1
|
Chatterjee A, Mondal P, Chakraborty P, Kumar B, Mandal S, Rizzoli C, Saha R, Adhikary B, Dey SK. Strategic Synthesis of Heptacoordinated Fe III Bifunctional Complexes for Efficient Water Electrolysis. Angew Chem Int Ed Engl 2023; 62:e202307832. [PMID: 37477221 DOI: 10.1002/anie.202307832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
In this research, highly efficient heterogeneous bifunctional (BF) electrocatalysts (ECs) have been strategically designed by Fe coordination (CR ) complexes, [Fe2 L2 (H2 O)2 Cl2 ] (C1) and [Fe2 L2 (H2 O)2 (SO4 )].2(CH4 O) (C2) where the high seven CR number synergistically modifies the electronic environment of the Fe centre for facilitation of H2 O electrolysis. The electronic status of Fe and its adjacent atomic sites have been further modified by the replacement of -Cl- in C1 by -SO4 2- in C2. Interestingly, compared to C1, the O-S-O bridged C2 reveals superior BF activity with extremely low overpotential (η) at 10 mA cm-2 (140 mVOER , 62 mVHER ) and small Tafel slope (120.9 mV dec-1 OER , 45.8 mV dec-1 HER ). Additionally, C2 also facilitates a high-performance alkaline H2 O electrolyzer with cell voltage of 1.54 V at 10 mA cm-2 and exhibits remarkable long-term stability. Thus, exploration of the intrinsic properties of metal-organic framework (MOF)-based ECs opens up a new approach to the rational design of a wide range of molecular catalysts.
Collapse
Affiliation(s)
| | - Papri Mondal
- Department of Chemistry, Indian Institution of Engineering Science and Technology, 711103, Shibpur, Howrah, India
| | - Priyanka Chakraborty
- Department of Chemistry, Sidho-Kanho-Birsha University, 723104, Purulia, WB, India
| | - Bidyapati Kumar
- Department of Chemistry, Sidho-Kanho-Birsha University, 723104, Purulia, WB, India
| | - Sourav Mandal
- Department of Chemistry, Sidho-Kanho-Birsha University, 723104, Purulia, WB, India
| | - Corrado Rizzoli
- Dipartimento S.C.V.S.A., Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Rajat Saha
- Department of Chemistry, Kazi Nazrul University, 713340, Asansol, WB, India
| | - Bibhutosh Adhikary
- Department of Chemistry, Indian Institution of Engineering Science and Technology, 711103, Shibpur, Howrah, India
| | - Subrata K Dey
- Department of Chemistry, Sidho-Kanho-Birsha University, 723104, Purulia, WB, India
| |
Collapse
|
2
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 213] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
3
|
Palo A, La Ganga G, Nastasi F, Guelfi M, Bortoluzzi M, Pampaloni G, Puntoriero F, Campagna S, Marchetti F. Unsymmetrical Dinuclear Ru
II
Complexes with Bridging Polydentate Nitrogen Ligands as Potential Water Oxidation Catalysts. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202000931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alice Palo
- Università di Pisa Dipartimento di Chimica e Chimica Industriale Via G. Moruzzi 13 56124 Pisa Italy
| | - Giuseppina La Ganga
- Università di Messina Dipartimento di Scienze Chimiche Biologiche Farmaceutiche ed Ambientali
- Interuniversitary Research Center for Artificial Photosynthesis (SOLAR-CHEM) Via F. Stagno d'Alcontres 31 98166 Messina Italy
| | - Francesco Nastasi
- Università di Messina Dipartimento di Scienze Chimiche Biologiche Farmaceutiche ed Ambientali
- Interuniversitary Research Center for Artificial Photosynthesis (SOLAR-CHEM) Via F. Stagno d'Alcontres 31 98166 Messina Italy
| | - Massimo Guelfi
- Università di Pisa Dipartimento di Chimica e Chimica Industriale Via G. Moruzzi 13 56124 Pisa Italy
| | - Marco Bortoluzzi
- Ca' Foscari Università di Venezia Dipartimento di Scienze Molecolari e Nanosistemi Via Torino 155 30170 Mestre (VE) Italy
| | - Guido Pampaloni
- Università di Pisa Dipartimento di Chimica e Chimica Industriale Via G. Moruzzi 13 56124 Pisa Italy
