1
|
Escomel L, Martins FF, Vendier L, Coffinet A, Queyriaux N, Krewald V, Simonneau A. Coordination of Al(C 6F 5) 3 vs. B(C 6F 5) 3 on group 6 end-on dinitrogen complexes: chemical and structural divergences. Chem Sci 2024; 15:11321-11336. [PMID: 39055009 PMCID: PMC11268509 DOI: 10.1039/d4sc02713b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The coordination of the Lewis superacid tris(pentafluorophenyl)alane (AlCF) to phosphine-supported, group 6 bis(dinitrogen) complexes [ML2(N2)2] is explored, with M = Cr, Mo or W and L = dppe (1,2-bis(diphenylphosphino)ethane), depe (1,2-bis(diethylphosphino)ethane), dmpe (1,2-bis(dimethylphosphino)ethane) or 2 × PMe2Ph. Akin to tris(pentafluorophenyl)borane (BCF), AlCF can form 1 : 1 adducts by coordination to one distal nitrogen of general formula trans-[ML2(N2){(μ-η1:η1-N2)Al(C6F5)3}]. The boron and aluminium adducts are structurally similar, showing a comparable level of N2 push-pull activation. A notable exception is a bent (BCF adducts) vs. linear (AlCF adducts) M-N-N-LA motif (LA = Lewis acid), explained computationally as the result of steric repulsion. A striking difference arose when the formation of two-fold adducts was conducted. While in the case of BCF the 2 : 1 Lewis pairs could be observed in equilibrium with the 1 : 1 adduct and free borane but resisted isolation, AlCF forms robust 2 : 1 adducts trans-[ML2{(μ-η1:η1-N2)Al(C6F5)3}2] that isomerise into a more stable cis configuration. These compounds could be isolated and structurally characterized, and represent the first examples of trinuclear heterometallic complexes formed by Lewis acid-base interaction exhibiting p and d elements. Calculations also demonstrate that from the bare complex to the two-fold aluminium adduct, substantial decrease of the HOMO-LUMO gap is observed, and, unlike the trans adducts (1 : 1 and 1 : 2) for which the HOMO was computed to be a pure d orbital, the one of the cis-trinuclear compounds mixes a d orbital with a π* one of each N2 ligands. This may translate into a more favourable electrophilic attack on the N2 ligands instead of the metal centre, while a stabilized N2-centered LUMO should ease electron transfer, suggesting Lewis acids could be co-activators for electro-catalysed N2 reduction. Experimental UV-vis spectra for the tungsten family of compounds were compared with TD-DFT calculations (CAM-B3LYP/def2-TZVP), allowing to assign the low extinction bands found in the visible spectrum to unusual low-lying MLCT involving N2-centered orbitals. As significant red-shifts are observed upon LA coordination, this could have important implications for the development of visible light-driven nitrogen fixation.
