1
|
Mechrouk V, Leforestier B, Chen W, Poblador-Bahamonde AI, Maisse-Francois A, Bellemin-Laponnaz S, Achard T. Diastereoselective Synthesis of Sulfoxide-Functionalized N-Heterocyclic Carbene Ruthenium Complexes: An Experimental and Computational Study. Chemistry 2024; 30:e202401390. [PMID: 38862385 DOI: 10.1002/chem.202401390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
The synthesis of sulfoxide-functionalized NHC ligand precursors were carried out by direct and mild oxidation from corresponding thioether precursors with high selectivity. Using these salts, a series of cationic [Ru(II)(η6-p-cymene)(NHC-SO)Cl]+ complexes were obtained in excellent yields by the classical Ag2O transmetallation route. NMR analyses suggested a chelate structure for the metal complexes, and X-ray diffractometry studies of complexes 4 b, 4 c, 4dBArF and 4 e unambiguously confirmed the preference for the bidentate (κ2-C,S) coordination mode of the NHC-SO ligands. Interestingly, only one diastereomer, in the form of an enantiomeric pair, was observed both in 1H NMR and in the solid state for the complexes. DFT calculations showed a possible intrinsic energy difference between the two pairs of diastereomer. The calculated energy barriers suggested that inversion of the sulfoxide is only plausible from the higher energy diastereomer together with bulky substituents. Inverting the configuration at the Ru center instead shows a lower and accessible activation barrier to provide the most stable diastereomer through thermodynamic control, consistent with the observation of a single species by 1H NMR as a pair of enantiomers. All these complexes catalyse the β-alkylation of secondary alcohols. Complex 4dPF6 bearing an NHC-functionalised S-Ad group has been further studied with different primary and secondary alcohols as substrates, showing high reactivity and high to moderate β-ol-selectivities.
Collapse
Affiliation(s)
- Victoria Mechrouk
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS UMR 7504, 23 rue du Loess, BP 43, 67034, Strasbourg Cedex 2, France
| | - Baptiste Leforestier
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211, Geneva, Switzerland
| | - Weighang Chen
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS UMR 7504, 23 rue du Loess, BP 43, 67034, Strasbourg Cedex 2, France
| | | | - Aline Maisse-Francois
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS UMR 7504, 23 rue du Loess, BP 43, 67034, Strasbourg Cedex 2, France
| | - Stéphane Bellemin-Laponnaz
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS UMR 7504, 23 rue du Loess, BP 43, 67034, Strasbourg Cedex 2, France
| | - Thierry Achard
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS UMR 7504, 23 rue du Loess, BP 43, 67034, Strasbourg Cedex 2, France
- New address: ISM2 (UMR 7313), Aix Marseille University, CNRS, Centrale Marseille, 52 Av. Escadrille Normandie Niemen, 13013, Marseille, France
| |
Collapse
|
2
|
Kumar S, Sharma A, Mahala S, Gaatha K, Reddy SR, Rom T, Paul AK, Roy P, Joshi H. Macrocyclic Sulfur Ligand Stabilized Trans-Palladium Dichloride Complex: Syntheses, Structure, Chlorine Rotation, and Application in α-Olefination of Nitriles by Primary Alcohols. Chem Asian J 2024; 19:e202300935. [PMID: 38116906 DOI: 10.1002/asia.202300935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Herein, we have reported the synthesis of a macrocyclic organosulfur ligand (L1) having a seventeen-membered macrocyclic ring. Subsequently, the corresponding trans-palladium complex (C1) of bulky macrocyclic organosulfur ligand (L1) was synthesized by reacting it with PdCl2 (CH3 CN)2 salt. The newly synthesized ligand and complex were characterized using various analytical and spectroscopic techniques. The complex showed a square planar geometry with trans orientation of two ligands around the palladium center. The complex possesses intramolecular SCH…Cl interactions of 2.648 Å between the macrocyclic ligand and palladium dichloride. The potential energy surface (PES) for the rotational process of C1 suggested a barrier of ~23.81 kcal/mol for chlorine rotation. Furthermore, the bulky macrocyclic organosulfur ligand stabilized palladium complex (C1) was used as a catalyst (2.5 mol %) for α-olefination of nitriles by primary alcohols. The α,β-unsaturated nitrile compounds were found to be the major product of the reaction (57-78 % yield) with broad substrate scope and large functional group tolerance. Notably, the saturated nitrile product was not observed during the reaction. The mechanistic studies suggested the formation of H2 and H2 O as only by-products of the reaction, thereby making the protocol greener and sustainable.
