1
|
Peng Y, Li Y, Li L, Xie M, Wang Y, Butch CJ. Coating influence on inner shell water exchange: An underinvestigated major contributor to SPIONs relaxation properties. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102713. [PMID: 37839694 DOI: 10.1016/j.nano.2023.102713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/15/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are heavily studied as potential MRI contrast enhancing agents. Every year, novel coatings are reported which yield large increases in relaxivity compared to similar particles. However, the reason for the increased performance is not always well understood mechanistically. In this review, we attempt to relate these advances back to fundamental models of relaxivity, developed for chelated metal ions, primarily gadolinium. We focus most closely on the three-shell model which considers the relaxation of surface-bound, entrained, and bulk water molecules as three distinct contributions to total relaxation. Because SPIONs are larger, more complex, and entrain significantly more water than gadolinium-based contrast agents, we consider how to adapt the application of classical models to SPIONs in a predictive manner. By carefully considering models and previous results, a qualitative model of entrained water interactions emerges, based primarily on the contributions of core size, coating thickness, density, and hydrophilicity.
Collapse
Affiliation(s)
- Yusong Peng
- Department of Material Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Yunlong Li
- Department of Material Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Li Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Manman Xie
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China; School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China.
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.
| | - Christopher J Butch
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Pradhan RN, Irrera P, Romdhane F, Panda SK, Longo DL, Torres J, Kremer C, Assaiya A, Kumar J, Singh AK. Di-Pyridine-Containing Macrocyclic Triamide Fe(II) and Ni(II) Complexes as ParaCEST Agents. Inorg Chem 2022; 61:16650-16663. [PMID: 36205705 DOI: 10.1021/acs.inorgchem.2c02242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fe(II) and Ni(II) paraCEST contrast agents containing the di-pyridine macrocyclic ligand 2,2',2″-(3,7,10-triaza-1,5(2,6)-dipyridinacycloundecaphane-3,7,10-triyl)triacetamide (DETA) are reported here. Both [Fe(DETA)]2+ and [Ni(DETA)]2+ complexes were structurally characterized. Crystallographic data revealed the seven-coordinated distorted pentagonal bipyramidal geometry of the [Fe(DETA)]·(BF4)2·MeCN complex with five coordinated nitrogen atoms from the macrocyclic ring and two coordinated oxygen atoms from two amide pendant arms. The [Ni(DETA)]·Cl2·2H2O complex was six-coordinated in nature with a distorted octahedral geometry. Four coordinated nitrogen atoms were from the macrocyclic ring, and two coordinated oxygen atoms were from two amide pendant arms. [Fe(DETA)]2+ exhibited well-resolved sharp proton resonances, whereas very broad proton resonances were observed in the case of [Ni(DETA)]2+ due to the long electronic relaxation times. The CEST peaks for the [Fe(DETA)]2+ complex showed one highly downfield-shifted and intense peak at 84 ppm with another shifted but less intense peak at 28 ppm with good CEST contrast efficiency at body temperature, whereas [Ni(DETA)]2+ showed only one highly shifted intense peak at 78 ppm from the bulk water protons. Potentiometric titrations were performed to determine the protonation constants of the ligand and the thermodynamic stability constant of the [M(DETA)]2+ (M = Fe, Co, Ni, Cu, Zn) species at 25.0 °C and I = 0.15 mol·L-1 NaClO4. Metal exchange studies confirmed the stability of the complexes in acidic medium in the presence of physiologically relevant anions and an equimolar concentration of Zn(II) ions.
Collapse
Affiliation(s)
- Rabindra N Pradhan
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar752050, India
| | - Pietro Irrera
- University of Campania "Luigi Vanvitelli", Caserta81100, Italy
| | - Feriel Romdhane
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Torino10126, Italy
| | - Suvam Kumar Panda
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar752050, India
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Torino10126, Italy
| | - Julia Torres
- Área Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, Montevideo11800, Uruguay
| | - Carlos Kremer
- Área Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, Montevideo11800, Uruguay
| | - Anshul Assaiya
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune411 007, India
| | - Janesh Kumar
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune411 007, India
| | - Akhilesh K Singh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar752050, India
| |
Collapse
|
3
|
Chen S, An L, Yang S. Low-Molecular-Weight Fe(III) Complexes for MRI Contrast Agents. Molecules 2022; 27:molecules27144573. [PMID: 35889445 PMCID: PMC9324404 DOI: 10.3390/molecules27144573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/02/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Fe(III) complexes have again attracted much attention for application as MRI contrast agents in recent years due to their high thermodynamic stability, low long-term toxicity, and large relaxivity at a higher magnetic field. This mini-review covers the recent progress on low-molecular-weight Fe(III) complexes, which have been considered as one of the promising alternatives to clinically used Gd(III)-based contrast agents. Two kinds of complexes including mononuclear Fe(III) complexes and multinuclear Fe(III) complexes are summarized in sequence, with a specific highlight of the structural relationships between the complexes and their relaxivity and thermodynamic stability. In additional, the future perspectives for the design of low-molecular-weight Fe(III) complexes for MRI contrast agents are suggested.