Collapse
Affiliation(s)
- Léon Escomel
- LCC-CNRS, Université de Toulouse, CNRS UPS 205 Route de Narbonne, BP44099 F-31077 Toulouse Cedex 4 France
| | - Frederico F Martins
- Department of Chemistry, Quantum Chemistry, TU Darmstadt Peter-Grünberg-Str. 4, 6 4287 Darmstadt Germany
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS UPS 205 Route de Narbonne, BP44099 F-31077 Toulouse Cedex 4 France
| | - Anaïs Coffinet
- LCC-CNRS, Université de Toulouse, CNRS UPS 205 Route de Narbonne, BP44099 F-31077 Toulouse Cedex 4 France
| | - Nicolas Queyriaux
- LCC-CNRS, Université de Toulouse, CNRS UPS 205 Route de Narbonne, BP44099 F-31077 Toulouse Cedex 4 France
| | - Vera Krewald
- Department of Chemistry, Quantum Chemistry, TU Darmstadt Peter-Grünberg-Str. 4, 6 4287 Darmstadt Germany
| | - Antoine Simonneau
- LCC-CNRS, Université de Toulouse, CNRS UPS 205 Route de Narbonne, BP44099 F-31077 Toulouse Cedex 4 France
| |
Collapse
|
2
|
Evans MJ, Jones C. Low oxidation state and hydrido group 2 complexes: synthesis and applications in the activation of gaseous substrates. Chem Soc Rev 2024; 53:5054-5082. [PMID: 38595211 DOI: 10.1039/d4cs00097h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Numerous industrial processes utilise gaseous chemical feedstocks to produce useful chemical products. Atmospheric and other small molecule gases, including anthropogenic waste products (e.g. carbon dioxide), can be viewed as sustainable building blocks to access value-added chemical commodities and materials. While transition metal complexes have been well documented in the reduction and transformation of these substrates, molecular complexes of the terrestrially abundant alkaline earth metals have also demonstrated promise with remarkable reactivity reported towards an array of industrially relevant gases over the past two decades. This review covers low oxidation state and hydrido group 2 complexes and their role in the reduction and transformation of a selection of important gaseous substrates towards value-added chemical products.
Collapse
Affiliation(s)
- Matthew J Evans
- School of Chemistry, Monash University, PO Box 23, Melbourne, Victoria, 3800, Australia.
| | - Cameron Jones
- School of Chemistry, Monash University, PO Box 23, Melbourne, Victoria, 3800, Australia.
| |
Collapse
|
3
|
Knoell T, Polanco J, MacMillan SN, Bertke JA, Foroutan-Nejad C, Lancaster KM, 'Gus' Bakhoda A. Alkaline earth metal-assisted dinitrogen activation at nickel. Dalton Trans 2024; 53:4689-4697. [PMID: 38362644 PMCID: PMC10922974 DOI: 10.1039/d3dt03984f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Rare examples of trinuclear [Ni-N2-M-N2-Ni] core (M = Ca, Mg) with linear bridged dinitrogen ligands are reported in this work. The reduction of [iPr2NN]Ni(μ-Br)2Li(thf)2 (1) (iPr2NN = 2,4-bis-(2,6-diisopropylphenylimido)pentyl) with elemental Mg or Ca in THF under an atmosphere of dinitrogen yields the complex {iPr2NNNi(μ-N2)}2M (thf)4 (M = Mg, complex 2 and M = Ca, complex 3). The bridging end-on (μ-N2)2M(thf)4 moiety connects the two [iPr2NNNi]- nickelate fragments. A combination of X-ray crystallography, solution and solid-state spectroscopy have been applied to characterize complexes 2 and 3, and DFT studies have been used to help explain the bonding and electronic structure in these unique Ni-N2-Mg and Ni-N2-Ca complexes.
Collapse
Affiliation(s)
- Theresa Knoell
- Department of Chemistry Towson University, 8000 York Road, Towson, MD 21252, USA.
| | - Jocelyn Polanco
- Department of Chemistry Towson University, 8000 York Road, Towson, MD 21252, USA.