Collapse
Affiliation(s)
- Sunil Kumar
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Ashutosh Sharma
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Suman Mahala
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - K Gaatha
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - S Rajagopala Reddy
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Tanmay Rom
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra, 136119, India
| | - Avijit Kumar Paul
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra, 136119, India
| | - Partha Roy
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Hemant Joshi
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| |
Collapse
|
3
|
Sharma C, Kumari S, Sharma D, Srivastava AK, Joshi RK. Selenated NHC-Pd(II) Pincer Complex Catalyzed, Temperature-Dependent Selective Hydroamination and Oxidative Amination of Olefins: Formation of Enamine Esters and β-Amino Esters under Solvent-Free and Aerobic Conditions. J Org Chem 2024; 89:701-709. [PMID: 38084730 DOI: 10.1021/acs.joc.3c01706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
NHC-Pd(II) pincer catalyzed oxidative amination and hydroamination of olefins is developed under solvent-free aerobic conditions. Reaction offered a temperature-controlled synthesis of (Z)-enamine and β-amino esters to provide easy access and remarkable functional group tolerance for a variety of enamines. The developed approach renders an opportunity of scalability and flexibility, and besides this, the produced enamines can be transformed into many N-containing heterocycles, underscoring its potential usage in synthetic and pharmaceutical chemistry. Moreover, it is the first report for coupling of aniline with styrene.
Collapse
Affiliation(s)
- Charu Sharma
- Department of Chemistry Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Sangeeta Kumari
- Department of Chemistry Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Deepak Sharma
- Department of Chemistry Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Avinash K Srivastava
- Department of Chemistry Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Raj K Joshi
- Department of Chemistry Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| |
Collapse
|
4
|
Vila J, Solà M, Achard T, Bellemin-Laponnaz S, Pla-Quintana A, Roglans A. Rh(I) Complexes with Hemilabile Thioether-Functionalized NHC Ligands as Catalysts for [2 + 2 + 2] Cycloaddition of 1,5-Bisallenes and Alkynes. ACS Catal 2023; 13:3201-3210. [PMID: 36910871 PMCID: PMC9990073 DOI: 10.1021/acscatal.2c05790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/12/2023] [Indexed: 02/19/2023]
Abstract
The [2 + 2 + 2] cycloaddition of 1,5-bisallenes and alkynes under the catalysis of Rh(I) with hemilabile thioether-functionalized N-heterocyclic carbene ligands is described. This protocol effectively provides an entry to different trans-5,6-fused bicyclic systems with two exocyclic double bonds in the cyclohexene ring. The process is totally chemoselective with the two internal double bonds of the 1,5-bisallenes being involved in the cycloaddition. The complete mechanism of this transformation as well as the preference for the trans-fusion over the cis-fusion has been rationalized by density functional theory calculations. The reaction follows a typical [2 + 2 + 2] cycloaddition mechanism. The oxidative addition takes place between the alkyne and one of the allenes and it is when the second allene is inserted into the rhodacyclopentene that the trans-fusion is generated. Remarkably, the hemilabile character of the sulfur atom in the N-heterocyclic carbene ligand modulates the electron density in key intermediates, facilitating the overall transformation.
Collapse
Affiliation(s)
- Jordi Vila
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Facultat de Ciències, Universitat de Girona (UdG), C/Maria Aurèlia Capmany, 69, Girona, 17003 Catalunya, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Facultat de Ciències, Universitat de Girona (UdG), C/Maria Aurèlia Capmany, 69, Girona, 17003 Catalunya, Spain
| | - Thierry Achard
- Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS-Université de Strasbourg, UMR7504, 23 Rue du Loess BP 43, 67034 Strasbourg, France
| | - Stéphane Bellemin-Laponnaz
- Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS-Université de Strasbourg, UMR7504, 23 Rue du Loess BP 43, 67034 Strasbourg, France
| | - Anna Pla-Quintana
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Facultat de Ciències, Universitat de Girona (UdG), C/Maria Aurèlia Capmany, 69, Girona, 17003 Catalunya, Spain
| | - Anna Roglans
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Facultat de Ciències, Universitat de Girona (UdG), C/Maria Aurèlia Capmany, 69, Girona, 17003 Catalunya, Spain
| |
Collapse
|
5
|
Sharma D, Tomar V, Sharma C, Nemiwal M, Joshi RK. Direct amidation of ferrocenyl/ phenyl β-chlorocinnamaldehyde assisted by chalcogenide metal carbonyl cluster. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Arora A, Oswal P, Sharma D, Tyagi A, Purohit S, Sharma P, Kumar A. Molecular Organosulphur, Organoselenium and Organotellurium Complexes as Homogeneous Transition Metal Catalytic Systems for Suzuki Coupling. ChemistrySelect 2022. [DOI: 10.1002/slct.202201704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Aayushi Arora
