1
|
Kushwaha R, Rai R, Gawande V, Singh V, Yadav AK, Koch B, Dhar P, Banerjee S. Antibacterial Photodynamic Therapy by Zn(II)-Curcumin Complex: Synthesis, Characterization, DFT Calculation, Antibacterial Activity, and Molecular Docking. Chembiochem 2024; 25:e202300652. [PMID: 37921481 DOI: 10.1002/cbic.202300652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
The increase in antibacterial drug resistance is threatening global health conditions. Recently, antibacterial photodynamic therapy (aPDT) has emerged as an effective antibacterial treatment with high cure gain. In this work, three Zn(II) complexes viz., [Zn(en)(acac)Cl] (1), [Zn(bpy)(acac)Cl] (2), [Zn(en)(cur)Cl] (3), where en=ethylenediamine (1 and 3), bpy=2,2'-bipyridine (2), acac=acetylacetonate (1 and 2), cur=curcumin monoanionic (3) were developed as aPDT agents. Complexes 1-3 were synthesized and fully characterized using NMR, HRMS, FTIR, UV-Vis. and fluorescence spectroscopy. The HOMO-LUMO energy gap (Eg), and adiabatic splittings (ΔS1-T1 and ΔS0-T1 ) obtained from DFT calculation indicated the photosensivity of the complexes. These complexes have not shown any potent antibacterial activity under dark conditions but the antibacterial activity of these complexes was significantly enhanced upon light exposure (MIC value up to 0.025 μg/mL) due to their light-mediated 1 O2 generation abilities. The molecular docking study suggested that complexes 1-3 interact efficiently with DNA gyrase B (PDB ID: 4uro). Importantly, 1-3 did not show any toxicity toward normal HEK-293 cells. Overall, in this work, we have demonstrated the promising potential of Zn(II) complexes as effective antibacterial agents under the influence of visible light.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, Uttar Pradesh, India
| | - Rohit Rai
- School of Biochemical Engineering, Indian Institute of Technology (BHU), 221005, Varanasi, Uttar Pradesh, India
| | - Vedant Gawande
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, Uttar Pradesh, India
| | - Virendra Singh
- Department of Zoology, Institution of Science, Banaras Hindu University, 221005, Varanasi, Uttar Pradesh, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, Uttar Pradesh, India
| | - Biplob Koch
- Department of Zoology, Institution of Science, Banaras Hindu University, 221005, Varanasi, Uttar Pradesh, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), 221005, Varanasi, Uttar Pradesh, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, Uttar Pradesh, India
| |
Collapse
|
2
|
Mandal A, Rai R, Saha S, Kushwaha R, Wei L, Gogoi H, Mandal AA, Yadav AK, Huang H, Dutta A, Dhar P, Banerjee S. Polypyridyl-based Co(III) complexes of vitamin B 6 Schiff base for photoactivated antibacterial therapy. Dalton Trans 2023; 52:17562-17572. [PMID: 37965840 DOI: 10.1039/d3dt02967k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Herein, five novel polypyridyl-based Co(III) complexes of Schiff bases, viz., [Co(dpa)(L1)]Cl (1), [Co(dpa)(L2)]Cl (2), [Co(L3)(L2)]Cl (3), [Co(L3)(L1)]Cl (4), and [Co(L4)(L1)]Cl (5), where dpa (dipicolylamine) = bis(2-pyridylmethyl)amine; H2L1 = (E)-2-((2-hydroxybenzylidene)amino)phenol; H2L2 = (E)-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylpyridin-3-ol; L3 = 4'-phenyl-2,2':6',2''-terpyridine (ph-tpy); and L4 = 4'-ferrocenyl-2,2':6',2''-terpyridine (Fc-tpy), were synthesized and characterized. Complexes 1, 3, and 4 were structurally characterized by single-crystal XRD, indicating an octahedral CoIIIN4O2 coordination core. The absorption bands of these complexes were observed in the visible range with a λmax at ∼430-485 nm. Complex 5 displayed an extra absorption band near 545 nm because of a ferrocene moiety. These absorptions in the visible region reflect the potential of the complexes to act as visible-light antimicrobial photodynamic therapy (aPDT) agents. All of these complexes showed reactive oxygen species (ROS)-mediated antibacterial effects against S. aureus (Gram-positive) and E. coli (Gram-negative bacteria) upon low-energy visible light (0.5 J cm-2, 400-700 nm) exposure. Additionally, 1-5 did not show any toxicity toward A549 (Human Lung adenocarcinoma) cells, reflecting their selective bacteria-killing abilities.
Collapse
Affiliation(s)
- Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Rohit Rai
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Varanasi, Uttar Pradesh, India 221005.
| | - Sukanta Saha
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Li Wei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Hemonta Gogoi
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Huayi Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Varanasi, Uttar Pradesh, India 221005.
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
3
|
Mandal A, Kushwaha R, Mandal AA, Bajpai S, Yadav AK, Banerjee S. Transition Metal Complexes as Antimalarial Agents: A Review. ChemMedChem 2023; 18:e202300326. [PMID: 37436090 DOI: 10.1002/cmdc.202300326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
In antimalarial drug development research, overcoming drug resistance has been a major challenge for researchers. Nowadays, several drugs like chloroquine, mefloquine, sulfadoxine, and artemisinin are used to treat malaria. But increment in drug resistance has pushed researchers to find novel drugs to tackle drug resistance problems. The idea of using transition metal complexes with pharmacophores as ligands/ligand pendants to show enhanced antimalarial activity with a novel mechanism of action has gained significant attention recently. The advantages of metal complexes include tunable chemical/physical properties, redox activity, avoiding resistance factors, etc. Several recent reports have successfully demonstrated that the metal complexation of known organic antimalarial drugs can overcome drug resistance by showing enhanced activities than the parent drugs. This review has discussed the fruitful research works done in the past few years falling into this criterion. Based on transition metal series (3d, 4d, or 5d), the antimalarial metal complexes have been divided into three broad categories (3d, 4d, or 5d metal-based), and their activities have been compared with the similar control complexes as well as the parent drugs. Furthermore, we have also commented on the potential issues and their possible solution for translating these metal-based antimalarial complexes into the clinic.
