1
|
Singh A, Singh B, Dey S, Indra A, Lahiri GK. Ruthenium Azobis(benzothiazole): Electronic Structure and Impact of Substituents on the Electrocatalytic Single-Site Water Oxidation Process. Inorg Chem 2023; 62:2769-2783. [PMID: 36719385 DOI: 10.1021/acs.inorgchem.2c03906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The present article deals with the structurally and spectroelectrochemically characterized newer class of ruthenium-azoheteroarenes [RuII(Ph-trpy)(Cl)(L)]ClO4, [1]ClO4-[3]ClO4 (Ph-trpy: 4'-phenyl-2,2':6',2″-terpyridine; L1: 2,2'-azobis(benzothiazole) ([1]ClO4); L2: 2,2'-azobis(6-methylbenzothiazole) ([2]ClO4); L3: 2,2'-azobis(6-chlorobenzothiazole) ([3]ClO4)). A collective consideration of experimental (i.e., structural and spectroelectrochemical) and theoretical (DFT calculations) results of [1]ClO4-[3]ClO4 established selective stabilization of (i) the unperturbed azo (N═N)0 function of L, (ii) the exclusive presence of the isomeric form involving the N(azo) donor of L trans to Cl, and (iii) the presence of extended, hydrogen-bonded trimeric units in the asymmetric unit of [2]ClO4 (CH---O) via the involvement of ClO4- anions. The detailed electrochemical studies revealed metal-based oxidation of [RuII(Ph-trpy)(Cl)(L)]+ (1+-3+) to [RuIII(Ph-trpy)(Cl)(L)]2+ (12+-32+); however, the electronic form of the first reduced state (1-3) could be better represented by its mixed RuII(Ph-trpy)(Cl)(L•-)/RuIII(Ph-trpy)(Cl)(L2-) state. Both native (1+-3+) and reduced (1-3) states exhibited weak lower energy transitions within the range of 1000-1200 nm. Further, [1]ClO4-[3]ClO4 delivered an electrochemical OER (oxygen evolution reaction) process in alkaline medium on immobilizing them to a carbon cloth support, which divulged an amplified water oxidation feature for [2]ClO4 due to the presence of electron-donating methyl groups in the L2 backbone. The faster OER kinetics and high catalytic stability of [2]ClO4 could also be rationalized by its lowest Tafel slope (85 mV dec-1) and choronoamperometric experiment (stable up to 12 h), respectively, along with high Faradic efficiency (∼97%). A comparison of [2]ClO4 with the reported analogous ruthenium complexes furnished its excellent intrinsic water oxidation activity.
Collapse
Affiliation(s)
- Aditi Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Baghendra Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Sanchaita Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Arindam Indra
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Silva HN, Toma SH, Hennemann AL, Gonçalves JM, Nakamura M, Araki K, Toyama MM, Toma HE. A New Supramolecular Tetraruthenated Cobalt (II) Porphyrazine Displaying Outstanding Electrocatalytical Performance in Oxygen Evolution Reaction. Molecules 2022; 27:molecules27144598. [PMID: 35889469 PMCID: PMC9318768 DOI: 10.3390/molecules27144598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
A new supramolecular electrocatalyst for Oxygen Evolution Reaction (OER) was synthesized from a central multibridging cobalt tetrapyridylporphyrazine (CoTPyPz) species by attaching four [Ru(bpy)2Cl]+ groups. Both CoTPyPz and the tetraruthenated cobalt porphyrazine species, TRuCoTPyPz, form very homogenous molecular films just by dropcasting their methanol solutions onto GCE electrodes. Such films exhibited low overpotentials for O2 evolution, e.g., 560 e 340 mV, respectively, displaying high stability, typically exceeding 15 h. The kinetic parameters obtained from the Tafel plots showed that the peripheral complexes are very important for the electrocatalytic activity. Hyperspectral Raman images taken along the electrochemical process demonstrated that the cobalt center is the primary active catalyst site, but its performance is enhanced by the ruthenium complexes, which act as electron-donating groups, in the supramolecular system.