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Preeti Oswal
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Deepali Sharma
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Anupma Tyagi
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Suraj Purohit
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Pankaj Sharma
- Instituto de Química National Autonomous University of Mexico (UNAM) Circuito Exterior Mexico 04510
| | - Arun Kumar
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| |
Collapse
|
7
|
Sharma D, Tomar V, Sharma C, Nemiwal M, Joshi RK. Direct Amidation of Ferrocenyl/ Phenyl β- Chlorocinnamaldehyde Assisted by Chalcogenide Metal Carbonyl Cluster. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Souri SM, Eidi E, Kassaee MZ. Efficient Suzuki coupling over novel magnetic nanoparticle: Fe 3O 4/L-(+)-tartaric acid/Pd(0). Mol Divers 2022:10.1007/s11030-022-10507-4. [PMID: 36001224 DOI: 10.1007/s11030-022-10507-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
A new eco-friendly catalytic system is devised for C-C bond formation through Suzuki coupling, using an impressive nanocatalyst (Fe3O4/L-(+)-tartaric acid/Pd-NPs). It contains immobilized palladium (0) onto magnetite nanoparticles, stabilized by tartaric acid, and is characterized by FT-IR, XRD, EDS, SEM, TEM, TGA, and VSM. The catalyst is used in an efficient synthesis of biaryls in EtOH/H2O (1:1), in the presence of K2CO3. Our Fe3O4/tartaric acid/Pd-NPs exhibit magnetic recoverability and reusability for five cycles without measurable loss of its activity.
Collapse
Affiliation(s)
| | - Esmaiel Eidi
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
9
|
Nair PP, Jayaraj A, Swamy P CA. Recent Advances in Benzimidazole Based NHC‐Metal Complex Catalysed Cross‐Coupling Reactions**. ChemistrySelect 2022. [DOI: 10.1002/slct.202103517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Pravya P. Nair
- Main group Organometallics Materials Supramolecular Chemistry and Catalysis lab Department of Chemistry National Institute of Technology Calicut 673601 India
- Institute for Integrated programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
| | - Anjitha Jayaraj
- Main group Organometallics Materials Supramolecular Chemistry and Catalysis lab Department of Chemistry National Institute of Technology Calicut 673601 India
| | - Chinna Ayya Swamy P
- Main group Organometallics Materials Supramolecular Chemistry and Catalysis lab Department of Chemistry National Institute of Technology Calicut 673601 India
| |
Collapse
|
10
|
Kumar P, Tomar V, Kumar D, Joshi RK, Nemiwal M. Magnetically active iron oxide nanoparticles for catalysis of organic transformations: A review. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Xianghui M, Liangru Y, Qilin L, Zhenhua D, Jinwei Y, Yongmei X, Pu M. Amide Functionalized Pyridine/Pyrimidine Chelating N-Heterocyclic Carbene Palladium Complexes: Synthesis, Structure, and Catalysis for C-5 Arylation of Imidazoles. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Halligudra G, Paramesh CC, Mudike R, Ningegowda M, Rangappa D, Shivaramu PD. Pd II on Guanidine-Functionalized Fe 3O 4 Nanoparticles as an Efficient Heterogeneous Catalyst for Suzuki-Miyaura Cross-Coupling and Reduction of Nitroarenes in Aqueous Media. ACS OMEGA 2021; 6:34416-34428. [PMID: 34963927 PMCID: PMC8697406 DOI: 10.1021/acsomega.1c04528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/26/2021] [Indexed: 05/27/2023]
Abstract
This paper presents guanidine-functionalized Fe3O4 magnetic nanoparticle-supported palladium (II) (Fe3O4@Guanidine-Pd) as an effective catalyst for Suzuki-Miyaura cross-coupling of aryl halides using phenylboronic acids and also for selective reduction of nitroarenes to their corresponding amines. Fe3O4@Guanidine-Pd synthesized is well characterized using FT-IR spectroscopy, XRD, SEM, TEM, EDX, thermal gravimetric analysis, XPS, inductively coupled plasma-optical emission spectroscopy, and vibrating sample magnetometry analysis. The prepared Fe3O4@Guanidine-Pd showed effective catalytic performance in the Suzuki-Miyaura coupling reactions by converting aryl halides to their corresponding biaryl derivatives in an aqueous environment in a shorter reaction time and with a meagerly small amount of catalyst (0.22 mol %). Also, the prepared Fe3O4@Guanidine-Pd effectively reduced nitroarenes to their corresponding amino derivatives in aqueous media at room temperature with a high turnover number and turnover frequency with the least amount of catalyst (0.13 mol %). The most prominent feature of Fe3O4@Guanidine-Pd as a catalyst is the ease of separation of the catalyst from the reaction mixture after the reaction with the help of an external magnet with good recovery yield and also reuse of the recovered catalyst for a few cycles without significant loss in its catalytic activity.
