1
|
Wang Y, Guo M, Xu X. Nanoproteases: Alternatives to Natural Protease for Biotechnological Applications. Chemistry 2024; 30:e202401178. [PMID: 38705854 DOI: 10.1002/chem.202401178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Some nanomaterials with intrinsic protease-like activity have the advantages of good stability, biosafety, low price, large-scale preparation and unique property of nanomaterials, which are promising alternatives for natural proteases in various applications. An especial term, "nanoprotease", has been coined to stress the intrinsic proteolytic property of these nanomaterials. As a new generation of artificial proteases, they have become a burgeoning field, attracting many researchers to design and synthesize high performance nanoproteases. In this review, we summarize recent progress on all types of nanoproteases with regard of their activity, mechanism and application and introduce a new and effective strategy for engineering high-performance nanoproteases. In addition, we discuss the challenges and opportunities of nanoprotease research in the future.
Collapse
Affiliation(s)
- Yaru Wang
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Mingxiu Guo
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiaolong Xu
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
2
|
Salazar Marcano DE, Savić ND, Declerck K, Abdelhameed SAM, Parac-Vogt TN. Reactivity of metal-oxo clusters towards biomolecules: from discrete polyoxometalates to metal-organic frameworks. Chem Soc Rev 2024; 53:84-136. [PMID: 38015569 DOI: 10.1039/d3cs00195d] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Metal-oxo clusters hold great potential in several fields such as catalysis, materials science, energy storage, medicine, and biotechnology. These nanoclusters of transition metals with oxygen-based ligands have also shown promising reactivity towards several classes of biomolecules, including proteins, nucleic acids, nucleotides, sugars, and lipids. This reactivity can be leveraged to address some of the most pressing challenges we face today, from fighting various diseases, such as cancer and viral infections, to the development of sustainable and environmentally friendly energy sources. For instance, metal-oxo clusters and related materials have been shown to be effective catalysts for biomass conversion into renewable fuels and platform chemicals. Furthermore, their reactivity towards biomolecules has also attracted interest in the development of inorganic drugs and bioanalytical tools. Additionally, the structural versatility of metal-oxo clusters allows for the efficiency and selectivity of the biomolecular reactions they promote to be readily tuned, thereby providing a pathway towards reaction optimization. The properties of the catalyst can also be improved through incorporation into solid supports or by linking metal-oxo clusters together to form Metal-Organic Frameworks (MOFs), which have been demonstrated to be powerful heterogeneous catalysts. Therefore, this review aims to provide a comprehensive and critical analysis of the state of the art on biomolecular transformations promoted by metal-oxo clusters and their applications, with a particular focus on structure-activity relationships.
Collapse
Affiliation(s)
| | - Nada D Savić
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Kilian Declerck
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | |
Collapse
|
3
|
Li B, Xu X, Lv Y, Wu Z, He L, Song YF. Polyoxometalates as Potential Artificial Enzymes toward Biological Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305539. [PMID: 37699754 DOI: 10.1002/smll.202305539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/09/2023] [Indexed: 09/14/2023]
Abstract
Artificial enzymes, as alternatives to natural enzymes, have attracted enormous attention in the fields of catalysis, biosensing, diagnostics, and therapeutics because of their high stability and low cost. Polyoxometalates (POMs), a class of inorganic metal oxides, have recently shown great potential in mimicking enzyme activity due to their well-defined structure, tunable composition, high catalytic efficiency, and easy storage properties. This review focuses on the recent advances in POM-based artificial enzymes. Different types of POMs and their derivatives-based mimetic enzyme functions are covered, as well as the corresponding catalytic mechanisms (where available). An overview of the broad applications of representative POM-based artificial enzymes from biosensing to theragnostic is provided. Insight into the current challenges and the future directions for POMs-based artificial enzymes is discussed.