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Jeffery A Bertke
- Georgetown University, Department of Chemistry, Washington, DC 20057, USA
| | - Cina Foroutan-Nejad
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
4
|
Landaeta VR, Horsley Downie TM, Wolf R. Low-Valent Transition Metalate Anions in Synthesis, Small Molecule Activation, and Catalysis. Chem Rev 2024; 124:1323-1463. [PMID: 38354371 PMCID: PMC10906008 DOI: 10.1021/acs.chemrev.3c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 02/16/2024]
Abstract
This review surveys the synthesis and reactivity of low-oxidation state metalate anions of the d-block elements, with an emphasis on contributions reported between 2006 and 2022. Although the field has a long and rich history, the chemistry of transition metalate anions has been greatly enhanced in the last 15 years by the application of advanced concepts in complex synthesis and ligand design. In recent years, the potential of highly reactive metalate complexes in the fields of small molecule activation and homogeneous catalysis has become increasingly evident. Consequently, exciting applications in small molecule activation have been developed, including in catalytic transformations. This article intends to guide the reader through the fascinating world of low-valent transition metalates. The first part of the review describes the synthesis and reactivity of d-block metalates stabilized by an assortment of ligand frameworks, including carbonyls, isocyanides, alkenes and polyarenes, phosphines and phosphorus heterocycles, amides, and redox-active nitrogen-based ligands. Thereby, the reader will be familiarized with the impact of different ligand types on the physical and chemical properties of metalates. In addition, ion-pairing interactions and metal-metal bonding may have a dramatic influence on metalate structures and reactivities. The complex ramifications of these effects are examined in a separate section. The second part of the review is devoted to the reactivity of the metalates toward small inorganic molecules such as H2, N2, CO, CO2, P4 and related species. It is shown that the use of highly electron-rich and reactive metalates in small molecule activation translates into impressive catalytic properties in the hydrogenation of organic molecules and the reduction of N2, CO, and CO2. The results discussed in this review illustrate that the potential of transition metalate anions is increasingly being tapped for challenging catalytic processes with relevance to organic synthesis and energy conversion. Therefore, it is hoped that this review will serve as a useful resource to inspire further developments in this dynamic research field.
Collapse
Affiliation(s)
| | | | - Robert Wolf
- University of Regensburg, Institute
of Inorganic Chemistry, 93040 Regensburg, Germany
| |
Collapse
|
5
|
Masero F, Perrin MA, Dey S, Mougel V. Dinitrogen Fixation: Rationalizing Strategies Utilizing Molecular Complexes. Chemistry 2021; 27:3892-3928. [PMID: 32914919 PMCID: PMC7986120 DOI: 10.1002/chem.202003134] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Dinitrogen (N2 ) is the most abundant gas in Earth's atmosphere, but its inertness hinders its use as a nitrogen source in the biosphere and in industry. Efficient catalysts are hence required to ov. ercome the high kinetic barriers associated to N2 transformation. In that respect, molecular complexes have demonstrated strong potential to mediate N2 functionalization reactions under mild conditions while providing a straightforward understanding of the reaction mechanisms. This Review emphasizes the strategies for N2 reduction and functionalization using molecular transition metal and actinide complexes according to their proposed reaction mechanisms, distinguishing complexes inducing cleavage of the N≡N bond before (dissociative mechanism) or concomitantly with functionalization (associative mechanism). We present here the main examples of stoichiometric and catalytic N2 functionalization reactions following these strategies.
Collapse
Affiliation(s)
- Fabio Masero
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| | - Marie A. Perrin
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| | - Subal Dey
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| | - Victor Mougel
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| |
Collapse
|
6
|
Understanding metal synergy in heterodinuclear catalysts for the copolymerization of CO2 and epoxides. Nat Chem 2020; 12:372-380. [DOI: 10.1038/s41557-020-0450-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/27/2020] [Indexed: 11/08/2022]
|
7
|