Collapse
Affiliation(s)
- Guddappa Halligudra
- Department
of Applied Sciences, Center for Postgraduate Studies, Visvesvaraya Technological University, Bengaluru Region, Muddenahalli, Chikkaballapur District 562 101, India
| | - Chitrabanu C. Paramesh
- Department
of Applied Sciences, Center for Postgraduate Studies, Visvesvaraya Technological University, Bengaluru Region, Muddenahalli, Chikkaballapur District 562 101, India
| | - Ravi Mudike
- Department
of Applied Sciences, Center for Postgraduate Studies, Visvesvaraya Technological University, Bengaluru Region, Muddenahalli, Chikkaballapur District 562 101, India
- Solar
Resource Assessment Division, National Institute
of Solar Energy, Gwal Pahari, Gurugram 122 003, Haryana, India
| | - Mallesha Ningegowda
- SRI
RAM CHEM, R & D Centre, Plot No. 31, JCK Industrial Park, Belagola Industrial Area, Mysore 570016, India
| | - Dinesh Rangappa
- Department
of Applied Sciences, Center for Postgraduate Studies, Visvesvaraya Technological University, Bengaluru Region, Muddenahalli, Chikkaballapur District 562 101, India
| | - Prasanna D. Shivaramu
- Department
of Applied Sciences, Center for Postgraduate Studies, Visvesvaraya Technological University, Bengaluru Region, Muddenahalli, Chikkaballapur District 562 101, India
| |
Collapse
|
13
|
De Marco R, Dal Grande M, Baron M, Orian L, Graiff C, Achard T, Bellemin‐Laponnaz S, Pöthig A, Tubaro C. Synthesis, Structural Characterization and Antiproliferative Activity of Gold(I) and Gold(III) Complexes Bearing Thioether‐Functionalized N‐Heterocyclic Carbenes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Riccardo De Marco
- Dipartimento di Scienze Chimiche Università degli Studi di Padova via Marzolo 1 35131 Padova Italy
- Institut de Physique et Chimie des Matériaux de Strasbourg CNRS-Université de Strasbourg UMR7504 23 rue du Loess BP 43, 67034 Strasbourg France
| | - Marco Dal Grande
- Dipartimento di Scienze Chimiche Università degli Studi di Padova via Marzolo 1 35131 Padova Italy
| | - Marco Baron
- Dipartimento di Scienze Chimiche Università degli Studi di Padova via Marzolo 1 35131 Padova Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche Università degli Studi di Padova via Marzolo 1 35131 Padova Italy
| | - Claudia Graiff
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale Università degli Studi di Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Thierry Achard
- Institut de Physique et Chimie des Matériaux de Strasbourg CNRS-Université de Strasbourg UMR7504 23 rue du Loess BP 43, 67034 Strasbourg France
| | - Stéphane Bellemin‐Laponnaz
- Institut de Physique et Chimie des Matériaux de Strasbourg CNRS-Université de Strasbourg UMR7504 23 rue du Loess BP 43, 67034 Strasbourg France
| | - Alexander Pöthig
- Department of Chemistry & Catalysis Research Center Technische Universität München Ernst-Otto-Fischer-Straße 1 Garching bei München 85748 Germany
| | - Cristina Tubaro
- Dipartimento di Scienze Chimiche Università degli Studi di Padova via Marzolo 1 35131 Padova Italy
| |
Collapse
|
14
|
Kumari S, Sharma C, Srivastava AK, Satrawala N, Sharma KN, Joshi RK. Half‐Sandwich (η
6
‐Benzene)Ruthenium(II) Complex of Picolyl Functionalized N‐Heterocyclic Carbene as an Efficient Catalyst for Thioether Directed C−H Alkenylation of Arenes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sangeeta Kumari
- Department of Chemistry Malaviya National Institute of Technology Jaipur, Rajasthan 302017 India
| | - Charu Sharma
- Department of Chemistry Malaviya National Institute of Technology Jaipur, Rajasthan 302017 India
| | - Avinash K. Srivastava
- Department of Chemistry Malaviya National Institute of Technology Jaipur, Rajasthan 302017 India
| | - Naveen Satrawala
- Department of Chemistry Malaviya National Institute of Technology Jaipur, Rajasthan 302017 India
| | - Kamal N. Sharma