Collapse
Affiliation(s)
- Shangjun Chen
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China;
| | - Lu An
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China;
| | - Shiping Yang
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China;
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China;
- Correspondence:
| |
Collapse
|
4
|
Baranyai Z, Carniato F, Nucera A, Horváth D, Tei L, Platas-Iglesias C, Botta M. Defining the conditions for the development of the emerging class of Fe III-based MRI contrast agents. Chem Sci 2021; 12:11138-11145. [PMID: 34522311 PMCID: PMC8386674 DOI: 10.1039/d1sc02200h] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/07/2021] [Indexed: 02/05/2023] Open
Abstract
Fe(iii) complexes are attracting growing interest in chemists developing diagnostic probes for Magnetic Resonance Imaging because they leverage on an endogenous metal and show superior stability. However, in this case a detailed understanding of the relationship between the chemical structure of the complexes, their magnetic, thermodynamic, kinetic and redox properties and the molecular parameters governing the efficacy (relaxivity) is still far from being available. We have carried out an integrated 1H and 17O NMR relaxometric study as a function of temperature and magnetic field, on the aqua ion and three complexes chosen as reference models, together with theoretical calculations, to obtain accurate values of the parameters that control their relaxivity. Moreover, thermodynamic stability and dissociation kinetics of the Fe(iii) chelates, measured in association with the ascorbate reduction behaviour, highlight their role and mutual influence in achieving the stability required for use in vivo. An integrated 1H and 17O NMR relaxometric study on model systems allowed to highlight that the Fe(III) complexes might represent the best alternative to Gd-based MRI contrast agents at the magnetic fields of current and future clinical scanners.![]()
Collapse
Affiliation(s)
- Zsolt Baranyai
- Bracco Research Centre, Bracco Imaging S.p.A. Via Ribes 5 10010 Colleretto Giacosa Italy
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro" Viale T. Michel 11 15121 Alessandria Italy
| | - Alessandro Nucera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro" Viale T. Michel 11 15121 Alessandria Italy
| | - Dávid Horváth
- Bracco Research Centre, Bracco Imaging S.p.A. Via Ribes 5 10010 Colleretto Giacosa Italy.,Department of Physical Chemistry, University of Debrecen Egyetem tér 1. H-4010 Debrecen Hungary
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro" Viale T. Michel 11 15121 Alessandria Italy
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña 15071 A Coruña Galicia Spain
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro" Viale T. Michel 11 15121 Alessandria Italy
| |
Collapse
|
5
|
Rodríguez-Rodríguez A, Zaiss M, Esteban-Gómez D, Angelovski G, Platas-Iglesias C. Paramagnetic chemical exchange saturation transfer agents and their perspectives for application in magnetic resonance imaging. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1823167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Aurora Rodríguez-Rodríguez
- Departamento de Química, Facultade de Ciencias & Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Moritz Zaiss
- Department of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - David Esteban-Gómez
- Departamento de Química, Facultade de Ciencias & Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Lab of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science (CAS), Shanghai, P.R. China
| | - Carlos Platas-Iglesias
- Departamento de Química, Facultade de Ciencias & Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
6
|
Snyder EM, Chowdhury MSI, Morrow JR. Co(II) and Fe(II) triazole-appended 4,10-diaza-15-crown-5-ether Macrocyclic complexes for CEST MRI applications. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Kuźnik N, Wyskocka M, Jarosz M, Oczek L, Goraus S, Komor R, Krawczyk T, Kempka M. Amino-phenol complexes of Fe(III) as promising T1 accelerators. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
8
|
Pinto SM, Tomé V, Calvete MJ, Castro MMC, Tóth É, Geraldes CF. Metal-based redox-responsive MRI contrast agents. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Pujales-Paradela R, Savić T, Pérez-Lourido P, Esteban-Gómez D, Angelovski G, Botta M, Platas-Iglesias C. Lanthanide Complexes with 1H paraCEST and 19F Response for Magnetic Resonance Imaging Applications. Inorg Chem 2019; 58:7571-7583. [DOI: 10.1021/acs.inorgchem.9b00869] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rosa Pujales-Paradela
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 Coruña, Galicia Spain
| | - Tanja Savić
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany
| | - Paulo Pérez-Lourido
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, 36310 Pontevedra, Spain
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 Coruña, Galicia Spain
| | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 Coruña, Galicia Spain
| |
Collapse
|
10
|
Scepaniak JJ, Kang EB, John M, Kaminsky W, Dechert S, Meyer F. Non‐Macrocyclic Schiff Base Complexes of Iron(II) as ParaCEST Agents for MRI. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jeremiah J. Scepaniak
- Institut für Anorganische Chemie Georg‐August‐Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
- Department of Chemistry Drexel University 32 S. 32nd St. Disque Hall 506 19104 Philadelphia PA USA
| | - Eun Byoung Kang