Collapse
Affiliation(s)
- Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Sumit Bajpai
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| |
Collapse
|
4
|
New mixed ligand oxidovanadium(IV) complexes: Solution behavior, protein interaction and cytotoxicity. J Inorg Biochem 2022; 233:111853. [DOI: 10.1016/j.jinorgbio.2022.111853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022]
|
5
|
Nahaei A, Mandegani Z, Chamyani S, Fereidoonnezhad M, Shahsavari HR, Kuznetsov NY, Nabavizadeh SM. Half-Sandwich Cyclometalated Rh III Complexes Bearing Thiolate Ligands: Biomolecular Interactions and In Vitro and In Vivo Evaluations. Inorg Chem 2022; 61:2039-2056. [PMID: 35023727 DOI: 10.1021/acs.inorgchem.1c03218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A class of cyclometalated RhIII complexes [Cp*Rh(ppy)(SR)] bearing thiolate ligands, Cp* = pentamethylcyclopentadienyl, ppy = 2-phenylpyridinate, and R = pyridyl (Spy, 2), pyrimidyl (SpyN, 3), benzimidazolyl (Sbi, 4), and benzothiazolyl (Sbt, 5), were produced and identified by means of spectroscopic methods. The in vitro cytotoxicity of the RhIII compounds in three different human mortal cancerous cell lines (ovarian, SKOV3; breast, MCF-7; lung, A549) and a normal lung (MRC-5) cell line were evaluated, indicating the selectivity of these cyclometalated RhIII complexes to cancer cells. Complex 5, selected for in vivo experiment, has shown an effective inhibition of tumor growth in SKOV3 xenograft mouse model relative to control (p-values < 0.05 and < 0.01). Importantly, the outcomes of H&E (hematoxylin and eosin) staining and hematological analysis revealed negligible toxicity of 5 compared to cisplatin on a functioning of the main organs of mouse. Molecular docking, UV-vis, and emission spectroscopies (fluorescence, 3D fluorescence, synchronous) techniques were carried out on 1-5 to peruse the mechanism of the anticancer activities of these complexes. The obtained data help to manifest the binding affinity between the rhodium compounds and calf thymus DNA (CT-DNA) through the interaction by DNA minor groove and moderate binding affinity with bovine serum albumin (BSA), particularly with the cavity in the subdomain IIA. It can be concluded that the Rh-thiolate complexes are highly promising leads for the development of novel effective DNA-targeted anticancer drugs.
Collapse
Affiliation(s)
- Asma Nahaei
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Zeinab Mandegani
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Samira Chamyani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Masood Fereidoonnezhad
- Toxicology Research Center; Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Hamid R Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Nikolai Yu Kuznetsov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation
| | - S Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| |
Collapse
|
6
|
Gourdon L, Cariou K, Gasser G. Phototherapeutic anticancer strategies with first-row transition metal complexes: a critical review. Chem Soc Rev 2022; 51:1167-1195. [PMID: 35048929 DOI: 10.1039/d1cs00609f] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) are therapeutic techniques based on a photosensitizer (PS) and light. These techniques allow the spatial and temporal control of the activation of drugs with light. Transition metal complexes are attractive compounds as photoactivatable prodrugs since their excited states can be appropriately designed by subtle modifications of the ligands, the metal centre, or the oxidation state. However, most metal-based PSs contain heavy metals such as Ru, Os, Ir, Pt or Au, which are expensive and non-earth-abundant, contrary to first-row transition metals. In this context, the exploration of the photochemical properties of complexes based on first-row transition metals appears to be extremely promising. This did encourage several groups to develop promising PSs based on these metals. This review presents up-to-date state-of-the-art information on first-row-transition metal complexes, from titanium to zinc in regard to their application as PSs for phototherapeutic applications.
Collapse
Affiliation(s)
- Lisa Gourdon
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| |
Collapse
|
7
|
Effects of co-administration of arsenic trioxide and Schiff base oxovanadium complex on the induction of apoptosis in acute promyelocytic leukemia cells. Biometals 2021; 34:1067-1080. [PMID: 34255251 DOI: 10.1007/s10534-021-00330-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Acute promyelocytic leukaemia (APL) is commonly treated with arsenic trioxide (As2O3) that has many side effects. Given the increasing trend of studies on beneficial therapeutic properties of synthetic compounds containing vanadium, the present study sought to use Schiff base oxovanadium complex to reduce the needed concentration of arsenic trioxide. The HL-60 cell line, which is a model of APL, was selected and the effects of arsenic trioxide and Schiff base oxovanadium complex were individually and simultaneously evaluated on the cell viability by the MTT assay. Flow cytometry and Real-time RT-PCR were also performed to investigate the rate of apoptosis and the expression of P53 and P21 genes, respectively. The IC50 of arsenic trioxide and Schiff base oxovanadium complex on Hl-60 cells was 8.37 ± 0.36 µM and 34.12 ± 1.52 µg/ml, respectively. At the simultaneous administration of both compounds, the maximum decrease in the cell viability was seen in co-administration of 40 µg/ml of Schiff base oxovanadium complex and 0.001 µM of arsenic trioxide. Real-time RT-PCR indicated that the co-administration of Schiff base oxovanadium complex 40 µg/ml and arsenic trioxide 0.001 µM could increase the expression of P53 and P21 genes by 3.76 ± 0.19 and 6.57 ± 1.29 fold change, respectively to the control sample. The flow cytometry studies also indicated that this co-administration could induce apoptosis up to 67% ± 0.9% significantly higher than the control sample. The use of Schiff base oxovanadium complex could significantly reduce the required dose of arsenic trioxide to induce apoptosis in HL-60 cells.