- Department of Chemistry Malaviya National Institute of Technology Jaipur, Rajasthan 302017 India
| | - Raj K. Joshi
- Department of Chemistry Malaviya National Institute of Technology Jaipur, Rajasthan 302017 India
| |
Collapse
|
15
|
Chauhan RS, Nagar S, Chatterjee S, Goswami D, Cordes DB, Slawin AMZ, Tawde T. Synthesis of Palladium complexes derived from Amido linked N‐Heterocyclic Carbenes and their use in Suzuki cross coupling reactions. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rohit Singh Chauhan
- Department of Chemistry K. J. Somaiya College of Science & Commerce Mumbai 400077
| | - Suryakant Nagar
- Department of Chemistry K. J. Somaiya College of Science & Commerce Mumbai 400077
| | - Sucheta Chatterjee
- Bio-Organic Division Bhabha Atomic Research Centre, Anushakti Nagar Mumbai 400094
| | - Dibakar Goswami
- Bio-Organic Division Bhabha Atomic Research Centre, Anushakti Nagar Mumbai 400094
- HomiBhabha National Institute Training School Complex, Anushakti Nagar Mumbai 400094 India
| | - David B. Cordes
- East CHEM School of Chemistry University of St Andrews St Andrews, Fife KY16 9ST
| | | | - Trupti Tawde
- Department of Chemistry K. J. Somaiya College of Science & Commerce Mumbai 400077
| |
Collapse
|
16
|
Arora A, Oswal P, Kumar Rao G, Kumar S, Kumar A. Organoselenium ligands for heterogeneous and nanocatalytic systems: development and applications. Dalton Trans 2021; 50:8628-8656. [PMID: 33954317 DOI: 10.1039/d1dt00082a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Organoselenium ligands have attracted great attention among researchers during the past two decades. Various homogeneous, heterogeneous and nanocatalytic systems have been designed using such ligands. Although reports on selenium ligated homogeneous catalysts are quite high in number, significant work has also been done on the development of heterogeneous and nanocatalytic systems using organoselenium ligands. A review article, focusing on the utility of organoselenium compounds in the development of catalytic systems, was published in 2012 (A. Kumar, G. K. Rao, F. Saleem and A. K. Singh, Dalton Trans., 2012, 41, 11949). Moreover, it mainly covered the homogeneous catalysts. There are no review articles in the literature on heterogeneous and nanocatalytic systems designed using organoselenium compounds and their applications. Hence, this perspective aims to cover the developments pertaining to the synthetic aspects of such catalytic systems (using organoselenium compounds) and their applications in catalysis of a variety of chemical transformations. Salient features and advantages of organoselenium compounds have also been highlighted to justify the rationale behind their use in catalyst development. Their performance in various chemical transformations [viz. Suzuki-Miyaura coupling, Heck coupling, Sonogashira coupling, O-arylation of phenol, transfer hydrogenation of aldehydes and ketones, aldehyde-alkyne-amine (A3) coupling, hydration of nitriles, conversion of aldehydes to amides, cross-dehydrogenative coupling (CDC), photodegradation of substrates (formic acid, methylene blue), reduction of nitrophenols, electrolysis (hydrogen evolution reaction and oxygen reduction reactions), organocatalysis and dye sensitized solar cells] and relevant aspects of catalytic processes (such as recyclability, substrate scope and green aspects) have been critically analyzed. Future perspectives have also been discussed.
Collapse
Affiliation(s)
- Aayushi Arora
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, Uttarakhand 248012, India.
| | - Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, Uttarakhand 248012, India.
| | - Gyandshwar Kumar Rao
- Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana (AUH), Gurgaon, Haryana 122413, India
| | - Sushil Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, Uttarakhand 248012, India.