Collapse
Affiliation(s)
- Hiago N. Silva
- Department of Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Lineu Prestes 748, Butanta, São Paulo 05508-000, SP, Brazil; (H.N.S.); (S.H.T.); (A.L.H.); (J.M.G.); (M.N.); (K.A.)
| | - Sérgio Hiroshi Toma
- Department of Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Lineu Prestes 748, Butanta, São Paulo 05508-000, SP, Brazil; (H.N.S.); (S.H.T.); (A.L.H.); (J.M.G.); (M.N.); (K.A.)
| | - Artur Luís Hennemann
- Department of Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Lineu Prestes 748, Butanta, São Paulo 05508-000, SP, Brazil; (H.N.S.); (S.H.T.); (A.L.H.); (J.M.G.); (M.N.); (K.A.)
| | - Josué M. Gonçalves
- Department of Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Lineu Prestes 748, Butanta, São Paulo 05508-000, SP, Brazil; (H.N.S.); (S.H.T.); (A.L.H.); (J.M.G.); (M.N.); (K.A.)
| | - Marcelo Nakamura
- Department of Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Lineu Prestes 748, Butanta, São Paulo 05508-000, SP, Brazil; (H.N.S.); (S.H.T.); (A.L.H.); (J.M.G.); (M.N.); (K.A.)
| | - Koiti Araki
- Department of Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Lineu Prestes 748, Butanta, São Paulo 05508-000, SP, Brazil; (H.N.S.); (S.H.T.); (A.L.H.); (J.M.G.); (M.N.); (K.A.)
| | - Marcos Makoto Toyama
- Maua Institute of Technology, Praça Mauá, 1-Mauá, São Caetano do Sul 09580-900, SP, Brazil
- Correspondence: (M.M.T.); (H.E.T.)
| | - Henrique Eisi Toma
- Department of Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Lineu Prestes 748, Butanta, São Paulo 05508-000, SP, Brazil; (H.N.S.); (S.H.T.); (A.L.H.); (J.M.G.); (M.N.); (K.A.)
- Correspondence: (M.M.T.); (H.E.T.)
| |
Collapse
|
3
|
Ghaderian A, Kazim S, Khaja Nazeeruddin M, Ahmad S. Strategic factors to design the next generation of molecular water oxidation catalysts: Lesson learned from ruthenium complexes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
4
|
Karimi F, Yarie M, Zolfigol MA. A convenient method for synthesis of terpyridines via a cooperative vinylogous anomeric based oxidation. RSC Adv 2020; 10:25828-25835. [PMID: 35518593 PMCID: PMC9055316 DOI: 10.1039/d0ra04461j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
The presented study is the first report of the synthesis of terpyridines in the presence of a nanomagnetic catalyst instead of harmful reagents. Herein, Fe3O4@O2PO2(CH2)2NH3 +CF3CO2 - as a retrievable nanocatalyst with magnetic properties was applied for the multi-component reaction between acetylpyridine derivatives (2 or 3 or 4-isomer), aryl aldehydes and ammonium acetate under conventional heating conditions in the absence of any solvent. The derived terpyridines were obtained with acceptable yields and brief reaction times via a cooperative vinylogous anomeric based oxidation route. Fe3O4@O2PO2(CH2)2NH3 +CF3CO2 - showed a high capability for recovery and reuse in the mentioned reaction.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| |
Collapse
|
5
|
Liu B, Jabed MA, Kilina S, Sun W. Synthesis, Photophysics, and Reverse Saturable Absorption of trans-Bis-cyclometalated Iridium(III) Complexes (C^N^C)Ir(R-tpy) + (tpy = 2,2':6',2″-Terpyridine) with Broadband Excited-State Absorption. Inorg Chem 2020; 59:8532-8542. [PMID: 32497429 DOI: 10.1021/acs.inorgchem.0c00961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extending the bandwidth of triplet excited-state absorption in transition-metal complexes is appealing for developing broadband reverse saturable absorbers. Targeting this goal, five bis-terdentate iridium(III) complexes (Ir1-Ir5) bearing trans-bis-cyclometalating (C^N^C) and 4'-R-2,2':6',2″-terpyridine (4'-R-tpy) ligands were synthesized. The effects of the structural variation in cyclometalating ligands and substituents at the tpy