously used as a vector for drug delivery, to take advantage of its water solubility and specificity toward cancer cells. The compounds act as photoactivatable carbon monoxide-releasing molecules rapidly liberating on average ca. 2.3 equivalents of CO upon photo-irradiation. Complexes and conjugates were tested for their anticancer effects, both in the dark and following photo-activation, against breast cancer MCF-7, lung carcinoma A549 and colon adenocarcinoma HT29 cell lines as well as immortalized human bronchial epithelial cells 16HBE14o- as the non-carcinogenic control. Our results indicate that the light-induced cytotoxicity these molecules can be attributed to both their released CO and to their CO-depleted metal fragments including liberated ligands.
Collapse
Affiliation(s)
- Jeremie Rossier
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Joachim Delasoie
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Laetitia Haeni
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Daniel Hauser
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
22
|
Cheng J, Zheng B, Cheng S, Zhang G, Hu J. Metal-free carbon monoxide-releasing micelles undergo tandem photochemical reactions for cutaneous wound healing. Chem Sci 2020; 11:4499-4507. [PMID: 34122908 PMCID: PMC8159483 DOI: 10.1039/d0sc00135j] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Carbon monoxide (CO) has shown broad biomedical applications. The site-specific delivery and controlled release of CO is of crucial importance to achieve maximum therapeutic benefits. The development of carbon monoxide (CO)-releasing polymers (CORPs) can increase the stability, optimize pharmacokinetic behavior, and reduce the side effects of small molecule precursors. However, almost all established CORPs were synthesized through a post functional approach, although the direct polymerization strategy is more powerful in controlling the chain compositions and architectures. Herein, a direct polymerization strategy is proposed toward metal-free CO-releasing polymers (CORPs) based on photoresponsive 3-hydroxyflavone (3-HF) derivatives. Such CO-releasing amphiphiles self-assemble into micelles, having excellent water-dispersity. Intriguingly, photo-triggered tandem photochemical reactions confer successive fluorescence transitions from blue-to-red-to-colorless, enabling self-reporting CO release in vitro and in vivo as a result of the incorporation of 3-HF derivatives. More importantly, the localized CO delivery of CORPs by taking advantage of the spatiotemporal control of light stimulus outperformed conventional metal carbonyls such as CORMs in terms of anti-inflammation and cutaneous wound healing. This work opens a novel avenue toward metal-free CORPs for potential biomedical applications.
Collapse
Affiliation(s)
- Jian Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China Hefei 230026 Anhui China
| | - Bin Zheng
- School of Chemistry and Chemical Engineering, Hefei Normal University Hefei Anhui 230061 P. R. China
| | - Sheng Cheng
- Instrumental Analysis Center, Hefei University of Technology Hefei Anhui 230009 China
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China Hefei 230026 Anhui China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China Hefei 230026 Anhui China
| |
Collapse
|
23
|
Pinto MN, Mascharak PK. Light-assisted and remote delivery of carbon monoxide to malignant cells and tissues: Photochemotherapy in the spotlight. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2020.100341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Diphenyl cyclopropenone-centered polymers for site-specific CO-releasing and chain dissociation. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.03.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Amorim AL, Guerreiro A, Glitz VA, Coimbra DF, Bortoluzzi AJ, Caramori GF, Braga AL, Neves A, Bernardes GJL, Peralta RA. Synthesis, characterization and photoinduced CO-release by manganese( i) complexes. NEW J CHEM 2020. [DOI: 10.1039/d0nj02260h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Three new photoCORM, two with non two with nonbonding pyridine and one with benzyl group, were synthesised, and their CO-releasing properties evaluated for with regards to their elusive binding mode.