Collapse
Affiliation(s)
- Bole Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaotong Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yanfei Lv
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhaohui Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lei He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
4
|
Azambuja FD, Moons J, Parac-Vogt TN. The Dawn of Metal-Oxo Clusters as Artificial Proteases: From Discovery to the Present and Beyond. Acc Chem Res 2021; 54:1673-1684. [PMID: 33600141 DOI: 10.1021/acs.accounts.0c00666] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The selective cleavage of peptide bonds in proteins is of paramount importance in many areas of the biological and medical sciences, playing a key role in protein structure/function/folding analysis, protein engineering, and targeted proteolytic drug design. Current applications that depend on selective protein hydrolysis largely rely on costly proteases such as trypsin, which are sensitive to the pH, ionic strength, and temperature conditions. Moreover, >95% of peptides deposited in databases are generated from trypsin digests, restricting the information within the analyzed proteomes. On the other hand, harsh and toxic chemical reagents such as BrCN are very active but cause permanent modifications of certain amino acid residues. Consequently, transition-metal complexes have emerged as smooth and selective artificial proteases owing to their ability to provide larger fragments and complementary structural information. In the past decade, our group has discovered the unique protease activity of diverse metal-oxo clusters (MOC) and pioneered a distinctive approach to the development of selective artificial proteases. In contrast to classical coordination complexes which often depend on amino acid side chains to control the regioselectivity, the selectivity profile of MOCs is determined by a complex combination of structural factors, such as the protein surface charge, metal coordination to specific side chains, and hydrogen bonding between the protein surface and the MOC scaffold.In this Account, we present a critical overview of our detailed kinetic, spectroscopic, and crystallographic studies in MOC-assisted peptide bond hydrolysis, from its origins to the current rational and detailed mechanistic understanding. To this end, reactivity trends related to the structure and properties of MOCs based on the hydrolysis of small model peptides and key structural aspects governing the selectivity of protein hydrolysis are presented. Finally, our endeavors in seeking the next generation of heterogeneous MOC-based proteases are briefly discussed by embedding MOCs in metal-organic frameworks or using them as discrete nanoclusters in the development of artificial protease-like materials (i.e., nanozymes). The deep and comprehensive understanding sought experimentally and theoretically over the years in aqueous systems with intrinsic polar and charged substrates provides a unique view of the reactivity between inorganic moieties and biomolecules, thereby broadly impacting several different fields (e.g., catalysis in biochemistry, inorganic chemistry, and organic chemistry).
Collapse
Affiliation(s)
| | - Jens Moons
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | |
Collapse
|
5
|
de Azambuja F, Lenie J, Parac-Vogt TN. Homogeneous Metal Catalysts with Inorganic Ligands: Probing Ligand Effects in Lewis Acid Catalyzed Direct Amide Bond Formation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Jille Lenie
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | |
Collapse
|
6
|
Conic D, Pierloot K, Parac-Vogt TN, Harvey JN. Mechanism of the highly effective peptide bond hydrolysis by MOF-808 catalyst under biologically relevant conditions. Phys Chem Chem Phys 2020; 22:25136-25145. [PMID: 33118561 DOI: 10.1039/d0cp04775a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Efficient and selective hydrolysis of inert peptide bonds is of paramount importance. MOF-808, a metal-organic framework based on Zr6 nodes, can hydrolyze peptide bonds efficiently under biologically relevant conditions. However, the details of the catalyst structure and of the underlying catalytic reaction mechanism are challenging to establish. By means of DFT calculations we first investigate the speciation of the Zr6 nodes and identify the nature of ligands that bind to the Zr6O8H4-x core in aqueous conditions. The core is predicted to strongly prefer a Zr6O8H4 protonation state and to be predominantly decorated by bridging formate ligands, giving Zr6(μ3-O)4(μ3-OH)4(BTC)2(HCOO)6 and Zr6(μ3-O)4(μ3-OH)4(BTC)2(HCOO)5(OH)(H2O) as the most favorable structures at physiological pH. The GlyGly peptide can bind MOF in several different ways, with the preferred structure involving coordination through the terminal carboxylate analogously to the binding mode of formate ligand. The pre-reactive binding mode in which the amide carbonyl oxygen coordinates the metal core lies 7 kcal higher in free energy. The preferred reaction pathway is predicted to have two close-lying transition states, either of which could be the rate-determining step: nucleophilic attack on the amide carbon atom and C-N bond breaking, with calculated relative free energies of 31 and 32 kcal mol-1, respectively. Replacement of formate by water and hydroxide at the Zr6 node is predicted to be possible, but does not appear to play a role in the hydrolysis mechanism.