Nagelski AL, Fataftah MS, Bollmeyer MM, McWilliams SF, MacMillan SN, Mercado BQ, Lancaster KM, Holland PL. The influences of carbon donor ligands on biomimetic multi-iron complexes for N 2 reduction. Chem Sci 2020; 11:12710-12720. [PMID: 34094466 PMCID: PMC8163302 DOI: 10.1039/d0sc03447a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The active site clusters of nitrogenase enzymes possess the only examples of carbides in biology. These are the only biological FeS clusters that are capable of reducing N2 to NH4+, implicating the central carbon and its interaction with Fe as important in the mechanism of N2 reduction. This biological question motivates study of the influence of carbon donors on the electronic structure and reactivity of unsaturated, high-spin iron centers. Here, we present functional and structural models that test the impacts of carbon donors and sulfide donors in simpler iron compounds. We report the first example of a diiron complex that is bridged by an alkylidene and a sulfide, which serves as a high-fidelity structural and spectroscopic model of a two-iron portion of the active-site cluster (FeMoco) in the resting state of Mo-nitrogenase. The model complexes have antiferromagnetically coupled pairs of high-spin iron centers, and sulfur K-edge X-ray absorption spectroscopy shows comparable covalency of the sulfide for C and S bridged species. The sulfur-bridged compound does not interact with N2 even upon reduction, but upon removal of the sulfide it becomes capable of reducing N2 to NH4+ with the addition of protons and electrons. This provides synthetic support for sulfide extrusion in the activation of nitrogenase cofactors. High-spin diiron alkylidenes give insight into the electronic structure and functional relevance of carbon in the FeMoco active site of nitrogenase.![]()
Collapse
Affiliation(s)
| | | | - Melissa M. Bollmeyer
- Department of Chemistry and Chemical Biology
- Baker Laboratory
- Cornell University
- Ithaca
- USA
| | | | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology
- Baker Laboratory
- Cornell University
- Ithaca
- USA
| | | | - Kyle M. Lancaster
- Department of Chemistry and Chemical Biology
- Baker Laboratory
- Cornell University
- Ithaca
- USA
| | | |
Collapse
|
8
|
Kokubo Y, Wasada‐Tsutsui Y, Yomura S, Yanagisawa S, Kubo M, Kugimiya S, Kajita Y, Ozawa T, Masuda H. Syntheses, Characterizations, and Crystal Structures of Dinitrogen‐Divanadium Complexes Bearing Triamidoamine Ligands. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201901123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yoshiaki Kokubo
- Department of Applied Chemistry Faculty of Engineering Aichi Institute of Technology 1247 Yachigusa 470‐0392 Yakusa‐cho Toyota Japan
| | - Yuko Wasada‐Tsutsui
- Department of Life and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology 466‐8555 Nagoya Gokiso‐cho, Showa‐ku Japan
| | - Shunsuke Yomura
- Department of Life and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology 466‐8555 Nagoya Gokiso‐cho, Showa‐ku Japan
| | - Sachiko Yanagisawa
- Graduate School of Life Science Graduate School of Engineering University of Hyogo 3‐2‐1 Koto 678‐1297 Kamigori‐cho Ako‐gun Hyogo Japan
| | - Minoru Kubo
- Graduate School of Life Science Graduate School of Engineering University of Hyogo 3‐2‐1 Koto 678‐1297 Kamigori‐cho Ako‐gun Hyogo Japan
| | - Shinichi Kugimiya
- Department of Applied Chemistry Faculty of Engineering Aichi Institute of Technology 1247 Yachigusa 470‐0392 Yakusa‐cho Toyota Japan
| | - Yuji Kajita
- Department of Applied Chemistry Faculty of Engineering Aichi Institute of Technology 1247 Yachigusa 470‐0392 Yakusa‐cho Toyota Japan
| | - Tomohiro Ozawa
- Department of Life and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology 466‐8555 Nagoya Gokiso‐cho, Showa‐ku Japan
| | - Hideki Masuda
- Department of Applied Chemistry Faculty of Engineering Aichi Institute of Technology 1247 Yachigusa 470‐0392 Yakusa‐cho Toyota Japan
- Department of Life and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology 466‐8555 Nagoya Gokiso‐cho, Showa‐ku Japan
| |
Collapse
|
9
|
Muhammad SR, Nugent JW, Tokmic K, Zhu L, Mahmoud J, Fout AR. Electronic Ligand Modifications on Cobalt Complexes and Their Application toward the Semi-Hydrogenation of Alkynes and Para-Hydrogenation of Alkenes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Safiyah R. Muhammad
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Joseph W. Nugent
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Kenan Tokmic
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Lingyang Zhu
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jumanah Mahmoud
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Alison R. Fout
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Apps SL, Miller PW, Long NJ. Cobalt(-i) triphos dinitrogen complexes: activation and silyl-functionalisation of N 2. Chem Commun (Camb) 2019; 55:6579-6582. [PMID: 31112153 DOI: 10.1039/c9cc01496a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cobalt dinitrogen complexes [{(EP3Ph)Co(μ-N2)}2Mg(THF)4], with triphos ligand scaffolds (EP3Ph, E = N or CMe), were prepared via two electron reductions of the Co(i) precursors [CoCl(EP3Ph)]. Both complexes showed high degrees of N2 activation owing to the formation of a rare M-NN-Mg-NN-M bridging-magnesium core. These systems showed further N2 functionalisation reactivity by silylation, forming silyldiazenido complexes [(EP3Ph)Co(NNSiMe3)].