Collapse
Affiliation(s)
- André L. Amorim
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | - Ana Guerreiro
- Instituto de Medicina Molecular
- Faculdade de Medicina
- Universidade de Lisboa
- Avenida Professor Egas Moniz
- Lisboa
| | - Vinícius A. Glitz
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | - Daniel F. Coimbra
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | | | - Giovanni F. Caramori
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | - Antonio L. Braga
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | - Ademir Neves
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | - Gonçalo J. L. Bernardes
- Instituto de Medicina Molecular
- Faculdade de Medicina
- Universidade de Lisboa
- Avenida Professor Egas Moniz
- Lisboa
| | - Rosely A. Peralta
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| |
Collapse
|
26
|
Yan H, Du J, Zhu S, Nie G, Zhang H, Gu Z, Zhao Y. Emerging Delivery Strategies of Carbon Monoxide for Therapeutic Applications: from CO Gas to CO Releasing Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904382. [PMID: 31663244 DOI: 10.1002/smll.201904382] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Carbon monoxide (CO) therapy has emerged as a hot topic under exploration in the field of gas therapy as it shows the promise of treating various diseases. Due to the gaseous property and the high affinity for human hemoglobin, the main challenges of administrating medicinal CO are the lack of target selectivity as well as the toxic profile at relatively high concentrations. Although abundant CO releasing molecules (CORMs) with the capacity to deliver CO in biological systems have been developed, several disadvantages related to CORMs, including random diffusion, poor solubility, potential toxicity, and lack of on-demand CO release in deep tissue, still confine their practical use. Recently, the advent of versatile nanomedicine has provided a promising chance for improving the properties of naked CORMs and simultaneously realizing the therapeutic applications of CO. This review presents a brief summarization of the emerging delivery strategies of CO based on nanomaterials for therapeutic application. First, an introduction covering the therapeutic roles of CO and several frequently used CORMs is provided. Then, recent advancements in the synthesis and application of versatile CO releasing nanomaterials are elaborated. Finally, the current challenges and future directions of these important delivery strategies are proposed.
Collapse
Affiliation(s)
- Haili Yan
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Jiangfeng Du
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guangjun Nie
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hui Zhang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuliang Zhao
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
27
|
Gandra UR, Sinopoli A, Moncho S, NandaKumar M, Ninković DB, Zarić SD, Sohail M, Al-Meer S, Brothers EN, Mazloum NA, Al-Hashimi M, Bazzi HS. Green Light-Responsive CO-Releasing Polymeric Materials Derived from Ring-Opening Metathesis Polymerization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34376-34384. [PMID: 31490644 DOI: 10.1021/acsami.9b12628] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbon monoxide (CO) is an important biological gasotransmitter in living cells. Precise spatial and temporal control over release of CO is a major requirement for clinical application. To date, the most reported carbon monoxide releasing materials use expensive fabrication methods and require harmful and poorly designed tissue-penetrating UV irradiation to initiate the CO release precisely at infected sites. Herein, we report the first example of utilizing a green light-responsive CO-releasing polymer P synthesized via ring-opening metathesis polymerization. Both monomer M and polymer P were very stable under dark conditions and CO release was effectively triggered using minimal power and low energy wavelength irradiation (550 nm, ≤28 mW). Time-dependent density functional theory (TD-DFT) calculations were carried out to simulate the electronic transition and insight into the nature of the excitations for both L and M. TD-DFT calculations indicate that the absorption peak of M is mainly due to the excitation of the seventh singlet excited state, S7. Furthermore, stretchable materials using polytetrafluoroethylene (PTFE) strips based on P were fabricated to afford P-PTFE, which can be used as a simple, inexpensive, and portable CO storage bandage. Insignificant cytotoxicity as well as cell permeability was found for M and P against human embryonic kidney cells.
Collapse
Affiliation(s)
- Upendar Reddy Gandra
- Department of Chemistry , Texas A&M University at Qatar , P.O. Box 23874, Doha , Qatar
| | - Alessandro Sinopoli
- Qatar Environmental & Energy Research Institute , Hamad Bin Khalifa University , P.O. Box 34110, Doha , Qatar
| | - Salvador Moncho
- Department of Chemistry , Texas A&M University at Qatar , P.O. Box 23874, Doha , Qatar
| | - Manjula NandaKumar
- Department of Microbiology and Immunology , Weill Cornell Medicine-Qatar , P.O. Box 24144, Doha , Qatar
| | - Dragan B Ninković
- Department of Chemistry , Texas A&M University at Qatar , P.O. Box 23874, Doha , Qatar
- Innovation Center of Faculty of Chemistry , Studentski trg 12-16 , 11000 Belgrade , Serbia
| | - Snežana D Zarić
- Department of Chemistry , Texas A&M University at Qatar , P.O. Box 23874, Doha , Qatar
- Faculty of Chemistry , Belgrade University , Studentski trg 12-16 , 11000 Belgrade , Serbia
| | - Muhammad Sohail
- Qatar Environmental & Energy Research Institute , Hamad Bin Khalifa University , P.O. Box 34110, Doha , Qatar
| | | | - Edward N Brothers
- Department of Chemistry , Texas A&M University at Qatar , P.O. Box 23874, Doha , Qatar
| | - Nayef A Mazloum
- Department of Microbiology and Immunology , Weill Cornell Medicine-Qatar , P.O. Box 24144, Doha , Qatar
| | - Mohammed Al-Hashimi
- Department of Chemistry , Texas A&M University at Qatar , P.O. Box 23874, Doha , Qatar
| | - Hassan S Bazzi
- Department of Chemistry , Texas A&M University at Qatar , P.O. Box 23874, Doha , Qatar
- Department of Materials Science & Engineering , Texas A&M University , 209 Reed McDonald Building , 77843-3003 College Station , Texas , United States
| |
Collapse
|
28
|
Wilson BJ, Brantley JN. Synthesis and Reactivity of Metallocarbene-Containing Polymers. J Am Chem Soc 2019; 141:12453-12457. [PMID: 31348854 DOI: 10.1021/jacs.9b04077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metallopolymers are an emerging class of materials with potential utility as semiconductors, catalysts, optical device components, and stimuli responsive networks. While polymer frameworks have been decorated with an array of organometallic moieties, the incorporation of metallocarbenes has been largely overlooked. Here, we report ring-opening metathesis polymerization as a strategy for the synthesis of Fischer carbene-containing polymers. High degrees of polymerization were observed (>800 repeats), and the isolated materials exhibited exceptional solubility and thermal stability. The tungsten carbene subunits were readily incorporated into block copolymers and could be modified through subsequent transformations. Moreover, the metallocarbene polymers were found to release carbon monoxide upon exposure to light or oxygen, which is unusual for tungsten carbene complexes. These metallocarbene-containing polymers could represent new platforms for the development of functional materials.
