1
|
Reynes J, Leon F, García F. Mechanochemistry for Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2024; 4:432-470. [PMID: 39371328 PMCID: PMC11450734 DOI: 10.1021/acsorginorgau.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 10/08/2024]
Abstract
In recent years, mechanochemistry has become an innovative and sustainable alternative to traditional solvent-based synthesis. Mechanochemistry rapidly expanded across a wide range of chemistry fields, including diverse organic compounds and active pharmaceutical ingredients, coordination compounds, organometallic complexes, main group frameworks, and technologically relevant materials. This Review aims to highlight recent advancements and accomplishments in mechanochemistry, underscoring its potential as a viable and eco-friendly alternative to conventional solution-based methods in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Javier
F. Reynes
- Departamento
de Química Orgánica e Inorgánica. Facultad de
Química. Universidad de Oviedo. Ave. Julián Clavería
8, 33006 Oviedo, Asturias Spain
| | - Felix Leon
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Consejo Superior de Investigaciones, Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Felipe García
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
2
|
Hu L, Chakraborty S, Tumanov N, Wouters J, Robiette R, Berionni G. Regulating iminophosphorane PN bond reactivity through geometric constraints with cage-shaped triarylphosphines. Chem Commun (Camb) 2024; 60:7073-7076. [PMID: 38888188 DOI: 10.1039/d4cc01868k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Structure-reactivity investigations and quantum-chemical parametrization of steric and electronic properties of geometrically constrained iminophosphoranes enabled the design of new frustrated Lewis pairs and revealed unusual properties at the phosphonium center embedded in the cage-shaped triptycene tricyclic scaffold.
Collapse
Affiliation(s)
- Lei Hu
- Université de Namur, Department of Chemistry, Namur Institute of Structured Matter (NISM), Rue de Bruxelles 61, Namur 5000, Belgium.
- Université Catholique de Louvain, Institute of Condensed Matter and Nanosciences, Place Louis Pasteur 1 box L4.01.02, Louvain-la-Neuve 1348, Belgium.
| | - Sayandip Chakraborty
- Université de Namur, Department of Chemistry, Namur Institute of Structured Matter (NISM), Rue de Bruxelles 61, Namur 5000, Belgium.
| | - Nikolay Tumanov
- Université de Namur, Department of Chemistry, Namur Institute of Structured Matter (NISM), Rue de Bruxelles 61, Namur 5000, Belgium.
| | - Johan Wouters
- Université de Namur, Department of Chemistry, Namur Institute of Structured Matter (NISM), Rue de Bruxelles 61, Namur 5000, Belgium.
| | - Raphaël Robiette
- Université Catholique de Louvain, Institute of Condensed Matter and Nanosciences, Place Louis Pasteur 1 box L4.01.02, Louvain-la-Neuve 1348, Belgium.
| | - Guillaume Berionni
- Université de Namur, Department of Chemistry, Namur Institute of Structured Matter (NISM), Rue de Bruxelles 61, Namur 5000, Belgium.
| |
Collapse
|
3
|
Chen S, Fan C, Xu Z, Pei M, Wang J, Zhang J, Zhang Y, Li J, Lu J, Peng C, Wei X. Mechanochemical synthesis of organoselenium compounds. Nat Commun 2024; 15:769. [PMID: 38278789 PMCID: PMC10817960 DOI: 10.1038/s41467-024-44891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
We disclose herein a strategy for the rapid synthesis of versatile organoselenium compounds under mild conditions. In this work, magnesium-based selenium nucleophiles are formed in situ from easily available organic halides, magnesium metal, and elemental selenium via mechanical stimulation. This process occurs under liquid-assisted grinding (LAG) conditions, requires no complicated pre-activation procedures, and operates broadly across a diverse range of aryl, heteroaryl, and alkyl substrates. In this work, symmetrical diselenides are efficiently obtained after work-up in the air, while one-pot nucleophilic addition reactions with various electrophiles allow the comprehensive synthesis of unsymmetrical monoselenides with high functional group tolerance. Notably, the method is applied to regioselective selenylation reactions of diiodoarenes and polyaromatic aryl halides that are difficult to operate via solution approaches. Besides selenium, elemental sulfur and tellurium are also competent in this process, which showcases the potential of the methodology for the facile synthesis of organochalcogen compounds.