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, Uttarakhand 248012, India.
| |
Collapse
|
17
|
Tomar V, Upadhyay Y, Srivastava AK, Nemiwal M, Joshi RK, Mathur P. Selenated NHC-Pd(II) catalyzed Suzuki-Miyaura coupling of ferrocene substituted β-chloro-cinnamaldehydes, acrylonitriles and malononitriles for the synthesis of novel ferrocene derivatives and their solvatochromic studies. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Khandaka H, Sharma KN, Joshi RK. Aerobic Cu and amine free Sonogashira and Stille couplings of aryl bromides/chlorides with a magnetically recoverable Fe3O4@SiO2 immobilized Pd(II)-thioether containing NHC. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Sharma C, Srivastava AK, Soni A, Kumari S, Joshi RK. CO-free, aqueous mediated, instant and selective reduction of nitrobenzene via robustly stable chalcogen stabilised iron carbonyl clusters (Fe 3E 2(CO) 9, E = S, Se, Te). RSC Adv 2020; 10:32516-32521. [PMID: 35516488 PMCID: PMC9056603 DOI: 10.1039/d0ra04491a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/08/2020] [Indexed: 11/21/2022] Open
Abstract
Highly stable and thermally robust iron chalcogenide carbonyl clusters Fe3E2(CO)9 (E = S, Se or Te) have been explored for the reduction of nitrobenzene. A 15 min thermal heating of an aqueous solution of nitrobenzene and hydrazine hydrate in the catalytic presence of Fe3E2(CO)9 (E = S, Se or Te) clusters yield average to excellent aniline transformations. Among the S, Se and Te based iron chalcogenised carbonyl clusters, the diselenide cluster was found to be most efficient and produce almost 90% yield of the desired amino product, the disulfide cluster was also found to be significantly active, produce the 85% yield of amino product, while the ditelluride cluster was not found to be active and produced only 49% yield of the desired product. The catalyst can be reused up to three catalytic cycles and it needs to be dried in an oven for one hour prior to reuse for the best results. The developed method is inexpensive, environmentally benign, does not require any precious metal or a high pressure of toxic CO gas and exclusively brings the selective reduction of the nitro group under feasible and inert free conditions. In this study, a strongly feasible method for the reduction of nitrobenzene has been developed through highly stable and thermally robust iron chalcogenide carbonyl clusters Fe3E2(CO)9 (E = S, Se or Te).![]()
Collapse
Affiliation(s)
- Charu Sharma
- Department of Chemistry, Malaviya National Institute of Technology Jaipur 302017 Rajasthan India
| | - Avinash Kumar Srivastava
- Department of Chemistry, Malaviya National Institute of Technology Jaipur 302017 Rajasthan India
| | - Aditi Soni
- Department of Chemistry, Malaviya National Institute of Technology Jaipur 302017 Rajasthan India
| | - Sangeeta Kumari
- Department of Chemistry, Malaviya National Institute of Technology Jaipur 302017 Rajasthan India
| | - Raj Kumar Joshi
- Department of Chemistry, Malaviya National Institute of Technology Jaipur 302017 Rajasthan India
| |
Collapse
|
20
|
4-Amino-1,2,4-triazoles-3-thiones and 1,3,4-oxadiazoles-2-thiones·palladium(II) recoverable complexes as catalysts in the sustainable Suzuki-Miyaura cross-coupling reaction. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Sharma C, Srivastava AK, Sharma KN, Joshi RK. Half-sandwich (η 5-Cp*)Rh(iii) complexes of pyrazolated organo-sulfur/selenium/tellurium ligands: efficient catalysts for base/solvent free C-N coupling of chloroarenes under aerobic conditions. Org Biomol Chem 2020; 18:3599-3606. [PMID: 32347877 DOI: 10.1039/d0ob00538j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new pyrazolated chalcogenoether ligated Rh(iii) half-sandwich complexes (1-3) were synthesised by the thermal reaction of chalcogenoether (S, Se and Te) substituted 1H-pyrazole ligands (L1-L3) and [(η5-C5Me5)RhCl]2 in methanol. The complexes were fully characterised by various spectroscopic techniques, and the molecular structures of complexes 1 and2 were also established through single crystal X-ray crystallographic analysis, which indicates a pseudo-octahedral half-sandwich piano-stool geometry around the rhodium metal. All three complexes were found to be thermally stable and insensitive towards air and moisture. One mol% of Rh(iii) complexes (1-3) along with 10 mol% of Cu(OAc)2 were explored for the Buchwald-Hartwig type C-N coupling reactions of amine and aryl chloride. Good to excellent yields (89-92%) of the coupling products were obtained with seleno- and thio-ether functionalised pyrazolated Rh(iii) complexes (1 and 2), while an average yield (39%) was obtained with the telluro-ether functionalised complex (3). In contrast to the previously reported C-N coupling reactions the present reaction works under solvent- and base-free conditions, and the coupling reaction is accomplished in just 6 h with a high yield of the coupling product. The present methodology was also found to be efficient for a wide variety of functionalised aryl halides, and aliphatic or aromatic amines (1° and 2°). Moreover, the reaction also enables the C-N coupling of electron-withdrawing substrates and base-sensitive functionalities.