- Department of Chemistry Drexel University 32 S. 32nd St. Disque Hall 506 19104 Philadelphia PA USA
| | - Michael John
- Institut für Anorganische Chemie Georg‐August‐Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Werner Kaminsky
- Department of Chemistry University of Washington Box 351700 98195‐1700 Seattle WA USA
| | - Sebastian Dechert
- Institut für Anorganische Chemie Georg‐August‐Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Franc Meyer
- Institut für Anorganische Chemie Georg‐August‐Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
11
|
Pujales‐Paradela R, Savić T, Esteban‐Gómez D, Angelovski G, Carniato F, Botta M, Platas‐Iglesias C. Gadolinium(III)‐Based Dual1H/19F Magnetic Resonance Imaging Probes. Chemistry 2019; 25:4782-4792. [DOI: 10.1002/chem.201806192] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Rosa Pujales‐Paradela
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento, de QuímicaFacultade de CienciasUniversidade da Coruña 15071 A Coruña Galicia Spain
| | - Tanja Savić
- MR Neuroimaging AgentsMax Planck Institute for Biological Cybernetics Tübingen Germany
| | - David Esteban‐Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento, de QuímicaFacultade de CienciasUniversidade da Coruña 15071 A Coruña Galicia Spain
| | - Goran Angelovski
- MR Neuroimaging AgentsMax Planck Institute for Biological Cybernetics Tübingen Germany
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione TecnologicaUniversità del Piemonte Orientale “A. Avogadro” Viale T. Michel 11 15121 Alessandria Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione TecnologicaUniversità del Piemonte Orientale “A. Avogadro” Viale T. Michel 11 15121 Alessandria Italy
| | - Carlos Platas‐Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento, de QuímicaFacultade de CienciasUniversidade da Coruña 15071 A Coruña Galicia Spain
| |
Collapse
|
12
|
Caneda-Martínez L, Valencia L, Fernández-Pérez I, Regueiro-Figueroa M, Angelovski G, Brandariz I, Esteban-Gómez D, Platas-Iglesias C. Toward inert paramagnetic Ni(ii)-based chemical exchange saturation transfer MRI agents. Dalton Trans 2018; 46:15095-15106. [PMID: 29067395 DOI: 10.1039/c7dt02758c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Ni2+ complexes with hexadentate ligands containing two 6-methylpicolinamide groups linked by ethane-1,2-diamine (dedpam) or cyclohexane-1,2-diamine (chxdedpam) spacers were investigated as potential contrast agents in magnetic resonance imaging (MRI). The properties of the complexes were compared to that of the analogues containing 6-methylpicolinate units (dedpa2- and chxdedpa2-). The X-ray structure of the [Ni(dedpam)]2+ complex reveals a six-coordinated metal ion with a distorted octahedral environment. The protonation constants of the dedpa2- and dedpam ligands and the stability constants of their Ni2+ complexes were determined using pH-potentiometry and spectrophotometric titrations (25 °C, 0.15 M NaCl). The [Ni(dedpa)] complex (log KNiL = 20.88(1)) was found to be considerably more stable than the corresponding amide derivative [Ni(dedpam)]2+ (log KNiL = 14.29(2)). However, the amide derivative [Ni(chxdedpam)]2+ was found to be considerably more inert with respect to proton-assisted dissociation than the carboxylate derivative [Ni(chxdedpa)]. A detailed 1H NMR and DFT study was conducted to assign the 1H NMR spectra of the [Ni(chxdedpa)] and [Ni(chxdedpam)]2+ complexes. The observed 1H NMR paramagnetic shifts were found to be dominated by the Fermi contact contribution. The amide resonances of [Ni(chxdedpam)]2+ at 91.5 and 22.2 ppm were found to provide a sizeable chemical exchange saturation transfer effect, paving the way for the development of NiCEST agents based on these rigid non-macrocyclic platforms.
Collapse
Affiliation(s)
- Laura Caneda-Martínez
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chandra A, Kumar Sahu P, Chakraborty S, Ghosh A, Sarkar M. Spin-lattice relaxation studies on deep eutectic solvent/Choliniumtetrachloroferrate mixtures: Suitability of DES-based systems towards magnetic resonance imaging studies. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:120-126. [PMID: 28960443 DOI: 10.1002/mrc.4668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
This study has been undertaken with an aim to investigate the suitability of the deep eutectic solvents (DES)-based systems for magnetic resonance imaging studies. DESs are used to develop the systems, keeping in mind the fact that these are relatively less toxic than ionic liquids, and hence, DES based magnetic compound is expected to be relatively less toxic than magnetic ionic liquids. In this work, spin-lattice (T1 ) relaxation measurements are carried out in the binary mixtures of deep eutectic solvent with a paramagnetic component choliniumtetrachloroferrate ([Ch][FeCl4 ]). Two cholinium ion based DESs, namely ethaline and glyceline have been used for this study. For both ethaline/[Ch][FeCl4 ] and glyceline/[Ch][FeCl4 ], T1 is observed to vary significantly with very low concentration of [Ch][FeCl4 ]. Such an observation can arise due to the high degree of paramagnetic coupling between DESs and [Ch][FeCl4 ]. The results advocate the suitability of both ethaline/[Ch][FeCl4 ] and glyceline/[Ch][FeCl4 ] mixture as a potential T1 contrast agent. Interestingly, when the experiments are carried out in aqueous medium, significant lowering of T1 of water proton with very low concentration of ethaline/[Ch][FeCl4 ] and glyceline/[Ch][FeCl4 ] is observed. This study demonstrates that the present systems can act as a suitable T1 contrast agent.