Collapse
Affiliation(s)
- Shanshan Chen
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Chunying Fan
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Zijian Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Mengyao Pei
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Jiemin Wang
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Jiye Zhang
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Yilei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Yanta, China
| | - Jiyu Li
- Xi'an Aisiyi Health Industry Co., Ltd, Xi'an, 710075, China
| | - Junliang Lu
- Xi'an Aisiyi Health Industry Co., Ltd, Xi'an, 710075, China
| | - Cheng Peng
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China.
| | - Xiaofeng Wei
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
4
|
Sahoo AK, Kumar Sahoo A, Das B, Panda SJ, Purohit CS, Doddi A. New cationic coinage metal complexes featuring silyl group functionalized phosphine: syntheses, structures and catalytic studies in alkyne-azide cycloaddition reactions. Dalton Trans 2023; 52:15549-15561. [PMID: 37753593 DOI: 10.1039/d3dt01692g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
A series of coinage metal complexes bearing rarely explored ortho-silylated phosphine is reported. The treatment of diphenyl(2-(trimethylsilyl)phenyl)phosphine (1) with CuCl and [Cu(CH3CN)4]BF4 furnished the corresponding neutral [(1)CuCl]2 (2) and mono-cationic [(1)2Cu(CH3CN)]BF4 (3) complexes, respectively. The reactions of 1 with AgX (X = BF4-, NO3-) in 2 : 1 ratio furnished the corresponding mono cationic dicoordinate silver(I) complexes of the type [(1)2Ag]X (X = BF4- (4a), NO3- (4b)). The ortho-silylated phosphine ligand (1) was conveniently converted into the corresponding sulfide (5a) and selenide (5b) species, and their reactions with [Cu(CH3CN)4]BF4 yielded mono-cationic, homoleptic tris(silylphosphinochalcogenide)copper(I) complexes of the type [(5a/5b)3Cu]BF4 (6a/6b). The molecular structures of 2-4 and 6 were established by single-crystal X-ray diffraction analysis. The copper complexes 2, 3, and 6a were employed as catalysts in azide-alkyne cycloaddition reactions. Among these complexes, 3 was extensively used in the preparation of various mono- and bis-triazoles consisting of tolyl, benzyl, carbazolyl, and propargylic ether groups. Three sets of substituted triazole derivatives were achieved under mild conditions by employing copper(I) catalytic systems. The mechanistic studies indicated the formation of a heteroleptic copper(I) triazolide intermediate which was detected by high-resolution mass spectral analysis.
Collapse
Affiliation(s)
- Amiya Kumar Sahoo
- Department of Chemical Sciences; Indian Institute of Science Education and Research Berhampur; Transit Campus, Industrial Training Institute (ITI); Engineering School Road, Ganjam, Odisha, 760010, India.
| | - Ashish Kumar Sahoo
- Department of Chemical Sciences; Indian Institute of Science Education and Research Berhampur; Transit Campus, Industrial Training Institute (ITI); Engineering School Road, Ganjam, Odisha, 760010, India.
| | - Bhagyashree Das
- Department of Chemical Sciences; Indian Institute of Science Education and Research Berhampur; Transit Campus, Industrial Training Institute (ITI); Engineering School Road, Ganjam, Odisha, 760010, India.
| | - Subhra Jyoti Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
| | - Adinarayana Doddi
- Department of Chemical Sciences; Indian Institute of Science Education and Research Berhampur; Transit Campus, Industrial Training Institute (ITI); Engineering School Road, Ganjam, Odisha, 760010, India.