Collapse
Affiliation(s)
- Dragan Conic
- Division of Quantum Chemistry and Physical Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | | | |
Collapse
|
7
|
Ly HGT, Mihaylov TT, Proost P, Pierloot K, Harvey JN, Parac‐Vogt TN. Chemical Mimics of Aspartate‐Directed Proteases: Predictive and Strictly Specific Hydrolysis of a Globular Protein at Asp−X Sequence Promoted by Polyoxometalate Complexes Rationalized by a Combined Experimental and Theoretical Approach. Chemistry 2019; 25:14370-14381. [DOI: 10.1002/chem.201902675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/13/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Hong Giang T. Ly
- Laboratory of Bioinorganic ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Tzvetan T. Mihaylov
- Laboratory of Computational Coordination ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Paul Proost
- Laboratory of Molecular ImmunologyRega InstituteDepartment of Microbiology, Immunology, and TransplantationKU Leuven Herestraat 49 3000 Leuven Belgium
| | - Kristine Pierloot
- Laboratory of Computational Coordination ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Jeremy N. Harvey
- Laboratory of Computational Coordination ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Tatjana N. Parac‐Vogt
- Laboratory of Bioinorganic ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
8
|
Anyushin AV, Sap A, Quanten T, Proost P, Parac-Vogt TN. Selective Hydrolysis of Ovalbumin Promoted by Hf(IV)-Substituted Wells-Dawson-Type Polyoxometalate. Front Chem 2018; 6:614. [PMID: 30619823 PMCID: PMC6305993 DOI: 10.3389/fchem.2018.00614] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022] Open
Abstract
The reactivity and selectivity of Wells-Dawson type polyoxometalate (POM), K16[Hf(α2-P2W17O61)2]·19H2O (Hf1-WD2), have been examined with respect to the hydrolysis of ovalbumin (OVA), a storage protein consisting of 385 amino acids. The exact cleavage sites have been determined by Edman degradation experiments, which indicated that Hf1-WD2 POM selectively cleaved OVA at eight peptide bonds: Phe13-Asp14, Arg85-Asp86, Asn95-Asp96, Ala139-Asp140, Ser148-Trp149, Ala361-Asp362, Asp362-His363, and Pro364-Phe365. A combination of spectroscopic methods including 31P NMR, Circular Dichroism (CD), and Tryptophan (Trp) fluorescence spectroscopy were employed to gain better understanding of the observed selective cleavage and the underlying hydrolytic mechanism. 31P NMR spectra have shown that signals corresponding to Hf1-WD2 gradually broaden upon addition of OVA and completely disappear when the POM-protein molar ratio becomes 1:1, indicating formation of a large POM/protein complex. CD demonstrated that interactions of Hf1-WD2 with OVA in the solution do not result in protein unfolding or denaturation even upon adding an excess of POM. Trp fluorescence spectroscopy measurements revealed that the interaction of Hf1-WD2 with OVA (Kq = 1.1 × 105 M−1) is both quantitatively and qualitatively slightly weaker than the interaction of isostructural Zr-containing Wells-Dawson POM (Zr1-WD2) with human serum albumin (HAS) (Kq = 5.1 × 105 M−1).