Collapse
Affiliation(s)
- Charu Sharma
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur - 302017, Rajasthan, India.
| | | | | | | |
Collapse
|
22
|
Bhatt R, Bhuvanesh N, Sharma KN, Joshi H. Palladium Complexes of Thio/Seleno-Ether Containing N
-Heterocyclic Carbenes: Efficient and Reusable Catalyst for Regioselective C-H Bond Arylation. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ramprasad Bhatt
- Department of Chemistry; Birla Institute of Technology and Science; Pilani Campus 333031 Pilani India
| | - Nattamai Bhuvanesh
- Department of Chemistry; Texas A&M University; PO Box 30012 College Station 77842-3012 Texas USA
| | - Kamal Nayan Sharma
- Department of Chemistry; Malaviya National Institute of Technology Jaipur; J.L.N. Marg 302017 Jaipur Rajasthan India
- Department of Chemistry; ASAS, Amity University Haryana (AUH); Manesar; 122413 Gurgaon India
| | - Hemant Joshi
- Department of Chemistry; School of Chemical Sciences and Pharmacy; Central University of Rajasthan; NH-8, Bandarsindri 305817 Ajmer Rajasthan India
| |
Collapse
|
23
|
Reddy MVK, Anusha G, Reddy PVG. Sterically enriched bulky 1,3-bis(N,N′-aralkyl)benzimidazolium based Pd-PEPPSI complexes for Buchwald–Hartwig amination reactions. NEW J CHEM 2020. [DOI: 10.1039/d0nj01294g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A simple and efficient synthesis of a series of unexisting Pd-PEPPSI complexes is summarized. These complexes are exploited for their high catalytic activity towards Buchwald–Hartwig amination.
Collapse
|
24
|
Khosravi F, Gholinejad M, Lledó D, Grindlay G, Nájera C, Sansano JM. 1-Butyl-3-methyl-2-(diphenylphosphino)imidazalolium hexafluorophosphate as an efficient ligand for recoverable palladium-catalyzed Suzuki-Miyaura reaction in neat water. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Rajendran A, Rajendiran M, Yang ZF, Fan HX, Cui TY, Zhang YG, Li WY. Functionalized Silicas for Metal-Free and Metal-Based Catalytic Applications: A Review in Perspective of Green Chemistry. CHEM REC 2019; 20:513-540. [PMID: 31631504 DOI: 10.1002/tcr.201900056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/23/2019] [Indexed: 12/20/2022]
Abstract
Heterogeneous catalysis plays a key role in promoting green chemistry through many routes. The functionalizable reactive silanols highlight silica as a beguiling support for the preparation of heterogeneous catalysts. Metal active sites anchored on functionalized silica (FS) usually demonstrate the better dispersion and stability due to their firm chemical interaction with FSs. Having certain functional groups in structure, FSs can act as the useful catalysts for few organic reactions even without the need of metal active sites which are termed as the covetous reusable organocatalysts. Magnetic FSs have laid the platform where the effortless recovery of catalysts is realized just using an external magnet, resulting in the simplified reaction procedure. Using FSs of multiple functional groups, we can envisage the shortened reaction pathway and, reduced chemical uses and chemical wastes. Unstable bio-molecules like enzymes have been stabilized when they get chemically anchored on FSs. The resultant solid bio-catalysts exhibited very good reusability in many catalytic reactions. Getting provoked from the green chemistry aspects and benefits of FS-based catalysts, we confer the recent literature and progress focusing on the significance of FSs in heterogeneous catalysis. This review covers the preparative methods, types and catalytic applications of FSs. A special emphasis is given to the metal-free FS catalysts, multiple FS-based catalysts and magnetic FSs. Through this review, we presume that the contribution of FSs to green chemistry can be well understood. The future perspective of FSs and the improvements still required for implementing FS-based catalysts in practical applications have been narrated at the end of this review.