| |
Collapse
|
5
|
Hankins RA, Carter ME, Zhu C, Chen C, Lukesh JC. Enol-mediated delivery of H 2Se from γ-keto selenides: mechanistic insight and evaluation. Chem Sci 2022; 13:13094-13099. [PMID: 36425500 PMCID: PMC9667953 DOI: 10.1039/d2sc03533b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/19/2022] [Indexed: 08/22/2024] Open
Abstract
Like hydrogen sulfide (H2S), its chalcogen congener, hydrogen selenide (H2Se), is an emerging molecule of interest given its endogenous expression and purported biological activity. However, unlike H2S, detailed investigations into the chemical biology of H2Se are limited and little is known about its innate physiological functions, cellular targets, and therapeutic potential. The obscurity surrounding these fundamental questions is largely due to a lack of small molecule donors that can effectively increase the bioavailability of H2Se through their continuous liberation of the transient biomolecule under physiologically relevant conditions. Driven by this unmet demand for H2Se-releasing moieties, we report that γ-keto selenides provide a useful platform for H2Se donation via an α-deprotonation/β-elimination pathway that is highly dependent on both pH and alpha proton acidity. These attributes afforded a small library of donors with highly variable rates of release (higher alpha proton acidity = faster selenide liberation), which is accelerated under neutral to slightly basic conditions-a feature that is unique and complimentary to previously reported H2Se donors. We also demonstrate the impressive anticancer activity of γ-keto selenides in both HeLa and HCT116 cells in culture, which is likely to stimulate additional interest and research into the biological activity and anticancer effects of H2Se. Collectively, these results indicate that γ-keto selenides provide a highly versatile and effective framework for H2Se donation.
Collapse
Affiliation(s)
- Rynne A Hankins
- Department of Chemistry, Wake Forest University Wake Downtown Campus Winston-Salem NC 27101 USA
| | - Molly E Carter
- Department of Chemistry, Wake Forest University Wake Downtown Campus Winston-Salem NC 27101 USA
| | - Changlei Zhu
- Department of Chemistry, Wake Forest University Wake Downtown Campus Winston-Salem NC 27101 USA
| | - Chen Chen
- Department of Chemistry, Wake Forest University Wake Downtown Campus Winston-Salem NC 27101 USA
| | - John C Lukesh
- Department of Chemistry, Wake Forest University Wake Downtown Campus Winston-Salem NC 27101 USA
| |
Collapse
|
6
|
Siddhartha, Rangarajan S, Kunchur HS, Balakrishna MS. A greener approach towards the synthesis of N-heterocyclic thiones and selones using the mechanochemical technique. Dalton Trans 2022; 51:15750-15761. [PMID: 36178103 DOI: 10.1039/d2dt02322a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This manuscript describes the synthesis of N-heterocyclic thiones and selones of a variety of imidazolium salts involving an eco-friendly and solventless ball-milling technique. The products have been isolated in almost quantitative yield, involving a minimum quantity of solvents only for the isolation of products by column chromatography, and in some cases for purification purposes. Both mono- and bisimidazolium salts afforded N-heterocyclic thiones and selones. The methodology is found to be superior in terms of reaction time, yield and energy efficiency as compared to conventional solution-state reactions.