Collapse
|
8
|
Abstract
The application of metals in biological systems has been a rapidly growing branch of science. Vanadium has been investigated and reported as an anticancer agent. Melanoma is the most aggressive type of skin cancer, the incidence of which has been increasing annually worldwide. It is of paramount importance to identify novel pharmacological agents for melanoma treatment. Herein, a systematic review of publications including “Melanoma and Vanadium” was performed. Nine vanadium articles in several melanoma cells lines such as human A375, human CN-mel and murine B16F10, as well as in vivo studies, are described. Vanadium-based compounds with anticancer activity against melanoma include: (1) oxidovanadium(IV); (2) XMenes; (3) vanadium pentoxide, (4) oxidovanadium(IV) pyridinonate compounds; (5) vanadate; (6) polysaccharides vanadium(IV/V) complexes; (7) mixed-metal binuclear ruthenium(II)–vanadium(IV) complexes; (8) pyridoxal-based oxidovanadium(IV) complexes and (9) functionalized nanoparticles of yttrium vanadate doped with europium. Vanadium compounds and/or vanadium materials show potential anticancer activities that may be used as a useful approach to treat melanoma.
Collapse
|
9
|
Therapeutic potential of vanadium complexes with 1,10-phenanthroline ligands, quo vadis? Fate of complexes in cell media and cancer cells. J Inorg Biochem 2021; 217:111350. [PMID: 33477088 DOI: 10.1016/j.jinorgbio.2020.111350] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
VIVO-complexes formulated as [VIVO(OSO3)(phen)2] (1) (phen = 1,10-phenanthroline), [VIVO(OSO3)(Me2phen)2] (2) (Me2phen = 4,7-dimethyl-1,10-phenanthroline) and [VIVO(OSO3)(amphen)2] (3) (amphen = 5-amino-1,10-phenanthroline) were prepared and stability in cell incubation media evaluated. Their cytotoxicity was determined against the A2780 (ovarian), MCF7 (breast) and PC3 (prostate) human cancer cells at different incubation times. While at 3 and 24 h the cytotoxicity differs for complexes and corresponding free ligands, at 72 h incubation all compounds are equally active presenting low IC50 values. Upon incubation of A2780 cells with 1-3, cellular distribution of vanadium in cytosol, membranes, nucleus and cytoskeleton, indicate that the uptake of V is low, particularly for 1, and that the uptake pattern depends on the ligand. Nuclear microscopic techniques are used for imaging and elemental quantification in whole PC3 cells incubated with 1. Once complexes are added to cell culture media, they decompose, and with time most VIV oxidizes to VV-species. Modeling of speciation when [VIVO(OSO3)(phen)2] (1) is added to cell media is presented. At lower concentrations of 1, VIVO- and phen-containing species are mainly bound to bovine serum albumin, while at higher concentrations [VIVO(phen)n]2+-complexes become relevant, being predicted that the species taken up and mechanisms of action operating depend on the total concentration of complex. This study emphasizes that for these VIVO-systems, and probably for many others involving oxidovanadium or other labile metal complexes, it is not possible to identify active species or propose mechanisms of cytotoxic action without evaluating speciation occurring in cell media.
Collapse
|
10
|
Bhattacharyya U, Verma BK, Saha R, Mukherjee N, Raza MK, Sahoo S, Kondaiah P, Chakravarty AR. Structurally Characterized BODIPY-Appended Oxidovanadium(IV) β-Diketonates for Mitochondria-Targeted Photocytotoxicity. ACS OMEGA 2020; 5:4282-4292. [PMID: 32149258 PMCID: PMC7057700 DOI: 10.1021/acsomega.9b04204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/10/2020] [Indexed: 05/21/2023]
Abstract
Mixed-ligand oxidovanadium(IV) β-diketonates having NNN-donor dipicolylamine-conjugated to boron-dipyrromethene (BODIPY in L1) and diiodo-BODIPY (in L2) moieties, namely, [VO(L1)(acac)]Cl (1), [VO(L2)(acac)]Cl (2), and [VO(L1)(dbm)]Cl (3), where acac and dbm are monoanionic O,O-donor acetylacetone and 1,3-diphenyl-1,3-propanedione, were prepared, characterized, and tested for their photoinduced anticancer activity in visible light. Complexes 1 and 2 were structurally characterized as their PF6 - salts (1a and 2a) by X-ray crystallography. They showed VIVN3O3 six-coordinate geometry with dipicolylamine base as the facial ligand. The non-iodinated BODIPY complexes displayed absorption maxima at ∼501 nm, while it is ∼535 nm for the di-iodinated 2 in 10% DMSO-PBS buffer medium (pH = 7.2). Complexes 1 and 3 being green emissive (λem, ∼512 nm; λex, 470 nm; ΦF, ∼0.10) in 10% aqueous DMSO were used for cellular imaging studies. Complex 3 localized primarily in the mitochondria of the cervical HeLa cells with a co-localization coefficient value of 0.7. The non-emissive diiodo-BODIPY complex 2 showed generation of singlet oxygen (ΦΔ ≈ 0.47) on light activation. Annexin-V assay showed singlet oxygen-mediated cellular apoptosis, making this complex a targeted PDT agent.
