1
|
Volkov P, Verkhoturova S, Khrapova K, Arbuzova S, Bidusenko I, Albanov A, Trofimov B. Selenium Transfer from Secondary Phosphine Selenides to Aminoacetylenic Ketones: Access to 1,2-Dihydro-3 H-pyrrole-3-selones with a Stable C═Se Bond. Org Lett 2024; 26:7336-7340. [PMID: 39166540 DOI: 10.1021/acs.orglett.4c02491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Secondary phosphine selenides were found to react with γ-aminoacetylenic ketones (80-85 °C, MeCN, 17-40 h) to afford 1,2-dihydro-3H-pyrrole-3-selones in 48-80% yields, products of unprecedented selenium transfer from the P═Se bond to replace the carbonyl oxygen and to form dihydro-3H-pyrrole-3-selones having a C═Se bond stable under ambient conditions.
Collapse
Affiliation(s)
- Pavel Volkov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russian Federation
| | - Svetlana Verkhoturova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russian Federation
| | - Kseniya Khrapova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russian Federation
| | - Svetlana Arbuzova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russian Federation
| | - Ivan Bidusenko
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russian Federation
| | - Alexander Albanov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russian Federation
| | - Boris Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russian Federation
| |
Collapse
|
2
|
Siddhartha, Rangarajan S, Kunchur HS, Balakrishna MS. A greener approach towards the synthesis of N-heterocyclic thiones and selones using the mechanochemical technique. Dalton Trans 2022; 51:15750-15761. [PMID: 36178103 DOI: 10.1039/d2dt02322a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This manuscript describes the synthesis of N-heterocyclic thiones and selones of a variety of imidazolium salts involving an eco-friendly and solventless ball-milling technique. The products have been isolated in almost quantitative yield, involving a minimum quantity of solvents only for the isolation of products by column chromatography, and in some cases for purification purposes. Both mono- and bisimidazolium salts afforded N-heterocyclic thiones and selones. The methodology is found to be superior in terms of reaction time, yield and energy efficiency as compared to conventional solution-state reactions.
Collapse
Affiliation(s)
- Siddhartha
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Shalini Rangarajan
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Harish S Kunchur
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Maravanji S Balakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
3
|
Vaddamanu M, Velappan K, Prabusankar G. Homoleptic and heteroleptic Zn(ii) selone catalysts for thioetherification of aryl halides without scrubbing oxygen. NEW J CHEM 2020. [DOI: 10.1039/c9nj05818d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tetra-coordinated zinc imidazoline selone complexes were synthesized and utilized as potential catalysts in the thioetherification of aryl halides without scrubbing oxygen.
Collapse
Affiliation(s)
- Moulali Vaddamanu
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- India
| | | | | |
Collapse
|
4
|
Quinlivan PJ, Chaijan MR, Palmer JH, Shlian DG, Parkin G. Coordination of 1-methyl-1,3-dihydro-2 H-benzimidazole-2-selone to zinc and cadmium: Monotonic and non-monotonic bond length variations for [H(sebenzim Me)] 2MCl 2 complexes (M = Zn, Cd, Hg). Polyhedron 2019; 164:185-194. [PMID: 31333278 PMCID: PMC6644719 DOI: 10.1016/j.poly.2019.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reactions of 1-methyl-1,3-dihydro-2H-benzimidazole-2-selone, H(sebenzimMe), towards the zinc and cadmium halides, MX2 (M = Zn, Cd; X = Cl, Br, I), afford the adducts, [H(sebenzimMe)]2MX2, which have been structurally characterized by X-ray diffraction. The halide ligands of each of these complexes participate in hydrogen bonding interactions with the imidazole N-H moieties, although the nature of the interactions depends on the halide. Specifically, the chloride and bromide derivatives, [H(sebenzimMe)]2ZnX2 and [H(sebenzimMe)]2CdX2 (X = Cl, Br), exhibit two intramolecular N-H•••X interactions, whereas the iodide derivatives, [H(sebenzimMe)]2ZnI2 and [H(sebenzimMe)]2CdI2, exhibit only one intramolecular N-H•••I interaction. Comparison of the M-Se and M-Cl bond lengths of the chloride series, [H(sebenzimMe)]2MCl2 (M = Zn, Cd, Hg), indicates that while the average M-Cl bond lengths progressively increase as the metal becomes heavier, the variation in M-Se bond length exhibits a non-monotonic trend, with the Cd-Se bond being the longest. These different trends provide an interesting subtlety concerned with use of covalent radii in predicting bond length differences. In addition to tetrahedral [H(sebenzimMe)]2CdCl2, [H(sebenzimMe)]3,CdCl2•[H(sebenzim)Me]4CdCl2, which features both five-coordinate and six-coordinate coordinate centers, has also been structurally characterized. Finally, the reaction between CdI2 and H(sebenzimMe) at elevated temperatures affords the 1-methylbenzimidazole complex, [H(sebenzimMe)]-[H(benzimMe)]CdI2, a transformation that is associated with cleavage of the C-Se bond.