Collapse
Affiliation(s)
- Siddhartha
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Shalini Rangarajan
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Harish S Kunchur
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Maravanji S Balakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
7
|
Pandey MK, Kote BS, Mondal D, Kunchur HS, Radhakrishna L, Balakrishna MS. Transition Metal Complexes of 2,6‐Dibenzhydryl Derived Bisphosphine: Synthesis, Structural Studies and Palladium Complex Promoted Suzuki‐Miyaura Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202201245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Madhusudan K. Pandey
- Phosphorus Laboratory Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Basvaraj S. Kote
- Phosphorus Laboratory Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Dipanjan Mondal
- Phosphorus Laboratory Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Harish S. Kunchur
- Phosphorus Laboratory Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Latchupatula Radhakrishna
- Phosphorus Laboratory Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Maravanji S. Balakrishna
- Phosphorus Laboratory Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| |
Collapse
|
8
|
Mondal D, Sardar G, Kabra D, Balakrishna MS. 2,2'-Bipyridine derived doubly B ← N fused bisphosphine-chalcogenides, [C 5H 3N(BF 2){NCH 2P(E)Ph 2}] 2 (E = O, S, Se): tuning of structural features and photophysical studies. Dalton Trans 2022; 51:6884-6898. [PMID: 35441638 DOI: 10.1039/d2dt00287f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2,2'-Bipyridine based bisphosphine [C5H3N{N(H)CH2PPh2}]2 (1) and its bischalcogenide derivatives [C5H3N{N(H)CH2P(E)Ph2}]2 (2, E = O; 3, E = S; 4, E = Se) were synthesized, and further reacted with BF3·Et2O/Et3N to form doubly B ← N fused compounds [C5H3N(BF2){NCH2P(E)Ph2}]2 (5, E = O; 6, E = S; 7, E = Se) in excellent yields. The influence of the PE bonds on the electronic properties of the doubly B ← N fused systems and their structural features were investigated in detail, supported by extensive experimental and computational studies. Compound 6 exhibited a very high quantum yield of ϕ = 0.56 in CH2Cl2, whereas compound 7 showed a least quantum yield of ϕ = 0.003 in acetonitrile. Density functional theory (DFT) calculations demonstrated that the LUMO/HOMO of compounds 5-7 mostly delocalized over the entire π-conjugated frameworks. The involvement of PE bonds in the HOMO energy level of these compounds follows the order: PO < PS < PSe. Time-correlated single photon counting (TCSPC) experiments of compounds 5-7 revealed the singlet lifetime of 4.26 ns for 6, followed by 4.03 ns for 5 and a lowest value of 2.18 ns (τ1) and 0.47 ns (τ2) with a double decay profile for 7. Our findings provide important strategies for the design of highly effective B ← N bridged compounds and tuning their photophysical properties by oxidizing phosphorus with different chalcogens. Compounds 5 and 6 have been employed as green emitters (λem = 515 nm) in fluorescent organic light-emitting diodes (OLEDs). For compound 5, doped into the poly(9-vinylcarbazole) (PVK) matrix with 5 wt% doping concentration, nearly 90 Cd m-2 luminance with 0.022% external quantum efficiency (EQE) was achieved. The best performance was observed for compound 6 doped into PVK by 1 wt% having a maximum luminance of 350 Cd m-2 and a similar EQE value.
Collapse
Affiliation(s)
- Dipanjan Mondal
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Gopa Sardar
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Dinesh Kabra
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Maravanji S Balakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
9
|
Convenient Synthesis of Triphenylphosphine Sulfide from Sulfur and Triphenylphosphine. CLEAN TECHNOLOGIES 2022. [DOI: 10.3390/cleantechnol4020013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Elemental sulfur (S8) was found to react very rapidly (<1 min) with a stoichiometric amount of triphenylphosphine at rt in sufficient amount of solvent (0.2–0.5 mL of solvent/1 mmol of PPh3). Compared to the previously described methods, the present procedure constitute excellent access to triphenylphosphine sulfide.
Collapse
|
10
|
Tan D, García F. Main group mechanochemistry: from curiosity to established protocols. Chem Soc Rev 2019; 48:2274-2292. [PMID: 30806391 DOI: 10.1039/c7cs00813a] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the last few decades, mechanochemistry has become rapidly established as a powerful tool enabling environmentally-benign and sustainable chemical syntheses. Not only have these techniques been demonstrated as viable alternatives to traditional solution-based syntheses, but they have also received attention for their ability to enable new reactivity and "unlocking" novel compounds inaccessible by conventional methods. Reflecting the rising popularity of mechanochemistry, many excellent reviews highlighting its benefits have recently been published. Whilst the scope of most of these focuses on organic chemistry, transition-metal catalysis, porous framework materials, coordination compounds and supramolecular synthesis, few have addressed the use of mechanochemical ball milling for the synthesis of compounds containing s- and p-block elements. This tutorial review turns the spotlight towards mechanochemical research in the field of inorganic main group chemistry, highlighting significant advantages that solid-state inorganic reactions often possess, and the potential for these to drive the development of greener methodologies within the modern main group arena.