Collapse
Affiliation(s)
- Breana J Wilson
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Johnathan N Brantley
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
29
|
Faizan M, Niazi KUK, Muhammad N, Hu Y, Wang Y, Lin D, Liu Y, Zhang W, Gao Z. The Intercalation of CORM-2 with Pharmaceutical Clay Montmorillonite (MMT) Aids for Therapeutic Carbon Monoxide Release. Int J Mol Sci 2019; 20:E3453. [PMID: 31337099 PMCID: PMC6679092 DOI: 10.3390/ijms20143453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/06/2019] [Accepted: 07/10/2019] [Indexed: 01/11/2023] Open
Abstract
The pharmaceutical clay montmorillonite (MMT) is, for the first time, explored as a carbon monoxide-releasing material (CORMat). MMT consists of silicate double layered structure; its exfoliation feature intercalate the CORM-2 [RuCl(μ-Cl)(CO)3]2 inside the layers to suppress the toxicity of organometallic segment. The infrared spectroscopy (IR) confirmed the existence of ruthenium coordinated carbonyl ligand in MMT layers. The energy-dispersive X-ray spectroscopy (EDX) analysis showed that ruthenium element in this material was about 5%. The scanning electron microscopy (SEM) and transmission electron microscope (TEM) images showed that the layer-structure of MMT has been maintained after loading the ruthenium carbonyl segment. Moreover, the layers have been stretched out, which was confirmed by X-ray diffraction (XRD) analysis. Thermogravimetric (TG) curves with huge weight loss around 100-200 °C were attributed to the CO hot-release of ruthenium carbonyl as well as the loss of the adsorbed solvent molecules and the water molecules between the layers. The CO-liberating properties have been assessed through myoglobin assay. The horse myoglobin test showed that the material could be hydrolyzed to slowly release carbon monoxide in physiological environments. The half-life of CO release was much longer than that of CORM-3, and it has an excellent environmental tolerance and slow release effect.
Collapse
Affiliation(s)
- Muhammad Faizan
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | | | - Niaz Muhammad
- Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yongxia Hu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yanyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Dezhi Lin
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yuanyuan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
30
|
Faizan M, Muhammad N, Niazi KUK, Hu Y, Wang Y, Wu Y, Sun H, Liu R, Dong W, Zhang W, Gao Z. CO-Releasing Materials: An Emphasis on Therapeutic Implications, as Release and Subsequent Cytotoxicity Are the Part of Therapy. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1643. [PMID: 31137526 PMCID: PMC6566563 DOI: 10.3390/ma12101643] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
The CO-releasing materials (CORMats) are used as substances for producing CO molecules for therapeutic purposes. Carbon monoxide (CO) imparts toxic effects to biological organisms at higher concentration. If this characteristic is utilized in a controlled manner, it can act as a cell-signaling agent for important pathological and pharmacokinetic functions; hence offering many new applications and treatments. Recently, research on therapeutic applications using the CO treatment has gained much attention due to its nontoxic nature, and its injection into the human body using several conjugate systems. Mainly, there are two types of CO insertion techniques into the human body, i.e., direct and indirect CO insertion. Indirect CO insertion offers an advantage of avoiding toxicity as compared to direct CO insertion. For the indirect CO inhalation method, developers are facing certain problems, such as its inability to achieve the specific cellular targets and how to control the dosage of CO. To address these issues, researchers have adopted alternative strategies regarded as CO-releasing molecules (CORMs). CO is covalently attached with metal carbonyl complexes (MCCs), which generate various CORMs such as CORM-1, CORM-2, CORM-3, ALF492, CORM-A1 and ALF186. When these molecules are inserted into the human body, CO is released from these compounds at a controlled rate under certain conditions or/and triggers. Such reactions are helpful in achieving cellular level targets with a controlled release of the CO amount. However on the other hand, CORMs also produce a metal residue (termed as i-CORMs) upon degradation that can initiate harmful toxic activity inside the body. To improve the performance of the CO precursor with the restricted development of i-CORMs, several new CORMats have been developed such as micellization, peptide, vitamins, MOFs, polymerization, nanoparticles, protein, metallodendrimer, nanosheet and nanodiamond, etc. In this review article, we shall describe modern ways of CO administration; focusing primarily on exclusive features of CORM's tissue accumulations and their toxicities. This report also elaborates on the kinetic profile of the CO gas. The comprehension of developmental phases of CORMats shall be useful for exploring the ideal CO therapeutic drugs in the future of medical sciences.