Collapse
Affiliation(s)
- Alexander V Anyushin
- Laboratory of Bio-Inorganic Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Annelies Sap
- Laboratory of Bio-Inorganic Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Thomas Quanten
- Laboratory of Bio-Inorganic Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Laboratory of Bio-Inorganic Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Modugno G, Fabbretti E, Dalle Vedove A, Da Ros T, Maccato C, Hosseini HS, Bonchio M, Carraro M. Tracking Fluorescent Polyoxometalates within Cells. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gloria Modugno
- ITM-CNR and Department of Chemical Sciences; University of Padova; Via F. Marzolo 1 Padova Italy
| | - Elsa Fabbretti
- Laboratory for Environmental and Life Sciences; University of Nova Gorica; Vipavska 13 Rožna Dolina, Nova Gorica Slovenia
| | - Andrea Dalle Vedove
- ITM-CNR and Department of Chemical Sciences; University of Padova; Via F. Marzolo 1 Padova Italy
| | - Tatiana Da Ros
- INSTM - Trieste Unit and Department of Chemical and Pharmaceutical Sciences; University of Trieste; Via L. Giorgieri 1 Trieste Italy
| | - Chiara Maccato
- ITM-CNR and Department of Chemical Sciences; University of Padova; Via F. Marzolo 1 Padova Italy
| | - Hadigheh Sadat Hosseini
- ITM-CNR and Department of Chemical Sciences; University of Padova; Via F. Marzolo 1 Padova Italy
| | - Marcella Bonchio
- ITM-CNR and Department of Chemical Sciences; University of Padova; Via F. Marzolo 1 Padova Italy
| | - Mauro Carraro
- ITM-CNR and Department of Chemical Sciences; University of Padova; Via F. Marzolo 1 Padova Italy
| |
Collapse
|
10
|
Vandebroek L, Van Meervelt L, Parac-Vogt TN. Direct observation of the ZrIV interaction with the carboxamide bond in a noncovalent complex between Hen Egg White Lysozyme and a Zr-substituted Keggin polyoxometalate. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:1348-1354. [DOI: 10.1107/s2053229618010690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/24/2018] [Indexed: 11/11/2022]
Abstract
The successful cocrystallization of the noncovalent complex formed between (Et2NH2)8[{α-PW11O39Zr-(μ-OH)(H2O)}2]·7H2O Keggin polyoxometalate (2) and Hen Egg White Lysozyme (HEWL) protein is reported. The resulting structural model revealed interaction between monomeric [Zr(PW11O39)]4−(1), which is a postulated catalytically active species, and the protein in two positions in the asymmetric unit. The first position (occupancy 36%) confirms the previously observed binding sites on the protein surface, whereas the second position (occupancy 14%) provides novel insights into the hydrolytic mechanisms of ZrIV-substituted polyoxometalates. The new interaction site occurs at the Asn65 residue, which is directly next to the Asp66–Gly67 peptide bond that was identified recently as a cleavage site in the polyoxometalate-catalysed hydrolysis of HEWL. Furthermore, in this newly discovered binding site, the monomeric polyoxometalate 1 is observed to bind directly to the side chain of the Asn65 residue. This binding of ZrIV as a Lewis-acid metal to the carbonyl O atom of the Asn65 side chain is very similar to the intermediate state proposed in density functional theory (DFT) studies in which ZrIV activates the peptide bond via interaction with its carbonyl O atom, and can be thus regarded as a model for interaction between ZrIV and a peptide bond.