Collapse
Affiliation(s)
- Utso Bhattacharyya
- Department of Inorganic
and Physical Chemistry, Indian Institute
of Science, Bangalore 560 012, India
| | - Brijesh K. Verma
- Department
of Molecular Reproduction, Development and
Genetics, Indian Institute of Science, Bangalore 560 012, India
| | - Rupak Saha
- Department of Inorganic
and Physical Chemistry, Indian Institute
of Science, Bangalore 560 012, India
| | - Nandini Mukherjee
- Department of Inorganic
and Physical Chemistry, Indian Institute
of Science, Bangalore 560 012, India
| | - Md Kausar Raza
- Department of Inorganic
and Physical Chemistry, Indian Institute
of Science, Bangalore 560 012, India
| | - Somarupa Sahoo
- Department of Inorganic
and Physical Chemistry, Indian Institute
of Science, Bangalore 560 012, India
| | - Paturu Kondaiah
- Department
of Molecular Reproduction, Development and
Genetics, Indian Institute of Science, Bangalore 560 012, India
- E-mail: . Tel.: +91-80-22932688. Fax: +91-80-23600999 (P.K.)
| | - Akhil R. Chakravarty
- Department of Inorganic
and Physical Chemistry, Indian Institute
of Science, Bangalore 560 012, India
- E-mail: . Tel.: +91-80-22932533. Fax: +91-80-23600683 (A.R.C.)
| |
Collapse
|
11
|
Beebe SJ, Celestine MJ, Bullock JL, Sandhaus S, Arca JF, Cropek DM, Ludvig TA, Foster SR, Clark JS, Beckford FA, Tano CM, Tonsel-White EA, Gurung RK, Stankavich CE, Tse-Dinh YC, Jarrett WL, Holder AA. Synthesis, characterization, DNA binding, topoisomerase inhibition, and apoptosis induction studies of a novel cobalt(III) complex with a thiosemicarbazone ligand. J Inorg Biochem 2020; 203:110907. [PMID: 31715377 PMCID: PMC7053658 DOI: 10.1016/j.jinorgbio.2019.110907] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 01/09/2023]
Abstract
In this study, 9-anthraldehyde-N(4)-methylthiosemicarbazone (MeATSC) 1 and [Co(phen)2(O2CO)]Cl·6H2O 2 (where phen = 1,10-phenanthroline) were synthesized. [Co(phen)2(O2CO)]Cl·6H2O 2 was used to produce anhydrous [Co(phen)2(H2O)2](NO3)33. Subsequently, anhydrous [Co(phen)2(H2O)2](NO3)33 was reacted with MeATSC 1 to produce [Co(phen)2(MeATSC)](NO3)3·1.5H2O·C2H5OH 4. The ligand, MeATSC 1 and all complexes were characterized by elemental analysis, FT IR, UV-visible, and multinuclear NMR (1H, 13C, and 59Co) spectroscopy, along with HRMS, and conductivity measurements, where appropriate. Interactions of MeATSC 1 and complex 4 with calf thymus DNA (ctDNA) were investigated by carrying out UV-visible spectrophotometric studies. UV-visible spectrophotometric studies revealed weak interactions between ctDNA and the analytes, MeATSC 1 and complex 4 (Kb = 8.1 × 105 and 1.6 × 104 M-1, respectively). Topoisomerase inhibition assays and cleavage studies proved that complex 4 was an efficient catalytic inhibitor of human topoisomerases I and IIα. Based upon the results obtained from the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay on 4T1-luc metastatic mammary breast cancer cells (IC50 = 34.4 ± 5.2 μM when compared to IC50 = 13.75 ± 1.08 μM for the control, cisplatin), further investigations into the molecular events initiated by exposure to complex 4 were investigated. Studies have shown that complex 4 activated both the apoptotic and autophagic signaling pathways in addition to causing dissipation of the mitochondrial membrane potential (ΔΨm). Furthermore, activation of cysteine-aspartic proteases3 (caspase 3) in a time- and concentration-dependent manner coupled with the ΔΨm, studies implicated the intrinsic apoptotic pathway as the major regulator of cell death mechanism.
Collapse
Affiliation(s)
- Stephen J Beebe
- The Frank Reidy Center for Bioelectrics, 4211 Monarch Way, Suite 300, Norfolk, VA 23529, USA
| | - Michael J Celestine
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Jimmie L Bullock
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Shayna Sandhaus
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Jessa Faye Arca
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Donald M Cropek
- U.S. Army Corps of Engineers, Construction Engineering Research Laboratory, Champaign, IL 61822, USA
| | - Tekettay A Ludvig
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Sydney R Foster
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Jasmine S Clark
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Floyd A Beckford
- The University of Virginia's College at Wise, 1 College Avenue, Wise, VA 24293, USA
| | - Criszcele M Tano
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Elizabeth A Tonsel-White
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Raj K Gurung
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Courtney E Stankavich
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - William L Jarrett
- School of Polymers and High-Performance Materials, The University of Southern Mississippi, 118 College Drive, #5050, Hattiesburg, MS 39406, USA
| | - Alvin A Holder
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA.
| |
Collapse
|
12
|
Banerjee A, Mohanty M, Lima S, Samanta R, Garribba E, Sasamori T, Dinda R. Synthesis, structure and characterization of new dithiocarbazate-based mixed ligand oxidovanadium(iv) complexes: DNA/HSA interaction, cytotoxic activity and DFT studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj01246g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis, structure and characterization of mixed ligand oxidovanadium(iv) complexes [VIVOL1–2(LN–N)] (1–3) are reported. With a view to evaluating their biological activity, their DNA/HSA interaction and cytotoxicity activity have been explored.