Collapse
Affiliation(s)
- Samantha L Apps
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK.
| | | | | |
Collapse
|
11
|
Taylor LJ, Kays DL. Low-coordinate first-row transition metal complexes in catalysis and small molecule activation. Dalton Trans 2019; 48:12365-12381. [DOI: 10.1039/c9dt02402f] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this Perspective, we will highlight selected examples of transition metal complexes with low coordination numbers whose high reactivity has been exploited in catalysis and the activation of small molecules featuring strong bonds (N2, CO2, and CO).
Collapse
Affiliation(s)
| | - Deborah L. Kays
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| |
Collapse
|
12
|
McWilliams SF, Bill E, Lukat-Rodgers G, Rodgers KR, Mercado BQ, Holland PL. Effects of N 2 Binding Mode on Iron-Based Functionalization of Dinitrogen to Form an Iron(III) Hydrazido Complex. J Am Chem Soc 2018; 140:8586-8598. [PMID: 29957940 PMCID: PMC6115203 DOI: 10.1021/jacs.8b04828] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Distinguishing the reactivity differences between N2 complexes having different binding modes is crucial for the design of effective N2-functionalizing reactions. Here, we compare the reactions of a K-bridged, dinuclear FeNNFe complex with a monomeric Fe(N2) complex where the bimetallic core is broken up by the addition of chelating agents. The new anionic iron(0) dinitrogen complex has enhanced electron density at the distal N atoms of coordinated N2, and though the N2 is not as weakened in this monomeric compound, it is much more reactive toward silylation by (CH3)3SiI (TMSI). Double silylation of N2 gives a three-coordinate iron(III) hydrazido(2-) complex, which is finely balanced between coexisting S = 1/2 and S = 3/2 states that are characterized by crystallography, spectroscopy, and computations. These results give insight into the interdependence between binding modes, alkali dependence, reactivity, and magnetic properties within an iron system that functionalizes N2.
Collapse
Affiliation(s)
- Sean F. McWilliams
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520
| | - Eckhard Bill
- Max-Planck-Insitut für Chemische Energiekonversion, Mülheim an der Ruhr, Germany
| | - Gudrun Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105
| | - Kenton R. Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520
| | - Patrick L. Holland
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520
| |
Collapse
|
13
|
Stucke N, Flöser BM, Weyrich T, Tuczek F. Nitrogen Fixation Catalyzed by Transition Metal Complexes: Recent Developments. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701326] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nadja Stucke
- Institute of Inorganic Chemistry; Christian Albrechts University Kiel; Max-Eyth-Str. 2 24098 Kiel Germany
| | - Benedikt M. Flöser
- Institute of Inorganic Chemistry; Christian Albrechts University Kiel; Max-Eyth-Str. 2 24098 Kiel Germany
| | - Thomas Weyrich
- Institute of Inorganic Chemistry; Christian Albrechts University Kiel; Max-Eyth-Str. 2 24098 Kiel Germany
| | - Felix Tuczek
- Institute of Inorganic Chemistry; Christian Albrechts University Kiel; Max-Eyth-Str. 2 24098 Kiel Germany
| |
Collapse
|
14
|