Collapse
|
11
|
Quanten T, De Mayaer T, Shestakova P, Parac-Vogt TN. Selectivity and Reactivity of Zr IV and Ce IV Substituted Keggin Type Polyoxometalates Toward Cytochrome c in Surfactant Solutions. Front Chem 2018; 6:372. [PMID: 30211153 PMCID: PMC6121075 DOI: 10.3389/fchem.2018.00372] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
In this paper we investigate the effect of three different types of surfactants, on the hydrolysis of Cytochrome c (Cyt c), a predominantly α helical protein containing a heme group, promoted by [Ce(α PW11O39)2]10- (CeK) and [Zr(α PW11O39)2]10- (ZrK) polyoxometalates. In the presence of SDS, Zw3 12, or CHAPS surfactants, which are commonly used for solubilizing hydrophobic proteins, the specificity of CeK or ZrK toward hydrolysis of Cyt c does not change. However, the hydrolysis rate of Cyt c by CeK was increased in the presence of SDS, but decreased in the presence of CHAPS, and was nearly inhibited in the presence of Zw3 12. The Circular dichroism and Tryptophan fluorescence spectroscopy have shown that the structural changes in Cyt c caused by surfactants are similar to those caused by POMs, hence the same specificity in the absence or presence of surfactants was observed. The results also indicate that for Cyt c hydrolysis to occur, large unfolding of the protein is needed in order to accommodate the POMs. While SDS readily unfolds Cyt c, the protein remains largely folded in the presence of CHAPS and Zw3 12. Addition of POMs to Cyt c solutions in CHAPS results in unfolding of the structure allowing the interaction with POMs to occur and results in protein hydrolysis. Zw3 12, however, locks Cyt c in a conformation that resists unfolding upon addition of POM, and therefore results in nearly complete inhibition of protein hydrolysis.
Collapse
Affiliation(s)
- Thomas Quanten
- Laboratory of Bio-Inorganic Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Tessa De Mayaer
- Laboratory of Bio-Inorganic Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Pavletta Shestakova
- NMR Centre, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tatjana N Parac-Vogt
- Laboratory of Bio-Inorganic Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Vandebroek L, De Zitter E, Ly HGT, Conić D, Mihaylov T, Sap A, Proost P, Pierloot K, Van Meervelt L, Parac-Vogt TN. Protein-Assisted Formation and Stabilization of Catalytically Active Polyoxometalate Species. Chemistry 2018; 24:10099-10108. [PMID: 29797738 DOI: 10.1002/chem.201802052] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/17/2018] [Indexed: 01/24/2023]
Abstract
The effect of the protein environment on the formation and stabilization of an elusive catalytically active polyoxometalate (POM) species, K6 [Hf(α2 -P2 W17 O61 )] (1), is reported. In the co-crystal of hen egg-white lysozyme (HEWL) with 1, the catalytically active monomeric species is observed, originating from the dimeric 1:2 POM form, while it is intrinsically unstable under physiological pH conditions. The protein-assisted dissociation of the dimeric POM was rationalized by means of DFT calculations. The dissociation process is unfavorable in bulk water, but becomes favorable in the protein-POM complex due to the low dielectric response at the protein surface. The crystal structure shows that the monomeric form is stabilized by electrostatic and water-mediated hydrogen bonding interactions with the protein. It interacts at three distinct sites, close to the aspartate-containing hydrolysis sites, demonstrating high selectivity towards peptide bonds containing this residue.