Collapse
Affiliation(s)
- Muhammad Faizan
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Niaz Muhammad
- Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| | | | - Yongxia Hu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Yanyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ya Wu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ruixia Liu
- Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, China.
| | - Wensheng Dong
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
31
|
Yao J, Liu Y, Wang J, Jiang Q, She D, Guo H, Sun N, Pang Z, Deng C, Yang W, Shen S. On-demand CO release for amplification of chemotherapy by MOF functionalized magnetic carbon nanoparticles with NIR irradiation. Biomaterials 2019; 195:51-62. [DOI: 10.1016/j.biomaterials.2018.12.029] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 12/21/2022]
|
32
|
Kumar U, Jose S, Divya D, Vidhyapriya P, Sakthivel N, Manimaran B. Self-assembly of manganese(i) based thiolato bridged dinuclear metallacycles: synthesis, characterization, cytotoxicity evaluation and CO-releasing studies. NEW J CHEM 2019. [DOI: 10.1039/c8nj06271d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manganese(i) based thiolato bridged dinuclear metallacycles were assessed as anticancer agents along with myoglobin assay for CO-releasing studies.
Collapse
Affiliation(s)
- Udit Kumar
- Department of Chemistry
- Pondicherry University
- Puducherry
- India
| | - Shilpa Jose
- Department of Chemistry
- Pondicherry University
- Puducherry
- India
| | - Dhanaraj Divya
- Department of Chemistry
- Pondicherry University
- Puducherry
- India
| | | | | | - Bala. Manimaran
- Department of Chemistry
- Pondicherry University
- Puducherry
- India
| |
Collapse
|
33
|
Yu L, Hu P, Chen Y. Gas-Generating Nanoplatforms: Material Chemistry, Multifunctionality, and Gas Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801964. [PMID: 30066474 DOI: 10.1002/adma.201801964] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Indexed: 05/16/2023]
Abstract
The fast advances of theranostic nanomedicine enable the rational design and construction of diverse functional nanoplatforms for versatile biomedical applications, among which gas-generating nanoplatforms (GGNs) have emerged very recently as unique theranostic nanoplatforms for broad gas therapies. Here, the recent developments of the rational design and chemical construction of versatile GGNs for efficient gas therapies by either exogenous physical triggers or endogenous disease-environment responsiveness are reviewed. These gases involve some therapeutic gases that can directly change disease status, such as oxygen (O2 ), nitric oxide (NO), carbon monoxide (CO), hydrogen (H2 ), hydrogen sulfide (H2 S) and sulfur dioxide (SO2 ), and other gases such as carbon dioxide (CO2 ), dl-menthol (DLM), and gaseous perfluorocarbon (PFC) for supplementary assistance of the theranostic process. Abundant nanocarriers have been adopted for gas delivery into lesions, including poly(d,l-lactic-co-glycolic acid), micelles, silica/mesoporous silica, organosilica, MnO2 , graphene, Bi2 Se3 , upconversion nanoparticles, CaCO3 , etc. Especially, these GGNs have been successfully developed for versatile biomedical applications, including diagnostic imaging and therapeutic use. The biosafety issue, challenges faced, and future developments on the rational construction of GGNs are also discussed for further promotion of their clinical translation to benefit patients.