ligand on the photophysics of these complexes have been systematically explored using spectroscopic methods (i.e., UV-vis absorption, emission, and transient absorption spectroscopy) and time-dependent density functional theory (TDDFT) calculations. All complexes exhibited intensely structured 1π,π* absorption bands at <400 nm and broad charge transfer (1CT)/1π,π* transitions at 400-600 nm. Ligand structural variations exerted a very small effect on the energies of the 1CT/1π,π* transitions; however, they had a significant effect on the molar extinction coefficients of these absorption bands. All complexes emitted featureless deep red phosphorescence in solutions at room temperature and gave broad-band and strong triplet excited-state absorption ranging from the visible to the near-infrared (NIR) spectral regions, with both originating from the 3π,π*/3CT states. Although alteration of the ligand structures influenced the emission energies slightly, these changes significantly affected the emission lifetimes and quantum yields, transient absorption spectral features, and the triplet excited-state quantum yields of the complexes. Except for Ir3, the other four complexes all manifested reverse saturable absorption (RSA) upon nanosecond laser pulse excitation at 532 nm, with the decreasing trend of RSA following Ir2 ≈ Ir4 > Ir1 > Ir5 > Ir3. The RSA trend corresponded well with the strength of the excited-state and ground-state absorption differences (ΔOD) at 532 nm for these complexes.
Collapse
Affiliation(s)
- Bingqing Liu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota58108-6050, United States
| | - Mohammed A Jabed
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota58108-6050, United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota58108-6050, United States
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota58108-6050, United States
| |
Collapse
|
6
|
Deka R, Junk PC, Turner DR, Deacon GB, Singh HB. An insight into the redox activity of Ru and Os complexes of the N,N′-bis(2-pyridyl)benzene-1,2-diamine ligand: Structural, electrochemical and electronic structure analysis by density functional theory calculations. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Silva JL, Unger I, Matias TA, Franco LR, Damas G, Costa LT, Toledo KCF, Rocha TCR, de Brito AN, Saak CM, Coutinho K, Araki K, Björneholm O, Brena B, Araujo CM. X-ray Photoelectron Fingerprints of High-Valence Ruthenium-Oxo Complexes along the Oxidation Reaction Pathway in an Aqueous Environment. J Phys Chem Lett 2019; 10:7636-7643. [PMID: 31747290 DOI: 10.1021/acs.jpclett.9b02756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent advances in operando-synchrotron-based X-ray techniques are making it possible to address fundamental questions related to complex proton-coupled electron transfer reactions, for instance, the electrocatalytic water splitting process. However, it is still a grand challenge to assess the ability of the different techniques to characterize the relevant intermediates, with minimal interference on the reaction mechanism. To this end, we have developed a novel methodology employing X-ray photoelectron spectroscopy (XPS) in connection with the liquid-jet approach to probe the electrochemical properties of a model electrocatalyst, [RuII(bpy)2(py)(OH2)]2+, in an aqueous environment. There is a unique fingerprint of the extremely important higher-valence ruthenium-oxo species in the XPS spectra along the oxidation reaction pathway. Furthermore, a sequential method combining quantum mechanics and molecular mechanics is used to illuminate the underlying physical chemistry of such systems. This study provides the basis for the future development of in-operando XPS techniques for water oxidation reactions.