Collapse
Affiliation(s)
- Atanu Banerjee
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Monalisa Mohanty
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Sudhir Lima
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Rajib Samanta
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| | - Takahiro Sasamori
- Graduate School of Natural Sciences
- Nagoya City University Yamanohata 1
- Nagoya
- Japan
| | - Rupam Dinda
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| |
Collapse
|
13
|
Syiemlieh I, Asthana M, Lal RA. Reactivity and Catalytic Activity of Homobimetallic Vanadium(V) Complex Derived from Bis(5‐chlorosalicylaldehyde)oxaloyldihydrazone Ligand. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ibanphylla Syiemlieh
- Department of Chemistry, Centre for Advanced StudiesNorth‐Eastern Hill University Shillong 793022 India
| | | | - Ram A. Lal
- Department of Chemistry, Centre for Advanced StudiesNorth‐Eastern Hill University Shillong 793022 India
| |
Collapse
|
14
|
Roy S, Böhme M, Dash SP, Mohanty M, Buchholz A, Plass W, Majumder S, Kulanthaivel S, Banerjee I, Reuter H, Kaminsky W, Dinda R. Anionic Dinuclear Oxidovanadium(IV) Complexes with Azo Functionalized Tridentate Ligands and μ-Ethoxido Bridge Leading to an Unsymmetric Twisted Arrangement: Synthesis, X-ray Structure, Magnetic Properties, and Cytotoxicity. Inorg Chem 2018; 57:5767-5781. [DOI: 10.1021/acs.inorgchem.8b00035] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Satabdi Roy
- Department of Chemistry, Indian Institute of Technology, Kanpur, 208016 Uttar Pradesh, India
| | - Michael Böhme
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Subhashree P. Dash
- Department of Basic Sciences, Parala Maharaja Engineering College, Sitalapalli, Brahmapur, Odisha 761003, India
| | | | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | | | | | | | - Hans Reuter
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastraße 6, 49069 Osnabrück, Germany
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | |
Collapse
|
15
|
Majumder S, Pasayat S, Panda AK, Dash SP, Roy S, Biswas A, Varma ME, Joshi BN, Garribba E, Kausar C, Patra SK, Kaminsky W, Crochet A, Dinda R. Monomeric and Dimeric Oxidomolybdenum(V and VI) Complexes, Cytotoxicity, and DNA Interaction Studies: Molybdenum Assisted C═N Bond Cleavage of Salophen Ligands. Inorg Chem 2017; 56:11190-11210. [DOI: 10.1021/acs.inorgchem.7b01578] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sudarshana Majumder
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sagarika Pasayat
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Alok K. Panda
- School of Basic
Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 751013, Odisha, India
| | - Subhashree P. Dash
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
- Department of Basic Sciences, Paralamaharaja Engineering College, Sitalapalli, Brahmapur, Odisha 761003, India
| | - Satabdi Roy
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ashis Biswas
- School of Basic
Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 751013, Odisha, India
| | - Mokshada E. Varma
- Bioprospecting
Group, Agharkar Research Institute, G.G. Agharkar Road, Pune 411004, India
| | - Bimba N. Joshi
- Bioprospecting
Group, Agharkar Research Institute, G.G. Agharkar Road, Pune 411004, India
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna
2, I-07100 Sassari, Italy
| | - Chahat Kausar
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Samir Kumar Patra
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Aurélien Crochet
- Department of Chemistry, Fribourg Center
for Nanomaterials, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
16
|
Banerjee S, Dixit A, Karande AA, Chakravarty AR. Endoplasmic reticulum targeting tumour selective photocytotoxic oxovanadium(IV) complexes having vitamin-B6 and acridinyl moieties. Dalton Trans 2016; 45:783-96. [PMID: 26645854 DOI: 10.1039/c5dt03412d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Oxovanadium(iv) complexes of vitamin-B6 Schiff base, viz., [VO(HL(1)/L(2)/L(3))(B)]Cl (), where B is 2,2'-bipyridine (bpy in and ), 11-(9-acridinyl)dipyrido[3,2-a:2',3'-c]phenazine (acdppz in and ), H2L(1)·HCl is 3-hydroxy-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylpyridin-1-ium chloride (in and ), HL(2) is 2-(((2-(1H-imidazol-4-yl)ethyl)imino)methyl)phenol (in ) and HL(3) is 4-(((2-(1H-imidazol-4-yl)ethyl)imino)methyl)-5-(hydroxymethyl)-2-methylpyridin-3-ol (in ) were synthesized, characterized and their cellular uptake, photo-activated cytotoxicity and intracellular localization were studied. Complexes , as the perchlorate salt of , and , as the hexafluorophosphate salt of , were structurally characterized. Vitamin-B6 transporting membrane carrier (VTC) mediated entry into tumour cells in preference to the normal ones seems to be responsible for the higher cellular uptake of the complexes into HeLa and MCF-7 cells over MCF-10A cells. Complexes and having acdppz as the photosensitizer exhibit remarkable photocytotoxicity in these cancer cells giving IC50 of <0.9 μM. The complexes remain non-toxic in the dark. The complexes show photo-induced apoptotic cell death via singlet oxygen ((1)O2) generation. Fluorescence microscopy reveals specific localization of complex to endoplasmic reticulum (ER) and generation of (1)O2 possibly leads to apoptotic cell death by triggering ER stress response (ERSR).