Collapse
Affiliation(s)
- Luodan Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
34
|
Giffard D, Fischer-Fodor E, Vlad C, Achimas-Cadariu P, Smith GS. Synthesis and antitumour evaluation of mono- and multinuclear [2+1] tricarbonylrhenium(I) complexes. Eur J Med Chem 2018; 157:773-781. [DOI: 10.1016/j.ejmech.2018.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/15/2022]
|
35
|
Sakla R, Jose DA. Vesicles Functionalized with a CO-Releasing Molecule for Light-Induced CO Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14214-14220. [PMID: 29600840 DOI: 10.1021/acsami.8b03310] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, a new type of methodology to deliver carbon monoxide (CO) for biological applications has been introduced. An amphiphilic manganese carbonyl complex (1.Mn) incorporated into the 1,2-distearoyl-sn-glycero-3-phosphocholine lipid vesicles has been reported first time for the photoinduced release of CO. The liposomes (Ves-1.Mn) gradually released CO under light at 365 nm over a period of 50 min with a half-time of 26.5 min. The CO-releasing ability of vesicles appended with 1.Mn complexes has been confirmed by myoglobin assay and infrared study. The vesicles appended with 1.Mn have the advantages of biocompatibility, water solubility, and steady and slow CO release. This approach could be a rational approach for applying various water-insoluble photoinduced CO donors in aqueous media by using vesicles as a nanocarrier for CO release.
Collapse
Affiliation(s)
- Rahul Sakla
- Department of Chemistry , National Institute of Technology (NIT) Kurukshetra , Kurukshetra 136119 , Haryana , India
| | - D Amilan Jose
- Department of Chemistry , National Institute of Technology (NIT) Kurukshetra , Kurukshetra 136119 , Haryana , India
| |
Collapse
|
36
|
Yang C, Jeong S, Ku S, Lee K, Park MH. Use of gasotransmitters for the controlled release of polymer-based nitric oxide carriers in medical applications. J Control Release 2018; 279:157-170. [PMID: 29673643 DOI: 10.1016/j.jconrel.2018.04.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/22/2023]
Abstract
Nitric Oxide (NO) is a small molecule gasotransmitter synthesized by nitric oxide synthase in almost all types of mammalian cells. NO is synthesized by NO synthase by conversion of l-arginine to l-citrulline in the human body. NO then stimulates soluble guanylate cyclase, from which various physiological functions are mediated in a concentration-dependent manner. High concentrations of NO induce apoptosis or antibacterial responses whereas low NO circulation leads to angiogenesis. The bidirectional effect of NO has attracted considerable attention, and efforts to deliver NO in a controlled manner, especially through polymeric carriers, has been the topic of much research. This naturally produced signaling molecule has stood out as a potentially more potent therapeutic agent compared to exogenously synthesized drugs. In this review, we will focus on past efforts of using the controlled release of NO via polymer-based materials to derive specific therapeutic results. We have also added studies and our future suggestions on co-delivery methods with other gasotransmitters as a step towards developing multifunctional carriers.
Collapse
Affiliation(s)
- Chungmo Yang
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Soohyun Jeong
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Seul Ku
- School of Medicine, Stanford University, 291 Campus Drive, Stanford, CA 94305, USA
| | - Kangwon Lee
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Gyeonggi-do 16229, Republic of Korea.
| | - Min Hee Park
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
37
|
Ashok Kumar C, Govindarajan R, Kumar U, Karthikeyan M, Varghese B, Manimaran B. Multicomponent self-assembly of Mn(I)-based thiolato-bridged ester functionalized rectangular and V-shaped tetranuclear metallacyclophanes. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Marker SC, MacMillan SN, Zipfel WR, Li Z, Ford PC, Wilson JJ. Photoactivated in Vitro Anticancer Activity of Rhenium(I) Tricarbonyl Complexes Bearing Water-Soluble Phosphines. Inorg Chem 2018; 57:1311-1331. [PMID: 29323880 PMCID: PMC8117114 DOI: 10.1021/acs.inorgchem.7b02747] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fifteen water-soluble rhenium compounds of the general formula [Re(CO)3(NN)(PR3)]+, where NN is a diimine ligand and PR3 is 1,3,5-triaza-7-phosphaadamantane (PTA), tris(hydroxymethyl)phosphine (THP), or 1,4-diacetyl-1,3,7-triaza-5-phosphabicylco[3.3.1]nonane (DAPTA), were synthesized and characterized by multinuclear NMR spectroscopy, IR spectroscopy, and X-ray crystallography. The complexes bearing the THP and DAPTA ligands exhibit triplet-based luminescence in air-equilibrated aqueous solutions with quantum yields ranging from 3.4 to 11.5%. Furthermore, the THP and DAPTA complexes undergo photosubstitution of a CO ligand upon irradiation with 365 nm light with quantum yields ranging from 1.1 to 5.5% and sensitize the formation of 1O2 with quantum yields as high as 70%. In contrast, all of the complexes bearing the PTA ligand are nonemissive and do not undergo photosubstitution upon irradiation with 365 nm light. These compounds were evaluated as photoactivated anticancer agents in human cervical (HeLa), ovarian (A2780), and cisplatin-resistant ovarian (A2780CP70) cancer cell lines. All of the complexes bearing THP and DAPTA exhibited a cytotoxic response upon irradiation with minimal toxicity in the absence of light. Notably, the complex with DAPTA and 1,10-phenanthroline gave rise to an IC50 value of 6 μM in HeLa cells upon irradiation, rendering it the most phototoxic compound in this library. The nature of the photoinduced cytotoxicity of this compound was explored in further detail. These data indicate that the phototoxic response may result from the release of both CO and the rhenium-containing photoproduct, as well as the production of 1O2.