Collapse
Affiliation(s)
- Abhilash Chandra
- National Institute of Science Education and Research, HBNI, School of Chemical Sciences, Bhubaneswar, Khurda, 752050, India
| | - Prabhat Kumar Sahu
- National Institute of Science Education and Research, HBNI, School of Chemical Sciences, Bhubaneswar, Khurda, 752050, India
| | - Subhayan Chakraborty
- National Institute of Science Education and Research, HBNI, School of Chemical Sciences, Bhubaneswar, Khurda, 752050, India
| | - Arindam Ghosh
- National Institute of Science Education and Research, HBNI, School of Chemical Sciences, Bhubaneswar, Khurda, 752050, India
| | - Moloy Sarkar
- National Institute of Science Education and Research, HBNI, School of Chemical Sciences, Bhubaneswar, Khurda, 752050, India
| |
Collapse
|
14
|
Gonçalves MA, Santos LS, Peixoto FC, da Cunha EFF, Silva TC, Ramalho TC. Comparing Structure and Dynamics of Solvation of Different Iron Oxide Phases for Enhanced Magnetic Resonance Imaging. ChemistrySelect 2017. [DOI: 10.1002/slct.201701705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | - Lizandro S. Santos
- Department of Chemical and Petroleum Engineering; Federal University Fluminense
| | - Fernando C. Peixoto
- Department of Chemical and Petroleum Engineering; Federal University Fluminense
| | | | - Telles C. Silva
- Department of Chemistry; Federal University of Lavras; Lavras, MG Brazil
| | - Teodorico C. Ramalho
- Department of Chemistry; Federal University of Lavras; Lavras, MG Brazil
- Center for Basic and Applied Research; University of Hradec Kralove; Hradec Kralove Czech Republic
| |
Collapse
|
15
|
Thorarinsdottir AE, Du K, Collins JHP, Harris TD. Ratiometric pH Imaging with a CoII2 MRI Probe via CEST Effects of Opposing pH Dependences. J Am Chem Soc 2017; 139:15836-15847. [DOI: 10.1021/jacs.7b08574] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Kang Du
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - James H. P. Collins
- Advanced
Magnetic Resonance Imaging and Spectroscopy Facility, University of Florida, Gainesville, Florida 32611, United States
| | - T. David Harris
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
16
|
Srivastava K, Ferrauto G, Young VG, Aime S, Pierre VC. Eight-Coordinate, Stable Fe(II) Complex as a Dual 19F and CEST Contrast Agent for Ratiometric pH Imaging. Inorg Chem 2017; 56:12206-12213. [DOI: 10.1021/acs.inorgchem.7b01629] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kriti Srivastava
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Giuseppe Ferrauto
- Molecular Imaging Center, Department of Molecular Biotechnologies & Health Sciences, University of Torino, 10126 Torino, Italy
| | - Victor G. Young
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnologies & Health Sciences, University of Torino, 10126 Torino, Italy
| | - Valérie C. Pierre
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Klimm O, Göbel C, Rosenfeldt S, Puchtler F, Miyajima N, Marquardt K, Drechsler M, Breu J, Förster S, Weber B. Synthesis of [Fe(L)(bipy)] n spin crossover nanoparticles using blockcopolymer micelles. NANOSCALE 2016; 8:19058-19065. [PMID: 27819367 DOI: 10.1039/c6nr06330f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nowadays there is a high demand for specialized functional materials for specific applications in sensors or biomedicine (e.g. fMRI). For their implementation in devices, nanostructuring and integration in a composite matrix are indispensable. Spin crossover complexes are a highly promising family of switchable materials where the switching process can be triggered by various external stimuli. In this work, the synthesis of nanoparticles of the spin crossover iron(ii) coordination polymer [Fe(L)(bipy)]n (with L = 1,2-phenylenebis(iminomethylidyne)bis(2,4-pentanedionato)(2-) and bipy = 4,4'-bipyridine) is described using polystyrene-poly-4-vinylprididine blockcopolymer micelles as the template defining the final size of the nanoparticle core. A control of the spin crossover properties can be achieved by precise tuning of the crystallinity of the coordination polymer via successive addition of the starting material Fe(L) and bipy. By this we were able to synthesize nanoparticles with a core size of 49 nm and a thermal hysteresis loop width of 8 K. This is, to the best of our knowledge, a completely new approach for the synthesis of nanoparticles of coordination polymers and should be easily transferable to other coordination polymers and networks. Furthermore, the use of blockcopolymers allows a further functionalization of the obtained nanoparticles by variation of the polymer blocks and an easy deposition of the composite material on surfaces via spin coating.
Collapse
Affiliation(s)
- Ottokar Klimm
- Anorganische Chemie II, Universität Bayreuth, Universitätsstraße 30, NW I, 95440 Bayreuth, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Martin B, Autschbach J. Kohn–Sham calculations of NMR shifts for paramagnetic 3d metal complexes: protocols, delocalization error, and the curious amide proton shifts of a high-spin iron(ii) macrocycle complex. Phys Chem Chem Phys 2016; 18:21051-68. [DOI: 10.1039/c5cp07667f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ligand chemical shifts (pNMR shifts) are analyzed using DFT. A large difference in the amide proton shifts of a high-spin Fe(ii) complex arises from O → Fe dative bonding which only transfers β spin density to the metal.
Collapse
Affiliation(s)
- Bob Martin
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| | - Jochen Autschbach
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| |
Collapse
|
19
|
Kuźnik N, Chmielniak U. Studies on the redox activity of iron N,O-complexes: Potential T 1-contrast agents. Redox Rep 2016; 21:37-44. [PMID: 26023764 PMCID: PMC6837439 DOI: 10.1179/1351000215y.0000000017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVES The goal of this study was to determine the redox activity of iron (ethylenebis[2-(o-hydroxyphenyl)glycine]) (EHPG) and (ethylenebis[2-(o-hydroxybenzyl)glycine]) (EHBG) (N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid) derivative complexes and of some N,O-salan complexes of iron. The hexadentate chelate (EHPG and EHBG) ligands varied in their substituents (polar OMe, NHAc, or lipophilic Ph), while the latter had different charge and lipophilicity. The low redox activity of these complexes is important in their potential applications as magnetic resonance imaging contrast agents. METHODS Redox activity was assessed in the entire Haber-Weiss cycle and separately in the Fenton reaction. The spin-trapping method with 5,5-dimethyl-1-pyrroline-N-oxide monitored in electron paramagnetic resonance was used. The standard Mn marker was applied as a reference for quantitative analysis. Additionally, ascorbate oxidation was analyzed with UV-Vis spectrophotometry. RESULTS Both the Haber-Weiss cycle and in particular the Fenton reaction showed low redox activity of the studied complexes, which did not exceed 30% of [Fe(EDTA)]- or FeCl3 activity. The N,O-salan complexes expressed even lower activity, i.e. 10-20% activity of [Fe(EDTA)]-. DISCUSSION For the EHPG and EHBG complexes, it is likely that hydrophobicity and the possibility of H-bond formation play a major role in the resulting redox effects. For this reason, chelates equipped with phenyl groups in the majority belong to less redox-active complexes. For N,O-salan complexes, activity is not correlated with the charge of the coordination sphere, but again, the highly hydrophobic character of the groups and the non-pendant substituents capable of H-bonding that are present in these ligands limit the affinity of hydrophilic species.