Collapse
Affiliation(s)
- Samya Banerjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Akanksha Dixit
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Anjali A Karande
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
17
|
Garai A, Pant I, Banerjee S, Banik B, Kondaiah P, Chakravarty AR. Photorelease and Cellular Delivery of Mitocurcumin from Its Cytotoxic Cobalt(III) Complex in Visible Light. Inorg Chem 2016; 55:6027-35. [DOI: 10.1021/acs.inorgchem.6b00554] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aditya Garai
- Department
of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ila Pant
- Department
of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Samya Banerjee
- Department
of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Bhabatosh Banik
- Department
of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Paturu Kondaiah
- Department
of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Akhil R. Chakravarty
- Department
of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
18
|
|
19
|
Sarkar T, Butcher RJ, Banerjee S, Mukherjee S, Hussain A. Visible light-induced cytotoxicity of a dinuclear iron(III) complex of curcumin with low-micromolar IC50 value in cancer cells. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2015.09.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Li Z, Grant KB. DNA photo-cleaving agents in the far-red to near-infrared range – a review. RSC Adv 2016. [DOI: 10.1039/c5ra28102d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ideal photonucleases for clinical applications cleave DNA upon activation with deeply penetrating far-red to near-infrared light.
Collapse
Affiliation(s)
- Ziyi Li
- Department of Chemistry
- Georgia State University
- Atlanta
- USA
| | | |
Collapse
|
21
|
Garai A, Pant I, Kondaiah P, Chakravarty AR. Iron(III) salicylates of dipicolylamine bases showing photo-induced anticancer activity and cytosolic localization. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Banerjee S, Pant I, Khan I, Prasad P, Hussain A, Kondaiah P, Chakravarty AR. Remarkable enhancement in photocytotoxicity and hydrolytic stability of curcumin on binding to an oxovanadium(IV) moiety. Dalton Trans 2015; 44:4108-22. [PMID: 25623080 DOI: 10.1039/c4dt02165g] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxovanadium(IV) complexes of polypyridyl and curcumin-based ligands, viz. [VO(cur)(L)Cl] (1, 2) and [VO(scur)(L)Cl] (3, 4), where L is 1,10-phenanthroline (phen in 1 and 3), dipyrido[3,2-a:2',3'-c]phenazine (dppz in 2 and 4), Hcur is curcumin and Hscur is diglucosylcurcumin, were synthesized and characterized and their cellular uptake, photocytotoxicity, intracellular localization, DNA binding, and DNA photo-cleavage activity studied. Complex [VO(cur)(phen)Cl] (1) has V(IV)N2O3Cl distorted octahedral geometry as evidenced from its crystal structure. The sugar appended complexes show significantly higher uptake into the cancer cells compared to their normal analogues. The complexes are remarkably photocytotoxic in visible light (400-700 nm) giving an IC50 value of <5 μM in HeLa, HaCaT and MCF-7 cells with no significant dark toxicity. The green emission of the complexes was used for cellular imaging. Predominant cytosolic localization of the complexes 1-4 to a lesser extent into the nucleus was evidenced from confocal imaging. The complexes as strong binders of calf thymus DNA displayed photocleavage of supercoiled pUC19 DNA in red light by generating ˙OH radicals as the ROS. The cell death is via an apoptotic pathway involving the ROS. Binding to the VO(2+) moiety has resulted in stability against any hydrolytic degradation of curcumin along with an enhancement of its photocytotoxicity.
Collapse
Affiliation(s)
- Samya Banerjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Fik MA, Gorczyński A, Kubicki M, Hnatejko Z, Wadas A, Kulesza PJ, Lewińska A, Giel-Pietraszuk M, Wyszko E, Patroniak V. New vanadium complexes with 6,6″-dimethyl-2,2′:6′,2″-terpyridine in terms of structure and biological properties. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Banerjee S, Dixit A, Kumar A, Mukherjee S, Karande AA, Chakravarty AR. Photoinduced DNA Crosslink Formation by Dichloridooxidovanadium(IV) Complexes of Polypyridyl Bases. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Saswati S, Chakraborty A, Dash SP, Panda AK, Acharyya R, Biswas A, Mukhopadhyay S, Bhutia SK, Crochet A, Patil YP, Nethaji M, Dinda R. Synthesis, X-ray structure and in vitro cytotoxicity studies of Cu(i/ii) complexes of thiosemicarbazone: special emphasis on their interactions with DNA. Dalton Trans 2015; 44:6140-57. [DOI: 10.1039/c4dt03764b] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The interactions of four Cu-TSC complexes with DNA & their cytotoxicity studies against the HeLa cell have been reported.
Collapse
|
27
|
Dash SP, Panda AK, Pasayat S, Dinda R, Biswas A, Tiekink ERT, Mukhopadhyay S, Bhutia SK, Kaminsky W, Sinn E. Oxidovanadium(v) complexes of aroylhydrazones incorporating heterocycles: synthesis, characterization and study of DNA binding, photo-induced DNA cleavage and cytotoxic activities. RSC Adv 2015. [DOI: 10.1039/c4ra14369h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The interaction of four neutral oxidovanadium(v) complexes with DNA and their cytotoxic activities have been reported.