Collapse
Affiliation(s)
- Sierra C. Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Warren R. Zipfel
- Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zhi Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Peter C. Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
39
|
Slanina T, Šebej P. Visible-light-activated photoCORMs: rational design of CO-releasing organic molecules absorbing in the tissue-transparent window. Photochem Photobiol Sci 2018; 17:692-710. [DOI: 10.1039/c8pp00096d] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rational design of visible-light-activatable transition-metal-free CO-releasing molecules with an emphasis on mechanistic details of the CO release.
Collapse
Affiliation(s)
- Tomáš Slanina
- Institute for Organic Chemistry and Chemical Biology
- Goethe-University Frankfurt
- 60438 Frankfurt
- Germany
| | - Peter Šebej
- Research Centre for Toxic Compounds in the Environment
- Faculty of Science
- Masaryk University
- 625 00 Brno
- Czech Republic
| |
Collapse
|
40
|
Ashok Kumar C, Divya D, Nagarajaprakash R, Veena V, Vidhyapriya P, Sakthivel N, Manimaran B. Self-assembly of manganese(I) and rhenium(I) based semi-rigid ester functionalized M 2 L 2 -type metallacyclophanes: Synthesis, characterization and cytotoxicity evaluation. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Ling K, Men F, Wang WC, Zhou YQ, Zhang HW, Ye DW. Carbon Monoxide and Its Controlled Release: Therapeutic Application, Detection, and Development of Carbon Monoxide Releasing Molecules (CORMs). J Med Chem 2017; 61:2611-2635. [PMID: 28876065 DOI: 10.1021/acs.jmedchem.6b01153] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbon monoxide (CO) is attracting increasing attention because of its role as a gasotransmitter with cytoprotective and homeostatic properties. Carbon monoxide releasing molecules (CORMs) are spatially and temporally controlled CO releasers that exhibit superior and more effective pharmaceutical traits than gaseous CO because of their chemistry and structure. Experimental and preclinical research in animal models has shown the therapeutic potential of inhaled CO and CORMs, and the biological effects of CO and CORMs have also been observed in preclinical trials via the genetic modulation of heme oxygenase-1 (HO-1). In this review, we describe the pharmaceutical use of CO and CORMs, methods of detecting CO release, and developments in CORM design and synthesis. Many valuable clinical CORMs formulated using macromolecules and nanomaterials are also described.
Collapse
Affiliation(s)
- Ken Ling
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China.,Department of Anesthesiology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Fang Men
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Wei-Ci Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Hao-Wen Zhang
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| |
Collapse
|
42
|
Pinto MN, Chakraborty I, Sandoval C, Mascharak PK. Eradication of HT-29 colorectal adenocarcinoma cells by controlled photorelease of CO from a CO-releasing polymer (photoCORP-1) triggered by visible light through an optical fiber-based device. J Control Release 2017; 264:192-202. [PMID: 28866022 DOI: 10.1016/j.jconrel.2017.08.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/06/2017] [Accepted: 08/29/2017] [Indexed: 10/18/2022]
Abstract
The gaseous signaling molecule carbon monoxide (CO) has recently been recognized for its wide range of physiological activity as well as its antineoplastic properties. However, site-specific delivery of this noxious gas presents a major challenge in hospital settings. In this work, a visible light-sensitive CO-releasing molecule (photoCORM) derived from manganese(I) and 2-(quinolyl)benzothiazole (qbt) namely, [Mn(CO)3(qbt)(4-vpy)](CF3SO3) (1), has been co-polymerized within a gas-permeable HEMA/EGDMA hydrogel. The resulting photoactive CO-releasing polymer (photoCORP-1) incorporates 1 such that neither the carbonyl complex nor its photoproduct(s) exits the polymer at any time. The material can be triggered to photorelease CO remotely by low-power broadband visible light (<1mWcm-2) with the aid of fiber optics technology. The CO photorelease rates of photoCORP-1 (determined by spectrophotometry) can be modulated by both the concentration of 1 in the hydrogel and the intensity of the light. A CO-delivery device has been assembled to deliver CO to a suspension of human colorectal adenocarcinoma cells (HT-29) under the control of visible light and the extent of CO-induced apoptotic death of the cancer cells has been determined via Annexin V/Propidium iodide stain and flow cytometry. This photoactive CO-releasing polymer could find use in delivering controlled doses of CO to cellular targets such as malignant tissues in remote parts of the body.