Collapse
Affiliation(s)
- Nikodem Kuźnik
- Faculty of Chemistry, Silesian University of
Technology, M. Strzody 9, 44-100 Gliwice,
Poland
| | - Urszula Chmielniak
- Faculty of Chemistry, Silesian University of
Technology, M. Strzody 9, 44-100 Gliwice,
Poland
| |
Collapse
|
20
|
Kuźnik N, Wyskocka M. Iron(III) Contrast Agent Candidates for MRI: a Survey of the Structure-Effect Relationship in the Last 15 Years of Studies. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201501166] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Castro G, Regueiro-Figueroa M, Esteban-Gómez D, Bastida R, Macías A, Pérez-Lourido P, Platas-Iglesias C, Valencia L. Exceptionally Inert Lanthanide(III) PARACEST MRI Contrast Agents Based on an 18-Membered Macrocyclic Platform. Chemistry 2015; 21:18662-70. [DOI: 10.1002/chem.201502937] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 11/10/2022]
|
22
|
Probing thermal and solvent effects on hyperfine interactions and spin relaxation rate of δ-FeOOH(100) and [MnH3buea(OH)]2−: Toward new MRI probes. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Daniel CI, Vaca Chávez F, Portugal CAM, Crespo JG, Sebastião PJ. 1H NMR Relaxation Study of a Magnetic Ionic Liquid as a Potential Contrast Agent. J Phys Chem B 2015; 119:11740-7. [DOI: 10.1021/acs.jpcb.5b04772] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carla I. Daniel
- REQUIMTE/LAQV,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Fabián Vaca Chávez
- FaMAF, Universidad Nacional de Córdoba, IFEG CONICET, X5016LAE Córdoba, Argentina
| | - Carla A. M. Portugal
- REQUIMTE/LAQV,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal
| | - João G. Crespo
- REQUIMTE/LAQV,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Pedro J. Sebastião
- Center
of Physics and Engineering of Advanced Materials, Departamento de
Física Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
24
|
Dunbar L, Sowden RJ, Trotter KD, Taylor MK, Smith D, Kennedy AR, Reglinski J, Spickett CM. Copper complexes as a source of redox active MRI contrast agents. Biometals 2015; 28:903-12. [PMID: 26253716 DOI: 10.1007/s10534-015-9875-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 07/27/2015] [Indexed: 01/31/2023]
Abstract
The study reports an advance in designing copper-based redox sensing MRI contrast agents. Although the data demonstrate that copper(II) complexes are not able to compete with lanthanoids species in terms of contrast, the redox-dependent switch between diamagnetic copper(I) and paramagnetic copper(II) yields a novel redox-sensitive contrast moiety with potential for reversibility.
Collapse
Affiliation(s)
- Lynsey Dunbar
- Department of Pure & Applied Chemistry, Strathclyde University, 295 Cathedral St., Glasgow, G1 1XL, UK
| | - Rebecca J Sowden
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, 27 Taylor Street, Glasgow, G4 0NR, UK
| | - Katherine D Trotter
- Department of Pure & Applied Chemistry, Strathclyde University, 295 Cathedral St., Glasgow, G1 1XL, UK
| | - Michelle K Taylor
- Department of Pure & Applied Chemistry, Strathclyde University, 295 Cathedral St., Glasgow, G1 1XL, UK.,School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - David Smith
- Department of Pure & Applied Chemistry, Strathclyde University, 295 Cathedral St., Glasgow, G1 1XL, UK
| | - Alan R Kennedy
- Department of Pure & Applied Chemistry, Strathclyde University, 295 Cathedral St., Glasgow, G1 1XL, UK
| | - John Reglinski
- Department of Pure & Applied Chemistry, Strathclyde University, 295 Cathedral St., Glasgow, G1 1XL, UK.
| | - Corinne M Spickett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, 27 Taylor Street, Glasgow, G4 0NR, UK.,School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| |
Collapse
|
25
|
|
26
|
Kálmán FK, Végh A, Regueiro-Figueroa M, Tóth É, Platas-Iglesias C, Tircsó G. H4octapa: highly stable complexation of lanthanide(III) ions and copper(II). Inorg Chem 2015; 54:2345-56. [PMID: 25692564 DOI: 10.1021/ic502966m] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The acyclic ligand octapa(4-) (H4octapa = 6,6'-((ethane-1,2-diylbis((carboxymethyl)azanediyl))bis(methylene))dipicolinic acid) forms stable complexes with the Ln(3+) ions in aqueous solution. The stability constants determined for the complexes with La(3+), Gd(3+), and Lu(3+) using relaxometric methods are log KLaL = 20.13(7), log KGdL = 20.23(4), and log KLuL = 20.49(5) (I = 0.15 M NaCl). High stability constants were also determined for the complexes formed with divalent metal ions such as Zn(2+) and Cu(2+) (log KZnL = 18.91(3) and log KCuL = 22.08(2)). UV-visible and NMR spectroscopic studies and density functional theory (DFT) calculations point to hexadentate binding of the ligand to Zn(2+) and Cu(2+), the donor atoms of the acetate groups of the ligand remaining uncoordinated. The complexes formed with the Ln(3+) ions are nine-coordinated thanks to the octadentate binding of the ligand and the presence of a coordinated water molecule. The stability constants of the complexes formed with the Ln(3+) ions do not change significantly across the lanthanide series. A DFT investigation shows that this is the result of a subtle balance between the increased binding energies across the 4f period, which contribute to an increasing complex stability, and the parallel increase of the absolute values of the hydration free energies of the Ln(3+) ions. In the case of the [Ln(octapa)(H2O)](-) complexes the interaction between the amine nitrogen atoms of the ligand and the Ln(3+) ions is weakened along the lanthanide series, and therefore the increased electrostatic interaction does not overcome the increasing hydration energies. A detailed kinetic study of the dissociation of the [Gd(octapa)(H2O)](-) complex in the presence of Cu(2+) shows that the metal-assisted pathway is the main responsible for complex dissociation at pH 7.4 and physiological [Cu(2+)] concentration (1 μM).