Collapse
Affiliation(s)
- Laurens Vandebroek
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Elke De Zitter
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Hong Giang Thi Ly
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Dragan Conić
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Tzvetan Mihaylov
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Annelies Sap
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Paul Proost
- Department of Microbiology and Immunology, Rega Institute, Herestraat 49 box 1042, 3000, Leuven, Belgium
| | - Kristine Pierloot
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| |
Collapse
|
13
|
Ly HGT, Fu G, Kondinski A, Bueken B, De Vos D, Parac-Vogt TN. Superactivity of MOF-808 toward Peptide Bond Hydrolysis. J Am Chem Soc 2018; 140:6325-6335. [PMID: 29684281 DOI: 10.1021/jacs.8b01902] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MOF-808, a Zr(IV)-based metal-organic framework, has been proven to be a very effective heterogeneous catalyst for the hydrolysis of the peptide bond in a wide range of peptides and in hen egg white lysozyme protein. The kinetic experiments with a series of Gly-X dipeptides with varying nature of amino acid side chain have shown that MOF-808 exhibits selectivity depending on the size and chemical nature of the X side chain. Dipeptides with smaller or hydrophilic residues were hydrolyzed faster than those with bulky and hydrophobic residues that lack electron rich functionalities which could engage in favorable intermolecular interactions with the btc linkers. Detailed kinetic studies performed by 1H NMR spectroscopy revealed that the rate of glycylglycine (Gly-Gly) hydrolysis at pD 7.4 and 60 °C was 2.69 × 10-4 s-1 ( t1/2 = 0.72 h), which is more than 4 orders of magnitude faster compared to the uncatalyzed reaction. Importantly, MOF-808 can be recycled several times without significantly compromising the catalytic activity. A detailed quantum-chemical study combined with experimental data allowed to unravel the role of the {Zr6O8} core of MOF-808 in accelerating Gly-Gly hydrolysis. A mechanism for the hydrolysis of Gly-Gly by MOF-808 is proposed in which Gly-Gly binds to two Zr(IV) centers of the {Zr6O8} core via the oxygen atom of the amide group and the N-terminus. The activity of MOF-808 was also demonstrated toward the hydrolysis of hen egg white lysozyme, a protein consisting of 129 amino acids. Selective fragmentation of the protein was observed with 55% yield after 25 h under physiological pH.
Collapse
Affiliation(s)
- Hong Giang T Ly
- Laboratory of Bioinorganic Chemistry, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Guangxia Fu
- Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Aleksandar Kondinski
- Laboratory of Bioinorganic Chemistry, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Bart Bueken
- Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Dirk De Vos
- Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Tatjana N Parac-Vogt
- Laboratory of Bioinorganic Chemistry, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| |
Collapse
|
14
|
Ventura D, Calderan A, Honisch C, Krol S, Serratì S, Bonchio M, Carraro M, Ruzza P. Synthesis and biological activity of anAnderson polyoxometalate bis‐functionalized with aBombesin‐analog peptide. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Daniele Ventura
- Department of Chemical SciencesUniversity of Padua, and Institute on Membrane Technology of CNRPadua Italy
| | - Andrea Calderan
- Institute of Biomolecular Chemistry of CNR, Padua UnitPadua Italy
| | - Claudia Honisch
- Institute of Biomolecular Chemistry of CNR, Padua UnitPadua Italy
| | - Silke Krol
- Laboratory of translational NanotechnologyIRCCS Oncologic Institute “Giovanni Paolo II”, Viale O. Flacco 65Bari70124 Italy
- NanoMed lab, Fondazione IRCCS Institute of Neurology “Carlo Besta”, via Amadeo 42Milan20133 Italy
| | - Simona Serratì
- Laboratory of translational NanotechnologyIRCCS Oncologic Institute “Giovanni Paolo II”, Viale O. Flacco 65Bari70124 Italy
| | - Marcella Bonchio
- Department of Chemical SciencesUniversity of Padua, and Institute on Membrane Technology of CNRPadua Italy
| | - Mauro Carraro
- Department of Chemical SciencesUniversity of Padua, and Institute on Membrane Technology of CNRPadua Italy
| | - Paolo Ruzza
- Institute of Biomolecular Chemistry of CNR, Padua UnitPadua Italy
| |
Collapse
|
15
|