Collapse
Affiliation(s)
- Miguel N Pinto
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Indranil Chakraborty
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Cosme Sandoval
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Pradip K Mascharak
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| |
Collapse
|
43
|
Rao GK, Jamshidi MP, Dawkins JIG, Pell W, Korobkov I, Richeson D. Electrocatalytic generation of H2 from neutral water in acetonitrile using manganese polypyridyl complexes with ligand assistance. Dalton Trans 2017; 46:6518-6522. [DOI: 10.1039/c7dt01039g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The earth-abundant element, manganese can be employed in electrocatalytically active complexes for H2 generation from neutral water added to acetonitrile solutions.
Collapse
Affiliation(s)
- Gyandshwar Kumar Rao
- Department of Chemistry and Biomolecular Sciences and the Center for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | - Mohammad Parsa Jamshidi
- Department of Chemistry and Biomolecular Sciences and the Center for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | - Jeremy I. G. Dawkins
- Department of Chemistry and Biomolecular Sciences and the Center for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | - Wendy Pell
- Department of Chemistry and Biomolecular Sciences and the Center for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | - Ilia Korobkov
- Department of Chemistry and Biomolecular Sciences and the Center for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | - Darrin Richeson
- Department of Chemistry and Biomolecular Sciences and the Center for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| |
Collapse
|
44
|
Li WP, Su CH, Tsao LC, Chang CT, Hsu YP, Yeh CS. Controllable CO Release Following Near-Infrared Light-Induced Cleavage of Iron Carbonyl Derivatized Prussian Blue Nanoparticles for CO-Assisted Synergistic Treatment. ACS NANO 2016; 10:11027-11036. [PMID: 28024357 DOI: 10.1021/acsnano.6b05858] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Carbon monoxide (CO) causes the dysfunction of mitochondria to induce the apoptosis of cancer cells giving a promising choice as an emerging treatment. The currently reported CO-based complexes still suffer from many limitations. Synthesis of CO-release carriers in the manner of on-demand control is highly anticipated. In this study, we present a near-infrared (NIR) light-responsive CO-delivery nanocarrier, a PEGylated iron carbonyl derivatized Prussian blue (PB) nanoparticle (NP). Taking the structural characteristic containing Fe3+-N≡C-Fe2+ unit, the -CN- served as the active sites for the coordination of iron carbonyl, while the surface Fe sites chelated with the amine-functionalized polyethylene glycol (NH2-PEG6000-NH2) to yield PEGylated PB NPs carrying CO. The control of light intensity and exposure period is important to release the amount of CO as well as to deliver the hyperthermia effect. The combination therapy including CO and photothermal treatments displayed a synergistic effect against cancer cells. Importantly, the release of CO is inert in the blood circulation without NIR irradiation. The blood oxygen saturation measured by the pulse oximeter and the HCO3, tCO2, and pH values analyzed by the blood assay revealed the steady status from the mice studies, showing no acute CO poisoning.
Collapse
Affiliation(s)
- Wei-Peng Li
- Department of Chemistry and Advanced Optoelectronic Technology Center, National Cheng Kung University , Tainan 701, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung 833, Taiwan
| | - Ling-Chuan Tsao
- Department of Chemistry and Advanced Optoelectronic Technology Center, National Cheng Kung University , Tainan 701, Taiwan
| | - Chun-Ting Chang
- Department of Chemistry and Advanced Optoelectronic Technology Center, National Cheng Kung University , Tainan 701, Taiwan
| | - Ya-Ping Hsu
- Department of Chemistry and Advanced Optoelectronic Technology Center, National Cheng Kung University , Tainan 701, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry and Advanced Optoelectronic Technology Center, National Cheng Kung University , Tainan 701, Taiwan
| |
Collapse
|
45
|
Tabe H, Shimoi T, Boudes M, Abe S, Coulibaly F, Kitagawa S, Mori H, Ueno T. Photoactivatable CO release from engineered protein crystals to modulate NF-κB activation. Chem Commun (Camb) 2016; 52:4545-8. [PMID: 26940021 DOI: 10.1039/c5cc10440h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoactivatable CO releasing protein crystals were developed by immobilization of Mn carbonyl complexes in polyhedral crystals, which are spontaneously formed in insect cells. The photoactivatable CO release from the engineered protein crystals activates nuclear factor kappa B (NF-κB) upon stimulation by visible light irradiation with suppression of cytotoxicity of the Mn complex.