| | - Fausto Puntoriero
- Università di Messina Dipartimento di Scienze Chimiche Biologiche Farmaceutiche ed Ambientali
- Interuniversitary Research Center for Artificial Photosynthesis (SOLAR-CHEM) Via F. Stagno d'Alcontres 31 98166 Messina Italy
| | - Sebastiano Campagna
- Università di Messina Dipartimento di Scienze Chimiche Biologiche Farmaceutiche ed Ambientali
- Interuniversitary Research Center for Artificial Photosynthesis (SOLAR-CHEM) Via F. Stagno d'Alcontres 31 98166 Messina Italy
| | - Fabio Marchetti
- Università di Pisa Dipartimento di Chimica e Chimica Industriale Via G. Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
4
|
Li J, Triana CA, Wan W, Adiyeri Saseendran DP, Zhao Y, Balaghi SE, Heidari S, Patzke GR. Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives. Chem Soc Rev 2021; 50:2444-2485. [DOI: 10.1039/d0cs00978d] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The recent synthetic and mechanistic progress in molecular and heterogeneous water oxidation catalysts highlights the new, overarching strategies for knowledge transfer and unifying design concepts.
Collapse
Affiliation(s)
- J. Li
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - C. A. Triana
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - W. Wan
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | | | - Y. Zhao
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - S. E. Balaghi
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - S. Heidari
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - G. R. Patzke
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| |
Collapse
|
5
|
de Palo A, La Ganga G, Nastasi F, Guelfi M, Bortoluzzi M, Pampaloni G, Puntoriero F, Campagna S, Marchetti F. Ru(ii) water oxidation catalysts with 2,3-bis(2-pyridyl)pyrazine and tris(pyrazolyl)methane ligands: assembly of photo-active and catalytically active subunits in a dinuclear structure. Dalton Trans 2020; 49:3341-3352. [PMID: 32103210 DOI: 10.1039/c9dt04815d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two mononuclear Ru(ii) complexes, i.e. [RuCl(κ3N-terpy)(κ2N-dpp)]PF6 ([1]PF6; terpy = 2,2':6',2''-terpyridine; dpp = 2,3-bis(2'-pyridyl-pyrazine) and [RuCl(κ3N-tpm)(κ2N-dpp)]Cl ([2]Cl; tpm = tris(1-pyrazolyl)methane), and one dinuclear complex, i.e. [Ru2Cl(κ3N-tpm)(μ-κ2N:κ2N-dpp)Ru(κ2N-bpy)2][PF6]3 ([3][PF6]3; bpy = 2,2'-bipyridine), have been synthesized and their water oxidation catalytic properties have been investigated. A combined DFT and experimental (35Cl NMR and conductivity measurements) study aimed to elucidate the nature of [1]+ and [2]+ in aqueous solution has also been performed, indicating that one water molecule is allowed to enter the first coordination sphere of [2]+ in the ground state, replacing one tpm nitrogen. Conversely, in the case of [1]+, water coordination, assumed to be needed for the water oxidation process, presumably occurs following the oxidation of the metal. For all complexes, a catalytic wave has been detected in acetonitrile/water 1 : 1 (v/v) solution in the range 1.4-1.7 V vs. SCE. In all cases, water oxidation (investigated at pH < 8) takes place initially via a proton-coupled two-electron, two-proton process with the formation of an Ru(iv)[double bond, length as m-dash]O moiety, followed by one electron oxidation and water nucleophilic attack. The TON and TOF values (within the range of 16-33 and 1.3-2.2 h-1, respectively) of the complexes are higher than those of the benchmark [Ru(LLL)(LL)(OH2)]2+-type species (LLL and LL are tridentate and bidentate polypyridine ligands, respectively), which is [Ru(terpy)(bpm)(OH2)]2+.
Collapse
Affiliation(s)
- Alice de Palo
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|