Ly HGT, Parac-Vogt TN. Spectroscopic Study of the Interaction between Horse Heart Myoglobin and Zirconium(IV)-Substituted Polyoxometalates as Artificial Proteases. Chemphyschem 2017; 18:2451-2458. [PMID: 28675658 DOI: 10.1002/cphc.201700680] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 01/19/2023]
Abstract
A recent study [Angew. Chem. Int. Ed. 2015, 54, 7391-7394] has shown that horse heart myoglobin (HHM) is selectively hydrolyzed by a range of zirconium(IV)-substituted polyoxometalates (POMs) under mild conditions. In this study, the molecular interactions between the Zr-POM catalysts and HHM are investigated by using a range of complementary techniques, including circular dichroism (CD), UV/Vis spectroscopy, tryptophan fluorescence spectroscopy, and 1 H and 31 P NMR spectroscopy. A tryptophan fluorescence quenching study reveals that, among all examined Zr-POMs, the most reactive POM, 2:2 ZrIV -Keggin, exhibits the strongest interaction with HHM. 31 P NMR spectroscopy studies show that this POM dissociates in solution, resulting in the formation of a monomeric 1:1 ZrIV -Keggin structure, which is likely to be a catalytically active species. In the presence of ZrIV -POMs, HHM does not undergo complete denaturation, as evidenced by CD, UV/Vis, tryptophan fluorescence, and 1 H NMR spectroscopy. CD spectroscopy shows a gradual decrease in the α-helical content of HHM upon addition of ZrIV -POMs. The largest effect is observed in the presence of a large ZrIV -Wells-Dawson structure, whereas small ZrIV -Lindqvist POM has the least influence on the decrease in the α-helical content of HHM. In all cases, the Soret band at λ=409 nm is maintained in the presence of all examined Zr-POMs, which indicates that no conformational changes in the protein occur near the heme group.
Collapse
Affiliation(s)
- Hong Giang T Ly
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | | |
Collapse
|
16
|
Arefian M, Mirzaei M, Eshtiagh-Hosseini H, Frontera A. A survey of the different roles of polyoxometalates in their interaction with amino acids, peptides and proteins. Dalton Trans 2017; 46:6812-6829. [DOI: 10.1039/c7dt00894e] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This perspective provides a comprehensive description of the different roles of POMs in their interaction with relevant biological molecules.
Collapse
Affiliation(s)
- Mina Arefian
- Department of Chemistry
- Ferdowsi University of Mashhad
- Mashhad 917751436
- Iran
| | - Masoud Mirzaei
- Department of Chemistry
- Ferdowsi University of Mashhad
- Mashhad 917751436
- Iran
| | | | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| |
Collapse
|
17
|
Sap A, Van Tichelen L, Mortier A, Proost P, Parac-Vogt TN. Tuning the Selectivity and Reactivity of Metal-Substituted Polyoxometalates as Artificial Proteases by Varying the Nature of the Embedded Lewis Acid Metal Ion. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201601098] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Annelies Sap
- KU Leuven; Celestijnenlaan 200F 3001 Leuven Belgium
| | | | - Anneleen Mortier
- Department of Microbiology and Immunology; KU Leuven; Minderbroedersstraat 10 3000 Leuven Belgium
| | - Paul Proost
- Department of Microbiology and Immunology; KU Leuven; Minderbroedersstraat 10 3000 Leuven Belgium
| | | |
Collapse
|
18
|
Mihaylov TT, Ly HGT, Pierloot K, Parac-Vogt TN. Molecular Insight from DFT Computations and Kinetic Measurements into the Steric Factors Influencing Peptide Bond Hydrolysis Catalyzed by a Dimeric Zr(IV)-Substituted Keggin Type Polyoxometalate. Inorg Chem 2016; 55:9316-28. [DOI: 10.1021/acs.inorgchem.6b01461] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tzvetan T. Mihaylov
- Laboratory of Computational Coordination
Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Hong Giang T. Ly
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Kristine Pierloot
- Laboratory of Computational Coordination
Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Tatjana N. Parac-Vogt
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
19
|
Luong TKN, Shestakova P, Parac-Vogt TN. Kinetic studies of phosphoester hydrolysis promoted by a dimeric tetrazirconium(iv) Wells–Dawson polyoxometalate. Dalton Trans 2016; 45:12174-80. [DOI: 10.1039/c6dt02211a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The kinetic and thermodynamic studies of p-nitrophenyl phosphate hydrolysis promoted by a Zr(iv)-substituted Wells–Dawson polyoxometalate, Na14[Zr4(P2W16O59)2 (μ3-O)2(OH)2(H2O)4]·57H2O, were fully presented.