Collapse
Affiliation(s)
| | | | - Joshua H Palmer
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Daniel G Shlian
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
5
|
Prabusankar G, Raju G, Vaddamanu M, Muthukumaran N, Sathyanarayana A, Nakamura SY, Masaya Y, Hisano K, Tsutsumi O, Biswas C, Kumar Raavi SS. Luminescent zinc(ii) selone macrocyclic ring. RSC Adv 2019; 9:14841-14848. [PMID: 35516307 PMCID: PMC9064214 DOI: 10.1039/c9ra01819k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/04/2019] [Indexed: 11/30/2022] Open
Abstract
The synthesis and photophysical properties of macrocyclic Zn(ii) selone molecule have been reported. The structural property of Zn(ii) selone was elucidated using single crystal X-ray diffraction study. The solid-state structure of zinc(ii) selone molecule exhibits a perfect zinc(ii) selone 28 membered ring system with tetra coordination geometry around zinc(ii) center. The zinc(ii) selone ring system can be considered as the largest zinc(ii) ring system known without any non-interacting centered guest moiety. Detailed trends in photophysical as well as thermal properties were probed. In photoluminescence study, the solid-state sample of zinc(ii) selone ring system emits the bluish-yellow color with considerable quantum yields, while the solution state sample of zinc(ii) selone ring system in DMSO emits bluish-yellow. The luminescence lifetime of zinc(ii) selone was measured using standard time-correlated single photon counting (TCSPC) technique.
Collapse
Affiliation(s)
- Ganesan Prabusankar
- Department of Chemistry, Indian Institute of Technology Hyderabad India-502 285
| | - Gembali Raju
- Department of Chemistry, Indian Institute of Technology Hyderabad India-502 285
| | - Moulali Vaddamanu
- Department of Chemistry, Indian Institute of Technology Hyderabad India-502 285
| | | | - Arruri Sathyanarayana
- Department of Applied Chemistry, Ritsumeikan University 1-1-1 Nojihigashi Kusatsu 525-8577 Japan
| | - Shin-Ya Nakamura
- Department of Applied Chemistry, Ritsumeikan University 1-1-1 Nojihigashi Kusatsu 525-8577 Japan
| | - Yamane Masaya
- Department of Applied Chemistry, Ritsumeikan University 1-1-1 Nojihigashi Kusatsu 525-8577 Japan
| | - Kyohei Hisano
- Department of Applied Chemistry, Ritsumeikan University 1-1-1 Nojihigashi Kusatsu 525-8577 Japan
| | - Osamu Tsutsumi
- Department of Applied Chemistry, Ritsumeikan University 1-1-1 Nojihigashi Kusatsu 525-8577 Japan
| | - Chinmoy Biswas
- Department of Physics, Indian Institute of Technology Hyderabad India-502 285
| | | |
Collapse
|
6
|
Doddi A, Peters M, Tamm M. N-Heterocyclic Carbene Adducts of Main Group Elements and Their Use as Ligands in Transition Metal Chemistry. Chem Rev 2019; 119:6994-7112. [PMID: 30983327 DOI: 10.1021/acs.chemrev.8b00791] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
N-Heterocyclic carbenes (NHC) are nowadays ubiquitous and indispensable in many research fields, and it is not possible to imagine modern transition metal and main group element chemistry without the plethora of available NHCs with tailor-made electronic and steric properties. While their suitability to act as strong ligands toward transition metals has led to numerous applications of NHC complexes in homogeneous catalysis, their strong σ-donating and adaptable π-accepting abilities have also contributed to an impressive vitalization of main group chemistry with the isolation and characterization of NHC adducts of almost any element. Formally, NHC coordination to Lewis acids affords a transfer of nucleophilicity from the carbene carbon atom to the attached exocyclic moiety, and low-valent and low-coordinate adducts of the p-block elements with available lone pairs and/or polarized carbon-element π-bonds are able to act themselves as Lewis basic donor ligands toward transition metals. Accordingly, the availability of a large number of novel NHC adducts has not only produced new varieties of already existing ligand classes but has also allowed establishment of numerous complexes with unusual and often unprecedented element-metal bonds. This review aims at summarizing this development comprehensively and covers the usage of N-heterocyclic carbene adducts of the p-block elements as ligands in transition metal chemistry.