Collapse
Affiliation(s)
- Antony Rajendran
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Marimuthu Rajendiran
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India
| | - Zhi-Fen Yang
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Hong-Xia Fan
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Tian-You Cui
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Ya-Gang Zhang
- Department of Chemistry and Chemical Engineering, Xi'an University of Technology, Xi'an, 710054, PR China
| | - Wen-Ying Li
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China.,Department of Chemistry and Chemical Engineering, Xi'an University of Technology, Xi'an, 710054, PR China
| |
Collapse
|
26
|
Samiee S, Shiralinia A, Hoveizi E, Gable RW. Mono‐ and dinuclear oxime palladacycles bearing diphosphine ligands: An unusual coordination mode for dppe. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sepideh Samiee
- Department of Chemistry, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz Iran
| | - Ahmadreza Shiralinia
- Department of Chemistry, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz Iran
| | - Robert W. Gable
- School of ChemistryUniversity of Melbourne Victoria 3010 Australia
| |
Collapse
|
27
|
Polymeric microsphere-loaded palladium-iminodiacetic acid complex as an efficient and easily recycled catalyst for Suzuki reaction in ionic liquid. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03738-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Sharma KN, Satrawala N, Srivastava AK, Ali M, Joshi RK. Palladium(ii) ligated with a selenated (Se, CNHC, N−)-type pincer ligand: an efficient catalyst for Mizoroki–Heck and Suzuki–Miyaura coupling in water. Org Biomol Chem 2019; 17:8969-8976. [DOI: 10.1039/c9ob01674k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
First Pd(ii) complex of a novel (Se, CNHC, N−) type pincer ligand based on selenated NHC was synthesized and found to be very efficient in the catalysis of Mizoroki–Heck coupling of ArCl/Br and Suzuki–Miyaura coupling of ArBr in water.
Collapse
Affiliation(s)
- Kamal Nayan Sharma
- Department of Chemistry
- Malaviya National Institute of Technology Jaipur
- Jaipur 302017
- India
| | - Naveen Satrawala
- Department of Chemistry
- Malaviya National Institute of Technology Jaipur
- Jaipur 302017
- India
| | | | - Munsaf Ali
- Department of Chemistry
- Malaviya National Institute of Technology Jaipur
- Jaipur 302017
- India
| | - Raj Kumar Joshi
- Department of Chemistry
- Malaviya National Institute of Technology Jaipur
- Jaipur 302017
- India
| |
Collapse
|
29
|
(η6-Benzene)Ru(II) half-sandwich complexes of pyrazolated chalcogenoethers for catalytic activation of aldehydes to amides transformation. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.09.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Nasrollahzadeh M. Advances in Magnetic Nanoparticles-Supported Palladium Complexes for Coupling Reactions. Molecules 2018; 23:E2532. [PMID: 30287773 PMCID: PMC6222409 DOI: 10.3390/molecules23102532] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 11/28/2022] Open
Abstract
Carbon‒carbon (C‒C) and carbon‒heteroatom (C‒X) bonds that form via transition-metal-catalyzed processes have been extensively used in the organic synthesis and preparation of natural products and important compounds such as heterocycles, biologically active molecules, and dendrimers. Among the most significant catalysts, magnetic nanoparticles-supported palladium complexes are very effective, versatile, and heterogeneous catalysts for a wide range of C‒C and C‒X coupling reactions due to their reusability, thermal stability, and excellent catalytic performance. In this review, recent advances to develop magnetic nanoparticles supported palladium complexes, including their preparation, characterization, catalytic application, and reusability in the formation of both C‒C and C‒X bonds, by authors such as Sonogashira, Heck, Suzuki‒Miyaura, and Stille, and a few examples concerning N-arylation, S-arylation, and Csp2-P coupling reactions are discussed.
Collapse
|
31
|
Ulm F, Poblador-Bahamonde AI, Choppin S, Bellemin-Laponnaz S, Chetcuti MJ, Achard T, Ritleng V. Synthesis, characterization, and catalytic application in aldehyde hydrosilylation of half-sandwich nickel complexes bearing (κ1-C)- and hemilabile (κ2-C,S)-thioether-functionalised NHC ligands. Dalton Trans 2018; 47:17134-17145. [DOI: 10.1039/c8dt03882a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ni complexes bearing thioether-functionalised NHCs; hemilabile ligands for catalytic aldehyde hydrosilylation.
Collapse
Affiliation(s)
- Franck Ulm
- Université de Strasbourg
- Université de Haute-Alsace
- CNRS
- LIMA
- UMR 7042
| | | | - Sabine Choppin
- Université de Strasbourg
- Université de Haute-Alsace
- CNRS
- LIMA
- UMR 7042
| | - Stéphane Bellemin-Laponnaz
- Institut de Physique et Chimie des Matériaux de Strasbourg
- CNRS
- Université de Strasbourg
- UMR 7504
- 67000 Strasbourg
| | | | - Thierry Achard
- Institut de Physique et Chimie des Matériaux de Strasbourg
- CNRS
- Université de Strasbourg
- UMR 7504
- 67000 Strasbourg
| | - Vincent Ritleng
- Université de Strasbourg
- Université de Haute-Alsace
- CNRS
- LIMA
- UMR 7042
| |
Collapse
|