Collapse
Affiliation(s)
- Hiroyasu Tabe
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Takuya Shimoi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 224-8501, Japan.
| | - Marion Boudes
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC3800, Australia
| | - Satoshi Abe
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 224-8501, Japan.
| | - Fasséli Coulibaly
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC3800, Australia
| | - Susumu Kitagawa
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Hajime Mori
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Takafumi Ueno
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 224-8501, Japan.
| |
Collapse
|
46
|
Carter JM, Qian Y, Foster JC, Matson JB. Peptide-based hydrogen sulphide-releasing gels. Chem Commun (Camb) 2016; 51:13131-4. [PMID: 26189449 DOI: 10.1039/c5cc04883d] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An aromatic peptide amphiphile was designed for delivery of the signaling gas H2S. The peptide self-assembled in water into nanofibers that gelled upon charge screening. The non-toxic gel slowly released H2S over 15 hours, and the presence of H2S in endothelial cells was verified using a fluorescent H2S probe.
Collapse
Affiliation(s)
- Jennifer M Carter
- Department of Chemistry and Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | |
Collapse
|
47
|
Synthesis, characterisation and cytotoxicity studies of Manganese(I) and Rhenium(I) based metallacrown ethers. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2015.12.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
48
|
Ji X, Damera K, Zheng Y, Yu B, Otterbein LE, Wang B. Toward Carbon Monoxide-Based Therapeutics: Critical Drug Delivery and Developability Issues. J Pharm Sci 2016; 105:406-416. [PMID: 26869408 PMCID: PMC4755352 DOI: 10.1016/j.xphs.2015.10.018] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022]
Abstract
Carbon monoxide (CO) is an intrinsic signaling molecule with importance on par with that of nitric oxide. During the past decade, pharmacologic studies have amply demonstrated the therapeutic potential of carbon monoxide. However, such studies were mostly based on CO inhalation and metal-based CO-releasing molecules. The field is now at the stage that a major effort is needed to develop pharmaceutically acceptable forms of CO for delivery via various routes such as oral, injection, infusion, or topical applications. This review examines the state of the art, discusses the existing hurdles to overcome, and proposes developmental strategies necessary to address remaining drug delivery issues.
Collapse
Affiliation(s)
- Xingyue Ji
- Department of Chemistry and the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30303
| | - Krishna Damera
- Department of Chemistry and the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30303
| | - Yueqin Zheng
- Department of Chemistry and the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30303
| | - Bingchen Yu
- Department of Chemistry and the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30303
| | - Leo E Otterbein
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, 02215
| | - Binghe Wang
- Department of Chemistry and the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30303.
| |
Collapse
|
49
|
Abstract
The potential of carbon monoxide to act as a therapeutic agent is now well-established. In this Perspective, we examine the growth of photoCORMs from their origins in the photophysics of metal carbonyls to the latest visible-light agents.
Collapse
Affiliation(s)
- Mark A. Wright
- Energy Materials Laboratory
- School of Chemistry
- University of East Anglia
- Norwich NR4 7TJ
- UK
| | - Joseph A. Wright
- Energy Materials Laboratory
- School of Chemistry
- University of East Anglia
- Norwich NR4 7TJ
- UK
| |
Collapse
|
50
|
Kautz AC, Kunz PC, Janiak C. CO-releasing molecule (CORM) conjugate systems. Dalton Trans 2016; 45:18045-18063. [DOI: 10.1039/c6dt03515a] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To try to advance CORMs toward medical applications, they are covalently bound to peptides, polymers, nanoparticles, dendrimers, and protein cages or are incorporated into non-wovens, tablets, or metal–organic frameworks.
Collapse
Affiliation(s)
- Anna Christin Kautz
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität
- D-40225 Düsseldorf
- Germany
| | - Peter C. Kunz
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität
- D-40225 Düsseldorf
- Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität
- D-40225 Düsseldorf
- Germany
| |
Collapse
|