Collapse
Affiliation(s)
- Subhashree P. Dash
- Department of Chemistry
- National Institute of Technology
- Rourkela 769008
- India
| | - Alok K. Panda
- School of Basic Sciences
- Indian Institute of Technology Bhubaneswar
- Bhubaneswar 751 013
- India
| | - Sagarika Pasayat
- Department of Chemistry
- National Institute of Technology
- Rourkela 769008
- India
| | - Rupam Dinda
- Department of Chemistry
- National Institute of Technology
- Rourkela 769008
- India
| | - Ashis Biswas
- School of Basic Sciences
- Indian Institute of Technology Bhubaneswar
- Bhubaneswar 751 013
- India
| | | | | | - Sujit K. Bhutia
- Department of Life Science
- National Institute of Technology
- Rourkela 769008
- India
| | | | - Ekkehard Sinn
- Department of Chemistry
- Western Michigan University
- Kalamazoo
- USA
| |
Collapse
|
28
|
Sarkar T, Banerjee S, Hussain A. Significant photocytotoxic effect of an iron(iii) complex of a Schiff base ligand derived from vitamin B6and thiosemicarbazide in visible light. RSC Adv 2015. [DOI: 10.1039/c5ra04207k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
An iron(iii)–Schiff base complex derived from vitamin B6and thiosemicarbazide is significantly photocytotoxic to HeLa cancer cells in visible light (400 nm–700 nm) but non-toxic in the absence of light.
Collapse
Affiliation(s)
- Tukki Sarkar
- Department of Chemistry
- Handique Girls' College
- Guwahati 781001
- India
| | - Samya Banerjee
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Akhtar Hussain
- Department of Chemistry
- Handique Girls' College
- Guwahati 781001
- India
| |
Collapse
|
29
|
Dash SP, Panda AK, Pasayat S, Majumder S, Biswas A, Kaminsky W, Mukhopadhyay S, Bhutia SK, Dinda R. Evaluation of the cell cytotoxicity and DNA/BSA binding and cleavage activity of some dioxidovanadium(V) complexes containing aroylhydrazones. J Inorg Biochem 2014; 144:1-12. [PMID: 25575303 DOI: 10.1016/j.jinorgbio.2014.12.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 01/07/2023]
Abstract
Three dioxidovanadium(V) complexes [VO2L(1-3)] (1-3) [HL(1)=1-napthoyl hydrazone of 2-acetyl pyridine, HL(2)=2-furoyl hydrazone of 2-acetyl pyridine and H2L(3)=isonicotinoyl hydrazone of 2-hydroxy benzaldehyde] have been reported. All the complexes were characterized by various spectroscopy (IR, UV-visible and NMR) and the molecular structures of 1 and 2 were characterized by single crystal X-ray diffraction technique. Structural report established five-coordinate geometries, distorted toward square pyramidal for each of 1 and 2, based on a tridentate -O,N,N coordinating anion and two oxido-O atoms. The experimental results show that the complexes interact with calf-thymus DNA (CT-DNA) possibly by a groove binding mode, with binding constants of ~10(5)M(-1). All complexes show good photo-induced cleavage of pUC19 supercoiled plasmid DNA with complex 1 showing the highest photo-induced DNA cleavage activity of ~68%. 1-3 also exhibit moderate binding affinity in the range of 10(3)-10(4)M(-1) towards bovine serum albumin (BSA), while all the complexes show good photo-induced BSA cleavage activity. Moreover the antiproliferative activity of all these complexes was studied, which reveal all compounds are significantly cytotoxic towards the HeLa cell line.
Collapse
Affiliation(s)
- Subhashree P Dash
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Alok K Panda
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 751 013, Odisha, India
| | - Sagarika Pasayat
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sudarshana Majumder
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 751 013, Odisha, India.