Collapse
Affiliation(s)
- Jose Luis Silva
- Materials Theory Division, Department of Physics and Astronomy , Uppsala University , Box 516, 75120 Uppsala , Sweden
| | - Isaak Unger
- Molecular and Condensed Matter Physics Division, Department of Physics and Astronomy , Uppsala University , Box 516, 75120 Uppsala , Sweden
| | - Tiago Araujo Matias
- Department of Fundamental Chemistry, Institute of Chemistry , University of São Paulo , Av. Lineu Prestes 748, Cidade Universitária, Butanta , Sao Paulo , SP 05508-000 , Brazil
| | - Leandro Rezende Franco
- Instituto de Física , Universidade de São Paulo , Cidade Universitária , 05508-090 São Paulo , SP , Brazil
| | - Giane Damas
- Materials Theory Division, Department of Physics and Astronomy , Uppsala University , Box 516, 75120 Uppsala , Sweden
| | - Luciano T Costa
- Instituto de Química, Departamento de Físico-química , Universidade Federal Fluminense , Outeiro de São João Batista s/n , CEP, 24020-150 Niterói , RJ , Brazil
| | - Kalil C F Toledo
- Department of Fundamental Chemistry, Institute of Chemistry , University of São Paulo , Av. Lineu Prestes 748, Cidade Universitária, Butanta , Sao Paulo , SP 05508-000 , Brazil
| | - Tulio C R Rocha
- Brazilian Synchrotron Light Laboratory (LNLS) , Brazilian Center for Research on Energy and Materials (CNPEM) , P.O. Box 6192, 13083-970 Campinas , SP , Brazil
| | - Arnaldo Naves de Brito
- Institute of Physics "Gleb Wataghin" , University of Campinas , 13083-859 Campinas , SP , Brazil
| | - Clara-Magdalena Saak
- Molecular and Condensed Matter Physics Division, Department of Physics and Astronomy , Uppsala University , Box 516, 75120 Uppsala , Sweden
| | - Kaline Coutinho
- Instituto de Física , Universidade de São Paulo , Cidade Universitária , 05508-090 São Paulo , SP , Brazil
| | - Koiti Araki
- Department of Fundamental Chemistry, Institute of Chemistry , University of São Paulo , Av. Lineu Prestes 748, Cidade Universitária, Butanta , Sao Paulo , SP 05508-000 , Brazil
| | - Olle Björneholm
- Molecular and Condensed Matter Physics Division, Department of Physics and Astronomy , Uppsala University , Box 516, 75120 Uppsala , Sweden
| | - Barbara Brena
- Materials Theory Division, Department of Physics and Astronomy , Uppsala University , Box 516, 75120 Uppsala , Sweden
| | - C Moyses Araujo
- Materials Theory Division, Department of Physics and Astronomy , Uppsala University , Box 516, 75120 Uppsala , Sweden
| |
Collapse
|
8
|
Liu B, Monro S, Li Z, Jabed MA, Ramirez D, Cameron CG, Colón K, Roque J, Kilina S, Tian J, McFarland SA, Sun W. A New Class of Homoleptic and Heteroleptic Bis(terpyridine) Iridium(III) Complexes with Strong Photodynamic Therapy Effects. ACS APPLIED BIO MATERIALS 2019; 2:2964-2977. [PMID: 31844844 PMCID: PMC6913535 DOI: 10.1021/acsabm.9b00312] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Six homo- or heteroleptic tricationic Ir(R1-tpy)(R2-tpy)3+ complexes (Ir1-Ir6, R1/R2 = Ph, 4'-N(CH3)2Ph, pyren-1-yl, or 4'-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}Ph, tpy = 2,2';6',2"-terpyridine) were synthesized and tested for photodynamic therapy (PDT) effects. The ground- and excited-state characteristics of these complexes were studied systematically via spectroscopic methods and quantum chemistry calculations. All complexes possessed intraligand charge transfer (1ILCT) / metal-to-ligand charge transfer (1MLCT) dominated transition(s) in their low-energy absorption bands, which red-shifted with the increased electron-releasing strength of the R1/R2 substituent. Five of the complexes exhibited ligand-centered 3 π,π*/3ILCT/3MLCT emission. With a stronger electron-releasing R1/R2 substituent, the degree of charge transfer contribution increased, leading to a decrease of the emission quantum yield. When the 4'-N(CH3)2Ph substituent was introduced on both tpy ligands, the emission of Ir3 was completely quenched. Our study on the transient absorption of these complexes demonstrated that they all possessed broadband triplet excited-state absorption in the 400-800 nm region. Pyrenyl substitution of one or more tpy ligands, as in Ir4 and Ir5, increased the lifetimes of the lowest triplet excited state and the singlet oxygen (1O2) production efficiencies. Ir1-Ir5 were nontoxic toward SK-MEL-28 cells, with photocytotoxicities that varied from 0.18 to 153 µM. Among them, Ir4 had the highest 1O2 quantum yield (0.81) in cell-free conditions, showing the largest photocytotoxicity against SK-MEL-28 cells for Ir(III) PSs to date, and was the most efficient generator of reactive oxygen species (ROS) in vitro. Ir4 possessed a very large phototherapeutic index (PI = dark EC50 / light EC50) of >1657, the largest reported for an Ir(III) complex photosensitizer upon broadband visible light (400-700 nm) activation. Ir4 also exhibited a very strong PDT effect toward MCF-7 breast cancer cells and its xenograft tumor model. Upon 450-nm light activation, Ir4 dramatically inhibited the xenograft tumor growth and exhibited negligible side effects upon PDT treatment.