Collapse
Affiliation(s)
- Davin Tan
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| | | |
Collapse
|
11
|
Kumar S, Mondal D, Balakrishna MS. Diverse Architectures and Luminescence Properties of Group 11 Complexes Containing Pyrimidine-Based Phosphine, N-((Diphenylphosphine)methyl)pyrimidin-2-amine. ACS OMEGA 2018; 3:16601-16614. [PMID: 31458292 PMCID: PMC6643971 DOI: 10.1021/acsomega.8b02484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/23/2018] [Indexed: 06/10/2023]
Abstract
In this article, the synthesis, structural studies, and luminescence properties of CuI, AgI, and AuI complexes of pyrimidine-based phosphine [C4H3N2-2-NH(CH2PPh2)] (1) are described. The reactions of 1 with CuX led to the isolation of one-dimensional (1D) chain, tetranuclear ladder, or cyclic derivatives. The structural features of these complexes are greatly influenced by the metal-to-ligand ratio, reaction conditions, and CuX (X = Cl, Br or I) employed. In the case of CuCl and CuBr, one-dimensional coordination polymers [{CuCl}{C4H3N2-2-NH(CH2PPh2)}]∞ (2) and [{CuBr}{C4H3N2-2-NH(CH2PPh2)}]∞ (3) were obtained, whereas CuI afforded tetracopper complex [{CuI}4{C4H3N2-2-NH(CH2PPh2)}2(NCCH3)2] (4) having Cu4 ladder structure supported by P∩N-bridging coordination of 1. The reaction of 1 with AgOTf yielded unprecedented one-dimensional chain structure [{AgOTf}{C4H3N2-2-NH(CH2PPh2)}]∞ (5), whereas the reaction with AgBF4 produced a 12-membered dinuclear complex, [{Ag}{C4H3N2-2-NH(CH2PPh2)}]2[BF4]2 (6), with each silver atom having a linear geometry. Gold complex [{AuCl}{C4H3N2-2-NH(CH2PPh2)}]2 (7) was synthesized by reacting 1 with [AuCl(SMe2)]. Compounds 2-4 were also prepared using a pestle and mortar by grinding method in almost quantitative yield. Complex 4 with a Cu···Cu distance of 2.828(5) Å shows high luminescence due to the nonbonded metal···metal interactions.
Collapse
|
12
|
Sim Y, Tan D, Ganguly R, Li Y, García F. Orthogonality in main group compounds: a direct one-step synthesis of air- and moisture-stable cyclophosphazanes by mechanochemistry. Chem Commun (Camb) 2018. [DOI: 10.1039/c8cc01043a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mechanochemistry has been established to be an environmentally-friendly way of conducting reactions in a solvent-free manner.
Collapse
Affiliation(s)
- Ying Sim
- School of Physical and Mathematical Sciences
- Division of Chemistry and Biological Chemistry
- Nanyang Technological University
- Singapore
| | - Davin Tan
- School of Physical and Mathematical Sciences
- Division of Chemistry and Biological Chemistry
- Nanyang Technological University
- Singapore
| | - Rakesh Ganguly
- School of Physical and Mathematical Sciences
- Division of Chemistry and Biological Chemistry
- Nanyang Technological University
- Singapore
| | - Yongxin Li
- School of Physical and Mathematical Sciences
- Division of Chemistry and Biological Chemistry
- Nanyang Technological University
- Singapore
| | - Felipe García
- School of Physical and Mathematical Sciences
- Division of Chemistry and Biological Chemistry
- Nanyang Technological University
- Singapore
| |
Collapse
|