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA
| | - Subhadip Mukhopadhyay
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
30
|
Banerjee S, Dixit A, Karande AA, Chakravarty AR. Remarkable Selectivity and Photo-Cytotoxicity of an Oxidovanadium(IV) Complex of Curcumin in Visible Light. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402884] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Banik B, Somyajit K, Nagaraju G, Chakravarty AR. Oxovanadium(iv) catecholates of terpyridine bases for cellular imaging and photocytotoxicity in red light. RSC Adv 2014. [DOI: 10.1039/c4ra02687j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
32
|
Goswami TK, Gadadhar S, Balaji B, Gole B, Karande AA, Chakravarty AR. Ferrocenyl-l-amino acid copper(ii) complexes showing remarkable photo-induced anticancer activity in visible light. Dalton Trans 2014; 43:11988-99. [DOI: 10.1039/c4dt01348d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Iron(III) benzhydroxamates of dipicolylamines for photocytotoxicity in red light and cellular imaging. Polyhedron 2014. [DOI: 10.1016/j.poly.2014.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
34
|
Banerjee S, Prasad P, Khan I, Hussain A, Kondaiah P, Chakravarty AR. Mitochondria targeting Photocytotoxic Oxidovanadium(IV) Complexes of Curcumin and (Acridinyl)dipyridophenazine in Visible Light. Z Anorg Allg Chem 2014. [DOI: 10.1002/zaac.201300569] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Banik B, Somyajit K, Hussain A, Nagaraju G, Chakravarty AR. Carbohydrate-appended photocytotoxic (imidazophenanthroline)-oxovanadium(iv) complexes for cellular targeting and imaging. Dalton Trans 2014; 43:1321-31. [DOI: 10.1039/c3dt52087k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Dash SP, Panda AK, Pasayat S, Dinda R, Biswas A, Tiekink ERT, Patil YP, Nethaji M, Kaminsky W, Mukhopadhyay S, Bhutia SK. Syntheses and structural investigation of some alkali metal ion-mediated LVVO2− (L2− = tridentate ONO ligands) species: DNA binding, photo-induced DNA cleavage and cytotoxic activities. Dalton Trans 2014; 43:10139-56. [DOI: 10.1039/c4dt00883a] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Zhang Y, Wang Q, Wen J, Wang X, Mahmood MHR, Ji L, Liu H. DNA Binding and Oxidative Cleavage by a Water-soluble Carboxyl Manganese(III) Corrole. CHINESE J CHEM 2013. [DOI: 10.1002/cjoc.201300488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Holder AA, Taylor P, Magnusen AR, Moffett ET, Meyer K, Hong Y, Ramsdale SE, Gordon M, Stubbs J, Seymour LA, Acharya D, Weber RT, Smith PF, Dismukes GC, Ji P, Menocal L, Bai F, Williams JL, Cropek DM, Jarrett WL. Preliminary anti-cancer photodynamic therapeutic in vitro studies with mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes. Dalton Trans 2013; 42:11881-99. [PMID: 23783642 PMCID: PMC3751419 DOI: 10.1039/c3dt50547b] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report the synthesis and characterisation of mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes, which were used as potential photodynamic therapeutic agents for melanoma cell growth inhibition. The novel complexes, [Ru(pbt)2(phen2DTT)](PF6)2·1.5H2O 1 (where phen2DTT = 1,4-bis(1,10-phenanthrolin-5-ylsulfanyl)butane-2,3-diol and pbt = 2-(2'-pyridyl)benzothiazole) and [Ru(pbt)2(tpphz)](PF6)2·3H2O 2 (where tpphz = tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine) were synthesised and characterised. Compound 1 was reacted with [VO(sal-L-tryp)(H2O)] (where sal-L-tryp = N-salicylidene-L-tryptophanate) to produce [Ru(pbt)2(phen2DTT)VO(sal-L-tryp)](PF6)2·5H2O 4; while [VO(sal-L-tryp)(H2O)] was reacted with compound 2 to produce [Ru(pbt)2(tpphz)VO(sal-L-tryp)](PF6)2·6H2O 3. All complexes were characterised by elemental analysis, HRMS, ESI MS, UV-visible absorption, ESR spectroscopy, and cyclic voltammetry, where appropriate. In vitro cell toxicity studies (with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay) via dark and light reaction conditions were carried out with sodium diaqua-4,4',4'',4''' tetrasulfophthalocyaninecobaltate(II) (Na4[Co(tspc)(H2O)2]), [VO(sal-L-tryp)(phen)]·H2O, and the chloride salts of complexes 3 and 4. Such studies involved A431, human epidermoid carcinoma cells; human amelanotic malignant melanoma cells; and HFF, non-cancerous human skin fibroblast cells. Both chloride salts of complexes 3 and 4 were found to be more toxic to melanoma cells than to non-cancerous fibroblast cells, and preferentially led to apoptosis of the melanoma cells over non-cancerous skin cells. The anti-cancer property of the chloride salts of complexes 3 and 4 was further enhanced when treated cells were exposed to light, while no such effect was observed on non-cancerous skin fibroblast cells. ESR and (51)V NMR spectroscopic studies were also used to assess the stability of the chloride salts of complexes 3 and 4 in aqueous media at pH 7.19. This research illustrates the potential for using mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes to fight skin cancer.
Collapse
Affiliation(s)
- Alvin A. Holder
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Patrick Taylor
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Anthony R. Magnusen
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Erick T. Moffett
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Kyle Meyer
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469-2320, U.S.A
| | - Yiling Hong
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469-2320, U.S.A
| | - Stuart E. Ramsdale
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Michelle Gordon
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Javelyn Stubbs
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Luke A. Seymour
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Dhiraj Acharya
- Department of Biological Sciences, The University of Southern Mississippi, MS 39406, U.S.A
| | - Ralph T. Weber
- EPR Division Bruker BioSpin, 44 Manning Road, Billerica, MA 01821, U.S.A
| | - Paul F. Smith
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, U.S.A
| | - G. Charles Dismukes
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, U.S.A
| | - Ping Ji
- Department of Medicine, Stony Brook University, HSC T-17 room 080, Stony Brook, NY 11794-8175, U.S.A
| | - Laura Menocal
- Department of Medicine, Stony Brook University, HSC T-17 room 080, Stony Brook, NY 11794-8175, U.S.A
| | - Fengwei Bai
- Department of Biological Sciences, The University of Southern Mississippi, MS 39406, U.S.A
| | - Jennie L. Williams
- Department of Medicine, Stony Brook University, HSC T-17 room 080, Stony Brook, NY 11794-8175, U.S.A
| | - Donald M. Cropek
- U.S. Army Corps of Engineers, Construction Engineering Research Laboratory, Champaign, IL 61822, U.S.A
| | - William L. Jarrett
- School of Polymers and High-Performance Materials, The University of Southern Mississippi, 118 College Drive, #5050, Hattiesburg, MS 39406-0076, U.S.A
| |
Collapse
|
39
|
|