Collapse
Affiliation(s)
- Ferenc Krisztián Kálmán
- Department of Inorganic and Analytical Chemistry, University of Debrecen , Egyetem tér 1, H-4010 Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
27
|
Do QN, Ratnakar JS, Kovács Z, Sherry AD. Redox- and hypoxia-responsive MRI contrast agents. ChemMedChem 2014; 9:1116-29. [PMID: 24825674 PMCID: PMC4119595 DOI: 10.1002/cmdc.201402034] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Indexed: 02/04/2023]
Abstract
The development of responsive or "smart" magnetic resonance imaging (MRI) contrast agents that can report specific biomarker or biological events has been the focus of MRI contrast agent research over the past 20 years. Among various biological hallmarks of interest, tissue redox and hypoxia are particularly important owing to their roles in disease states and metabolic consequences. Herein we review the development of redox-/hypoxia-sensitive T1 shortening and paramagnetic chemical exchange saturation transfer (PARACEST) MRI contrast agents. Traditionally, the relaxivity of redox-sensitive Gd(3+) -based complexes is modulated through changes in the ligand structure or molecular rotation, while PARACEST sensors exploit the sensitivity of the metal-bound water exchange rate to electronic effects of the ligand-pendant arms and alterations in the coordination geometry. Newer designs involve complexes of redox-active metal ions in which the oxidation states have different magnetic properties. The challenges of translating redox- and hypoxia-sensitive agents in vivo are also addressed.
Collapse
Affiliation(s)
- Quyen N. Do
- Department of Chemistry, The University of Texas at Dallas, 800 West Campbell, BE26, Richardson, TX 75080 (USA)
| | - James S. Ratnakar
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 (USA)
| | - Zoltán Kovács
- Department of Chemistry, The University of Texas at Dallas, 800 West Campbell, BE26, Richardson, TX 75080 (USA)
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 (USA)
| | - A. Dean Sherry
- Department of Chemistry, The University of Texas at Dallas, 800 West Campbell, BE26, Richardson, TX 75080 (USA)
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 (USA)
| |
Collapse
|
28
|
Molnár E, Camus N, Patinec V, Rolla GA, Botta M, Tircsó G, Kálmán FK, Fodor T, Tripier R, Platas-Iglesias C. Picolinate-containing macrocyclic Mn2+ complexes as potential MRI contrast agents. Inorg Chem 2014; 53:5136-49. [PMID: 24773460 DOI: 10.1021/ic500231z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report the synthesis of the ligand Hnompa (6-((1,4,7-triazacyclononan-1-yl)methyl)picolinic acid) and a detailed characterization of the Mn(2+) complexes formed by this ligand and the related ligands Hdompa (6-((1,4,7,10-tetraazacyclododecan-1-yl)methyl)picolinic acid) and Htempa (6-((1,4,8,11-tetraazacyclotetradecan-1-yl)methyl)picolinic acid). These ligands form thermodynamically stable complexes in aqueous solution with stability constants of logKMnL = 10.28(1) (nompa), 14.48(1) (dompa), and 12.53(1) (tempa). A detailed study of the dissociation kinetics of these Mn(2+) complexes indicates that the decomplexation reaction at about neutral pH occurs mainly following a spontaneous dissociation mechanism. The X-ray structure of [Mn2(nompa)2(H2O)2](ClO4)2 shows that the Mn(2+) ion is seven-coordinate in the solid state, being directly bound to five donor atoms of the ligand, the oxygen atom of a coordinated water molecule and an oxygen atom of a neighboring nompa(-) ligand acting as a bridging bidentate carboxylate group (μ-η(1)-carboxylate). Nuclear magnetic relaxation dispersion ((1)H NMRD) profiles and (17)O NMR chemical shifts and transverse relaxation rates of aqueous solutions of [Mn(nompa)](+) indicate that the Mn(2+) ion is six-coordinate in solution by the pentadentate ligand and one inner-sphere water molecule. The analysis of the (1)H NMRD and (17)O NMR data provides a very high water exchange rate of the inner-sphere water molecule (kex(298) = 2.8 × 10(9) s(-1)) and an unusually high value of the (17)O hyperfine coupling constant of the coordinated water molecule (AO/ℏ = 73.3 ± 0.6 rad s(-1)). DFT calculations performed on the [Mn(nompa)(H2O)](+)·2H2O system (TPSSh model) provide a AO/ℏ value in excellent agreement with the one obtained experimentally.