Collapse
Affiliation(s)
- Bingqing Liu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108–6050, USA
| | - Susan Monro
- Department of Chemistry, Acadia University, 6 University Avenue, Wolfville, NS B4P 2R6, Canada
| | - Zhike Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Mohammed A. Jabed
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108–6050, USA
| | - Daniel Ramirez
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108–6050, USA
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402–6170, USA
| | - Katsuya Colón
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402–6170, USA
| | - John Roque
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402–6170, USA
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108–6050, USA
| | - Jian Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Sherri A. McFarland
- Department of Chemistry, Acadia University, 6 University Avenue, Wolfville, NS B4P 2R6, Canada
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402–6170, USA
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108–6050, USA
| |
Collapse
|
9
|
Matias TA, Rein FN, Rocha RC, Formiga ALB, Toma HE, Araki K. Effects of a strong π-accepting ancillary ligand on the water oxidation activity of weakly coupled binuclear ruthenium catalysts. Dalton Trans 2019; 48:3009-3017. [PMID: 30747931 DOI: 10.1039/c8dt04963g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Significant differences were found in the proton-coupled redox chemistry and catalytic behavior of the binuclear [{Ru(H2O)(bpz)}2(tpy2ph)](PF6)4 complex [bpz = 2,2'-bipyrazine; tpy2ph = 1,3-bis(4'-2,2':6',2''-terpyridin-4-yl)benzene] as compared with the structurally analogous derivative with 2,2'-bipyridine (bpy) instead of bpz. The differences were assigned to the stronger π-accepting character of bpz relative to bpy as the ancillary ligand. The expectation of a positive shift for the Ru-centered redox potentials was confirmed for the lower oxidation state species, but that trend was reversed in the formation of the high-valence catalytic active species as shown by a negative shift of 0.14 V for the potential of the [RuIV/V[double bond, length as m-dash]O] process. Moreover, DFT calculations indicated a significant decrease of about 15% on the spin density and oxyl character of the [RuV[double bond, length as m-dash]O]3+ fragment. The significantly lower kcat(O2) for the bpz system was attributed to these combined electronic effects.
Collapse
Affiliation(s)
- Tiago A Matias
- Department of Chemistry, Institute of Chemistry, University of São Paulo, Av. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil.