Čorić I, Holland PL. Insight into the Iron-Molybdenum Cofactor of Nitrogenase from Synthetic Iron Complexes with Sulfur, Carbon, and Hydride Ligands. J Am Chem Soc 2016; 138:7200-11. [PMID: 27171599 PMCID: PMC5508211 DOI: 10.1021/jacs.6b00747] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nitrogenase enzymes are used by microorganisms for converting atmospheric N2 to ammonia, which provides an essential source of N atoms for higher organisms. The active site of the molybdenum-dependent nitrogenase is the unique carbide-containing iron-sulfur cluster called the iron-molybdenum cofactor (FeMoco). On the FeMoco, N2 binding is suggested to occur at one or more iron atoms, but the structures of the catalytic intermediates are not clear. In order to establish the feasibility of different potential mechanistic steps during biological N2 reduction, chemists have prepared iron complexes that mimic various structural aspects of the iron sites in the FeMoco. This reductionist approach gives mechanistic insight, and also uncovers fundamental principles that could be used more broadly for small-molecule activation. Here, we discuss recent results and highlight directions for future research. In one direction, synthetic iron complexes have now been shown to bind N2, break the N-N triple bond, and produce ammonia catalytically. Carbon- and sulfur-based donors have been incorporated into the ligand spheres of Fe-N2 complexes to show how these atoms may influence the structure and reactivity of the FeMoco. Hydrides have been incorporated into synthetic systems, which can bind N2, reduce some nitrogenase substrates, and/or reductively eliminate H2 to generate reduced iron centers. Though some carbide-containing iron clusters are known, none yet have sulfide bridges or high-spin iron atoms like the FeMoco.
Collapse
Affiliation(s)
- Ilija Čorić
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Patrick L. Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
15
|
Tanabe Y, Nishibayashi Y. Catalytic Dinitrogen Fixation to Form Ammonia at Ambient Reaction Conditions Using Transition Metal-Dinitrogen Complexes. CHEM REC 2016; 16:1549-77. [DOI: 10.1002/tcr.201600025] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Yoshiaki Tanabe
- Department of Systems Innovation, School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation, School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
16
|
McWilliams SF, Rodgers KR, Lukat-Rodgers G, Mercado BQ, Grubel K, Holland PL. Alkali Metal Variation and Twisting of the FeNNFe Core in Bridging Diiron Dinitrogen Complexes. Inorg Chem 2016; 55:2960-8. [PMID: 26925968 PMCID: PMC4856002 DOI: 10.1021/acs.inorgchem.5b02841] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Indexed: 11/28/2022]
Abstract
Alkali metal cations can interact with Fe-N2 complexes, potentially enhancing back-bonding or influencing the geometry of the iron atom. These influences are relevant to large-scale N2 reduction by iron, such as in the FeMoco of nitrogenase and the alkali-promoted Haber-Bosch process. However, to our knowledge there have been no systematic studies of a large range of alkali metals regarding their influence on transition metal-dinitrogen complexes. In this work, we varied the alkali metal in [alkali cation]2[LFeNNFeL] complexes (L = bulky β-diketiminate ligand) through the size range from Na(+) to K(+), Rb(+), and Cs(+). The FeNNFe cores have similar Fe-N and N-N distances and N-N stretching frequencies despite the drastic change in alkali metal cation size. The two diketiminates twist relative to one another, with larger dihedral angles accommodating the larger cations. In order to explain why the twisting has so little influence on the core, we performed density functional theory calculations on a simplified LFeNNFeL model, which show that the two metals surprisingly do not compete for back-bonding to the same π* orbital of N2, even when the ligand planes are parallel. This diiron system can tolerate distortion of the ligand planes through compensating orbital energy changes, and thus, a range of ligand orientations can give very similar energies.