Collapse
Affiliation(s)
- Enikő Molnár
- Departamento de Química Fundamental, Facultade de Ciencias, Universidade da Coruña , Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tsitovich PB, Burns PJ, McKay AM, Morrow JR. Redox-activated MRI contrast agents based on lanthanide and transition metal ions. J Inorg Biochem 2014; 133:143-54. [DOI: 10.1016/j.jinorgbio.2014.01.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/14/2014] [Accepted: 01/14/2014] [Indexed: 12/17/2022]
|
30
|
Dorazio SJ, Olatunde AO, Tsitovich PB, Morrow JR. Comparison of divalent transition metal ion paraCEST MRI contrast agents. J Biol Inorg Chem 2014; 19:191-205. [PMID: 24253281 PMCID: PMC3946895 DOI: 10.1007/s00775-013-1059-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/28/2013] [Indexed: 01/06/2023]
Abstract
Transition-metal-ion-based paramagnetic chemical exchange saturation transfer (paraCEST) agents are a promising new class of compounds for magnetic resonance imaging (MRI) contrast. Members in this class of compounds include paramagnetic complexes of Fe(II), Co(II), and Ni(II). The development of the coordination chemistry for these paraCEST agents is presented with an emphasis on the choice of the azamacrocycle backbone and pendent groups with the goals of controlling the oxidation state, spin state, and stability of the complexes. Chemical exchange saturation transfer spectra and images are compared for different macrocyclic complexes containing amide or heterocyclic pendent groups. The potential of paraCEST agents that function as pH- and redox-activated MRI probes is discussed.
Collapse
Affiliation(s)
- Sarina J. Dorazio
- Department of Chemistry, University at Buffalo, Amherst, New York, 14260 USA
| | - Abiola O. Olatunde
- Department of Chemistry, University at Buffalo, Amherst, New York, 14260 USA
| | - Pavel B. Tsitovich
- Department of Chemistry, University at Buffalo, Amherst, New York, 14260 USA
| | - Janet R. Morrow
- Department of Chemistry, University at Buffalo, Amherst, New York, 14260 USA
| |
Collapse
|
31
|
Jeon IR, Park JG, Haney CR, Harris TD. Spin crossover iron(ii) complexes as PARACEST MRI thermometers. Chem Sci 2014. [DOI: 10.1039/c4sc00396a] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We demonstrate the potential utility of spin crossover iron(ii) complexes as temperature-responsive paramagnetic chemical exchange saturation transfer (PARACEST) contrast agents in magnetic resonance imaging (MRI) thermometry.
Collapse
Affiliation(s)
- Ie-Rang Jeon
- Department of Chemistry
- Northwestern University
- Evanston, USA
| | - Jesse G. Park
- Department of Chemistry
- Northwestern University
- Evanston, USA
| | - Chad R. Haney
- Center for Advanced Molecular Imaging
- Northwestern University
- Evanston, USA
| | | |
Collapse
|
32
|
Slack JR, Woods M. The effect of regioisomerism on the coordination chemistry and CEST properties of lanthanide(III) NB-DOTA-tetraamide chelates. J Biol Inorg Chem 2013; 19:173-89. [PMID: 24287873 DOI: 10.1007/s00775-013-1060-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/24/2013] [Indexed: 01/31/2023]
Abstract
Chemical exchange saturation transfer (CEST) offers many advantages as a method of generating contrast in magnetic resonance images. However, many of the exogenous agents currently under investigation suffer from detection limits that are still somewhat short of what can be achieved with more traditional Gd(3+) agents. To remedy this limitation we have undertaken an investigation of Ln(3+) DOTA-tetraamide chelates (where DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) that have unusually rigid ligand structures: the nitrobenzyl derivatives of DOTA-tetraamides with (2-phenylethyl)amide substituents. In this report we examine the effect of incorporating hydrophobic amide substituents on water exchange and CEST. The ligand systems chosen afforded a total of three CEST-active isomeric square antiprismatic chelates; each of these chelates was found to have different water exchange and CEST characteristics. The position of a nitrobenzyl substituent on the macrocyclic ring strongly influenced the way in which the chelate and Ln(3+) coordination cage distorted. These differential distortions were found to affect the rate of water proton exchange in the chelates. But, by far the greatest effect arose from altering the position of the hydrophobic amide substituent, which, when forced upwards around the water binding site, caused a substantial reduction in the rate of water proton exchange. Such slow water proton exchange afforded a chelate that was 4.5 times more effective as a CEST agent than its isomeric counterparts in dry acetonitrile and at low temperatures and very low presaturation powers.
Collapse
Affiliation(s)
- Jacqueline R Slack
- Department of Chemistry, Portland State University, 1719 SW 10th Avenue, Portland, OR, 97201, USA
| | | |
Collapse
|
33
|
Dorazio SJ, Olatunde AO, Spernyak JA, Morrow JR. CoCEST: cobalt(II) amide-appended paraCEST MRI contrast agents. Chem Commun (Camb) 2013; 49:10025-7. [PMID: 24045271 PMCID: PMC3857136 DOI: 10.1039/c3cc45000g] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The first examples of air-stable Co(II) paraCEST MRI contrast agents are reported. Amide NH protons on the complexes give rise to CEST peaks that are shifted up to 112 ppm from the bulk water resonance. One complex has multiple CEST peaks that may be useful for ratiometric mapping of pH.