Collapse
Affiliation(s)
| | - Pavletta Shestakova
- NMR Laboratory
- Institute of Organic Chemistry with Centre of Phytochemistry
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
| | | |
Collapse
|
20
|
Ly HGT, Mihaylov T, Absillis G, Pierloot K, Parac-Vogt TN. Reactivity of Dimeric Tetrazirconium(IV) Wells-Dawson Polyoxometalate toward Dipeptide Hydrolysis Studied by a Combined Experimental and Density Functional Theory Approach. Inorg Chem 2015; 54:11477-92. [PMID: 26599585 DOI: 10.1021/acs.inorgchem.5b02122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Detailed kinetic studies on the hydrolysis of glycylglycine (Gly-Gly) in the presence of the dimeric tetrazirconium(IV)-substituted Wells-Dawson-type polyoxometalate Na14[Zr4(P2W16O59)2(μ3-O)2(OH)2(H2O)4] · 57H2O (1) were performed by a combination of (1)H, (13)C, and (31)P NMR spectroscopies. The catalyst was shown to be stable under a broad range of reaction conditions. The effect of pD on the hydrolysis of Gly-Gly showed a bell-shaped profile with the fastest hydrolysis observed at pD 7.4. The observed rate constant for the hydrolysis of Gly-Gly at pD 7.4 and 60 °C was 4.67 × 10(-7) s(-1), representing a significant acceleration as compared to the uncatalyzed reaction. (13)C NMR data were indicative for coordination of Gly-Gly to 1 via its amide oxygen and amine nitrogen atoms, resulting in a hydrolytically active complex. Importantly, the effective hydrolysis of a series of Gly-X dipeptides with different X side chain amino acids in the presence of 1 was achieved, and the observed rate constant was shown to be dependent on the volume, chemical nature, and charge of the X amino acid side chain. To give a mechanistic explanation of the observed catalytic hydrolysis of Gly-Gly, a detailed quantum-chemical study was performed. The theoretical results confirmed the nature of the experimentally suggested binding mode in the hydrolytically active complex formed between Gly-Gly and 1. To elucidate the role of 1 in the hydrolytic process, both the uncatalyzed and the polyoxometalate-catalyzed reactions were examined. In the rate-determining step of the uncatalyzed Gly-Gly hydrolysis, a carboxylic oxygen atom abstracts a proton from a solvent water molecule and the nascent OH nucleophile attacks the peptide carbon atom. Analogous general-base activity of the free carboxylic group was found to take place also in the case of polyoxometalate-catalyzed hydrolysis as the main catalytic effect originates from the -C═O···Zr(IV) binding.
Collapse
Affiliation(s)
- Hong Giang T Ly
- Laboratory of Bioinorganic Chemistry and ‡Laboratory of Computational Coordination Chemistry, Department of Chemistry, Katholieke Universiteit Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Tzvetan Mihaylov
- Laboratory of Bioinorganic Chemistry and ‡Laboratory of Computational Coordination Chemistry, Department of Chemistry, Katholieke Universiteit Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Gregory Absillis
- Laboratory of Bioinorganic Chemistry and ‡Laboratory of Computational Coordination Chemistry, Department of Chemistry, Katholieke Universiteit Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Kristine Pierloot
- Laboratory of Bioinorganic Chemistry and ‡Laboratory of Computational Coordination Chemistry, Department of Chemistry, Katholieke Universiteit Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Laboratory of Bioinorganic Chemistry and ‡Laboratory of Computational Coordination Chemistry, Department of Chemistry, Katholieke Universiteit Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|