Collapse
Affiliation(s)
- Adinarayana Doddi
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Marius Peters
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Matthias Tamm
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
7
|
Yadav S, Deka R, Raju S, Singh HB. Synthesis of N-heterocyclic nitrenium (NHN) ions and related donor systems: Coordination with d10-metal ions. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Yadav S, Deka R, Singh HB. Recent Developments in the Chemistry of NHC-based Selones: Syntheses, Applications and Reactivity. CHEM LETT 2019. [DOI: 10.1246/cl.180748] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sangeeta Yadav
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Rajesh Deka
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Harkesh B. Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
9
|
Ritch JS. Synthesis and coordination chemistry of cyclic seleno- and telluroureas. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
Chalcogenated derivatives of N-heterocyclic carbene ligands have received increasing attention due to their diverse chemical reactivity and potential applications in fields such as medicine and materials chemistry. This chapter summarizes the synthetic methods for the preparation of cyclic heavy chalcogenoureas featuring heterocyclic cores and explores their diverse coordination chemistry with p- and d-block metals.
Collapse
Affiliation(s)
- Jamie S. Ritch
- Department of Chemistry , The University of Winnipeg , 515 Portage Avenue , Winnipeg , Manitoba R3B 2E9 , Canada
| |
Collapse
|
10
|
Nesterov V, Reiter D, Bag P, Frisch P, Holzner R, Porzelt A, Inoue S. NHCs in Main Group Chemistry. Chem Rev 2018; 118:9678-9842. [PMID: 29969239 DOI: 10.1021/acs.chemrev.8b00079] [Citation(s) in RCA: 548] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since the discovery of the first stable N-heterocyclic carbene (NHC) in the beginning of the 1990s, these divalent carbon species have become a common and available class of compounds, which have found numerous applications in academic and industrial research. Their important role as two-electron donor ligands, especially in transition metal chemistry and catalysis, is difficult to overestimate. In the past decade, there has been tremendous research attention given to the chemistry of low-coordinate main group element compounds. Significant progress has been achieved in stabilization and isolation of such species as Lewis acid/base adducts with highly tunable NHC ligands. This has allowed investigation of numerous novel types of compounds with unique electronic structures and opened new opportunities in the rational design of novel organic catalysts and materials. This Review gives a general overview of this research, basic synthetic approaches, key features of NHC-main group element adducts, and might be useful for the broad research community.
Collapse
Affiliation(s)
- Vitaly Nesterov
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Dominik Reiter
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Prasenjit Bag
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Philipp Frisch
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Richard Holzner
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Amelie Porzelt
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| |
Collapse
|
11
|
Nahra F, Van Hecke K, Kennedy AR, Nelson DJ. Coinage metal complexes of selenoureas derived from N-heterocyclic carbenes. Dalton Trans 2018; 47:10671-10684. [DOI: 10.1039/c8dt01506f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The coordination chemistry of selenoureas derived from N-heterocyclic carbenes with copper and silver is explored, and compared to previous work with gold.
Collapse
Affiliation(s)
- Fady Nahra
- Department of Chemistry and Centre for Sustainable Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Alan R. Kennedy
- WestCHEM Department of Pure & Applied Chemistry
- University of Strathclyde
- Glasgow
- UK
| | - David J. Nelson
- WestCHEM Department of Pure & Applied Chemistry
- University of Strathclyde
- Glasgow
- UK
| |
Collapse
|
12
|
Rani V, Singh HB, Butcher RJ. Bis(selone) Complexes of Palladium(II), Platinum(II), and Gold(III): Synthesis and Structural Studies. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Varsha Rani
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai India
| | - Harkesh B. Singh
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai India
| | - Ray J. Butcher
- Department of Chemistry; Howard University; 525 College Street NW 20059 Washington DC USA
| |
Collapse
|