Collapse
Affiliation(s)
- Sarina J. Dorazio
- Department of Chemistry, University at Buffalo, The State
University of New York, Amherst, NY 14260, USA
| | - Abiola O. Olatunde
- Department of Chemistry, University at Buffalo, The State
University of New York, Amherst, NY 14260, USA
| | - Joseph A. Spernyak
- Department of Cell Stress Biology, Roswell Park Cancer
Institute, Buffalo, NY14263, USA
| | - Janet R. Morrow
- Department of Chemistry, University at Buffalo, The State
University of New York, Amherst, NY 14260, USA
| |
Collapse
|
34
|
Tircsó G, Garda Z, Kálmán FK, Baranyai Z, Pócsi I, Balla G, Tóth I. Lanthanide(III) complexes of some natural siderophores: A thermodynamic, kinetic and relaxometric study. J Inorg Biochem 2013; 127:53-61. [DOI: 10.1016/j.jinorgbio.2013.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 06/09/2013] [Accepted: 06/10/2013] [Indexed: 11/25/2022]
|
35
|
Strategies for optimizing water-exchange rates of lanthanide-based contrast agents for magnetic resonance imaging. Molecules 2013; 18:9352-81. [PMID: 23921796 PMCID: PMC3775326 DOI: 10.3390/molecules18089352] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/28/2013] [Accepted: 07/31/2013] [Indexed: 11/16/2022] Open
Abstract
This review describes recent advances in strategies for tuning the water-exchange rates of contrast agents for magnetic resonance imaging (MRI). Water-exchange rates play a critical role in determining the efficiency of contrast agents; consequently, optimization of water-exchange rates, among other parameters, is necessary to achieve high efficiencies. This need has resulted in extensive research efforts to modulate water-exchange rates by chemically altering the coordination environments of the metal complexes that function as contrast agents. The focus of this review is coordination-chemistry-based strategies used to tune the water-exchange rates of lanthanide(III)-based contrast agents for MRI. Emphasis will be given to results published in the 21st century, as well as implications of these strategies on the design of contrast agents.
Collapse
|
36
|
Rolla GA, Platas-Iglesias C, Botta M, Tei L, Helm L. 1H and 17O NMR relaxometric and computational study on macrocyclic Mn(II) complexes. Inorg Chem 2013; 52:3268-79. [PMID: 23437979 DOI: 10.1021/ic302785m] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Herein we report a detailed 1H and 17O relaxometric investigation of Mn(II) complexes with cyclen-based ligands such as 2-(1,4,7,10-tetraazacyclododecan-1-yl)acetic acid (DO1A), 2,2'-(1,4,7,10-tetraazacyclododecane-1,4-diyl)diacetic acid (1,4-DO2A), 2,2'-(1,4,7,10-tetraazacyclododecane-1,7-diyl)diacetic acid (1,7-DO2A), and 2,2',2"-(1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (DO3A). The Mn(II) complex with the heptadentate ligand DO3A does not have inner sphere water molecules (q = 0), and therefore, the metal ion is most likely seven-coordinate. The hexadentate DO2A ligand has two isomeric forms: 1,7-DO2A and 1,4-DO2A. The Mn(II) complex with 1,7-DO2A is predominantly six-coordinate (q = 0). In aqueous solutions of [Mn(1,4-DO2A)], a species with one coordinated water molecule (q = 1) prevails largely, whereas a q = 0 form represents only about 10% of the overall population. The Mn(II) complex of the pentadentate ligand DO1A also contains a coordinated water molecule. DFT calculations (B3LYP model) are used to obtain information about the structure of this family of closely related complexes in solution, as well as to determine theoretically the 17O and 1H hyperfine coupling constants responsible for the scalar contribution to 17O and 1H NMR relaxation rates and 17O NMR chemical shifts. These calculations provide 17O A/ħ values of ca. 40 × 10(6) rad s(-1), in good agreement with experimental data. The [Mn(1,4-DO2A)(H2O)] complex is endowed with a relatively fast water exchange rate (k(ex)298 = 11.3 × 10(8) s(-1)) in comparison to the [Mn(EDTA)(H2O)]2- analogue (k(ex)298 = 4.7 × 10(8) s(-1)), but about 5 times lower than that of the [Mn(DO1A)(H2O)]+ complex (k(ex)298 = 60 × 10(8) s(-1)). The water exchange rate measured for the latter complex represents the highest water exchange rate ever measured for a Mn(II) complex.
Collapse
Affiliation(s)
- Gabriele A Rolla
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale T. Michel 11, 15121, Alessandria, Italy
| | | | | | | | | |
Collapse
|
37
|
Tsitovich PB, Morrow JR. Macrocyclic ligands for Fe(II) paraCEST and chemical shift MRI contrast agents. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
The reactivity of macrocyclic Fe(II) paraCEST MRI contrast agents towards biologically relevant anions, cations, oxygen or peroxide. J Inorg Biochem 2012; 117:212-9. [DOI: 10.1016/j.jinorgbio.2012.06.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/08/2012] [Accepted: 06/10/2012] [Indexed: 01/10/2023]
|
39
|
Olatunde AO, Dorazio SJ, Spernyak JA, Morrow JR. The NiCEST approach: nickel(II) paraCEST MRI contrast agents. J Am Chem Soc 2012; 134:18503-5. [PMID: 23102112 DOI: 10.1021/ja307909x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Paramagnetic Ni(II) complexes are shown here to form paraCEST MRI contrast agents (paraCEST = paramagnetic chemical exchange saturation transfer; NiCEST = Ni(II) based CEST agents). Three azamacrocycles with amide pendent groups bind Ni(II) to form stable NiCEST contrast agents including 1,4,7-tris(carbamoylmethyl)-1,4,7-triazacyclononane (L1), 1,4,8,11-tetrakis(carbamoylmethyl)-1,4,8,11-tetraazacyclotetradecane (L2), and 7,13-bis(carbamoylmethyl)-1,4,10-trioxa-7,13-diazacyclopentadecane (L3). [Ni(L3)](2+), [Ni(L1)](2+), and [Ni(L2)](2+) have CEST peaks attributed to amide protons that are shifted 72, 76, and 76 ppm from the bulk water resonance, respectively. Both CEST MR images and CEST spectroscopy show that [Ni(L3)](2+) has the largest CEST effect in 100 mM NaCl, 20 mM HEPES pH 7.4 at 37 °C. This larger CEST effect is attributed to the sharper proton resonances of the complex which arise from a rigid structure and low relaxivity.
Collapse
Affiliation(s)
- Abiola O Olatunde
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, 14260, United States
| | | | | | | |
Collapse
|