| | | | | | | | | | | |
Collapse
|
10
|
Gonçalves JM, Matias TA, Toledo KC, Araki K. Electrocatalytic materials design for oxygen evolution reaction. ADVANCES IN INORGANIC CHEMISTRY 2019. [DOI: 10.1016/bs.adioch.2019.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Matias TA, Parussulo AL, Benavides PA, Guimarães RR, Dourado AH, Nakamura M, de Torresi SIC, Bertotti M, Araki K. Polymeric binuclear ruthenium complex as efficient electrocatalyst for oxygen evolution reaction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Viere EJ, Kuhn AE, Roeder MH, Piro NA, Kassel WS, Dudley TJ, Paul JJ. Spectroelectrochemical studies of a ruthenium complex containing the pH sensitive 4,4'-dihydroxy-2,2'-bipyridine ligand. Dalton Trans 2018; 47:4149-4161. [PMID: 29473071 DOI: 10.1039/c7dt04554a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attaining high oxidation states at the metal center of transition metal complexes is a key design principle for many catalytic processes. One way to support high oxidation state chemistry is to utilize ligands that are electron-donating in nature. Understanding the structural and electronic changes of metal complexes as higher oxidation states are reached is critical towards designing more robust catalysts that are able to turn over at high rates without decomposing. To this end, we report herein the changes in structural and electronic properties as [Ru(bpy)2(44'bpy(OH)2)]2+ is oxidized to [Ru(bpy)2(44'bpy(OH)2)]3+ (bpy = 2,2'-bipyridine; 44'bpy(OH)2 = 4,4'-dihydroxy-2,2'-bipyridine). The 44'bpy(OH)2 ligand is a pH-dependent ligand where deprotonation of the hydroxyl groups leads to significant electronic donation to the metal center. A Pourbaix Diagram of the complex reveals a pH independent reduction potential below pH = 2.0 for the Ru3+/2+ process at 0.91 V vs. Ag/AgCl. Above pH = 2.0, pH dependence is observed with a decrease in reduction potential until pH = 6.8 where the complex is completely deprotonated, resulting in a reduction potential of 0.62 V vs. Ag/AgCl. Spectroelectrochemical studies as a function of pH reveal the disappearance of the Metal to Ligand Charge Transfer (MLCT) or Mixed Metal-Ligand to Charge Transfer bands upon oxidation and the appearance of a new low energy band. DFT calculations for this low energy band were carried out using both B3LYP and M06-L functionals for all protonation states and suggest that numerous new transition types occur upon oxidation to Ru3+.
Collapse
Affiliation(s)
- Erin J Viere
- Department of Chemistry, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA..
| | - Ashley E Kuhn
- Department of Chemistry, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA..
| | - Margaret H Roeder
- Department of Chemistry, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA..
| | - Nicholas A Piro
- Department of Chemistry, Albright College, 1621 N. 13th Street, Reading, PA 19604, USA
| | - W Scott Kassel
- Department of Chemistry, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA..
| | - Timothy J Dudley
- Math, Science and Technology Department, University of Minnesota Crookston, 2900 University Ave., Crookston, MN 56716, USA
| | - Jared J Paul
- Department of Chemistry, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA..
| |
Collapse
|
13
|
Gonçalves JM, Matias TA, Saravia LP, Nakamura M, Bernardes JS, Bertotti M, Araki K. Synergic effects enhance the catalytic properties of alpha-Ni(OH)2-FeOCPc@rGO composite for oxygen evolution reaction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Benavides PA, Matias TA, Araki K. Unexpected lability of the [Ru III(phtpy)Cl 3] complex. Dalton Trans 2017; 46:15567-15572. [PMID: 29091091 DOI: 10.1039/c7dt03658b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ruthenium(iii) complexes are known for their high stability and inertness. To the best of our knowledge, the only well-characterized example of a labile Ru(iii) complex is [RuIII(edta)(H2O)] as a consequence of an intramolecular hydrogen bonding leading to the formation of a large opening in the molecule front, thus changing the mechanism from dissociative to associative. Compelling experimental evidence is presented demonstrating that the [RuIII(phtpy)Cl3] complex is labile, also indicating that the Ru(iii)-phtpy bond is much weaker than expected, in contrast to the strongly π-back-bonding stabilized Ru(ii)-phtpy bond.
Collapse
Affiliation(s)
- Paola A Benavides
- Department of Chemistry, Institute of Chemistry, University of São Paulo, Av. Lineu Prestes 748, Butantã, São Paulo, SP 05508-000, Brazil.
| | | | | |
Collapse
|
15
|
Guimaraes RR, Parussulo AL, Matias TA, Toma HE, Araki K. Electrostatic blocking barrier as an effective strategy to inhibit electron recombination in DSSCs. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.09.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|