Collapse
Affiliation(s)
- Sean F. McWilliams
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Kenton R. Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Gudrun Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Katarzyna Grubel
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Patrick L. Holland
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
17
|
Hein NM, Suzuki T, Ogawa T, Fryzuk MD. Low coordinate iron derivatives stabilized by a β-diketiminate mimic. Synthesis and coordination chemistry of enamidophosphinimine scaffolds to generate diiron dinitrogen complexes. Dalton Trans 2016; 45:14697-708. [DOI: 10.1039/c6dt01673a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reduction of the iron enamido-phosphinimine complex under N2 leads to dinitrogen activation and cleavage of the phosphinimine linkage to generate a di-iron complex with a bridging imido moiety.
Collapse
Affiliation(s)
- Nicholas M. Hein
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Tatsuya Suzuki
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Takahiko Ogawa
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Michael D. Fryzuk
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
18
|
Walter M. Recent Advances in Transition Metal-Catalyzed Dinitrogen Activation. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2016. [DOI: 10.1016/bs.adomc.2016.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
19
|
Ibrahim AD, Tokmic K, Brennan MR, Kim D, Matson EM, Nilges MJ, Bertke JA, Fout AR. Monoanionic bis(carbene) pincer complexes featuring cobalt(I–III) oxidation states. Dalton Trans 2016; 45:9805-11. [DOI: 10.1039/c5dt04723d] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and characterization of a series of cobalt complexes featuring a pincer bis(carbene) ligand of the meta-phenylene-bridged bis-N-heterocyclic carbene (ArCCC, Ar = 2,6-diispropylphenyl or mesityl) are reported.
Collapse
Affiliation(s)
| | - Kenan Tokmic
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Marshall R. Brennan
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Dongyoung Kim
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Ellen M. Matson
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Mark J. Nilges
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Jeffery A. Bertke
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Alison R. Fout
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| |
Collapse
|
20
|
Ung G, Peters JC. Low-temperature N2 binding to two-coordinate L2Fe(0) enables reductive trapping of L2FeN2(-) and NH3 generation. Angew Chem Int Ed Engl 2015; 54:532-5. [PMID: 25394570 PMCID: PMC4314396 DOI: 10.1002/anie.201409454] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Indexed: 11/10/2022]
Abstract
The two-coordinate [(CAAC)2Fe] complex [CAAC = cyclic (alkyl)(amino)carbene] binds dinitrogen at low temperature (T<-80 °C). The resulting putative three-coordinate N2 complex, [(CAAC)2Fe(N2)], was trapped by one-electron reduction to its corresponding anion [(CAAC)2FeN2](-) at low temperature. This complex was structurally characterized and features an activated dinitrogen unit which can be silylated at the β-nitrogen atom. The redox-linked complexes [(CAAC)2Fe(I)][BAr(F)4], [(CAAC)2Fe(0)], and [(CAAC)2Fe(-I)N2](-) were all found to be active for the reduction of dinitrogen to ammonia upon treatment with KC8 and HBAr(F)4⋅2 Et2O at -95 °C [up to (3.4±1.0) equivalents of ammonia per Fe center]. The N2 reduction activity is highly temperature dependent, with significant N2 reduction to NH3 only occurring below -78 °C. This reactivity profile tracks with the low temperatures needed for N2 binding and an otherwise unavailable electron-transfer step to generate reactive [(CAAC)2FeN2](-) .
Collapse
Affiliation(s)
- Gatël Ung
- Division of Chemistry and Chemical Engineering California Institute of Technology (USA)
| | - Jonas C. Peters
- Division of Chemistry and Chemical Engineering California Institute of Technology (USA)
| |
Collapse
|
21
|
Köthe C, Limberg C. Late Metal Scaffolds that Activate Both, Dinitrogen and Reduced Dinitrogen Species NxHy. Z Anorg Allg Chem 2014. [DOI: 10.1002/zaac.201400378] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Ung G, Peters JC. Low-Temperature N2Binding to Two-Coordinate L2Fe0Enables Reductive Trapping of L2FeN2−and NH3Generation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409454] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|