1
|
Boegli MC, Coffinet A, Bijani C, Simonneau A. Seven-Coordinate Group 6 Metal Hydrides Obtained by H 2 Activation at B(C 6F 5) 3 Adducts of N 2 Complexes: Frustrated Lewis Pair-Type Reactivity of The B-N Linkage. Chem Asian J 2024; 19:e202400451. [PMID: 38864406 DOI: 10.1002/asia.202400451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
The adducts 2M,R of general formula trans-[(L)M{R2P(CH2)2PR2}2{N2B(C6F5)3}] (L=ø or N2, M=Mo or W, R=Et or Ph), formed from Lewis acid-base pairing of B(C6F5)3 to a dinitrogen ligand of zero-valent group 6 bis(phosphine) complexes trans-[M{R2P(CH2)2PR2}2(N2)2] are shown to react with dihydrogen to afford hepta-coordinated bis(hydride) complexes [M(H)2{R2P(CH2)2PR2}{N2B(C6F5)3}] 3M,R which feature the rare ability to activate both dinitrogen and dihydrogen at a single metal center, except in the case where M=Mo and R=Ph for which fast precipitation of insoluble [Mo(H)4(dppe)2] (dppe=1,2-bis(diphenylphosphino)ethane) occurs. The frustrated Lewis pair (FLP)-related reactivity of the B-N linkage in compounds 3W,R was explored and led to distal N functionalization without involvement of the hydride ligands. It is shown in one example that the resulting bis(hydride) diazenido compounds may also be obtained through a sequence involving first FLP-type N-functionalization followed by oxidative addition of H2. Those oily compounds were found to have limited stability in solution or in their isolated states. Finally, treatment of 3W,Et with the Lewis base N,N-dimethylaminopyridine (DMAP) affords the simple but unknown bis(hydride)-dinitrogen species [W(H)2(depe)2(N2)] 11Et (depe=1,2-bis(diethylphosphino)ethane) which direct, selective formation from trans-[W(N2)2(depe)2] is not possible.
Collapse
Affiliation(s)
- Marie-Christine Boegli
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077, Toulouse cedex 4, France
| | - Anaïs Coffinet
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077, Toulouse cedex 4, France
| | - Christian Bijani
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077, Toulouse cedex 4, France
| | - Antoine Simonneau
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077, Toulouse cedex 4, France
| |
Collapse
|
2
|
Hendi Z, Pandey MK, Kushvaha SK, Roesky HW. Recent progress in transition metal complexes featuring silylene as ligands. Chem Commun (Camb) 2024; 60:9483-9512. [PMID: 39119696 DOI: 10.1039/d4cc01930j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Silylenes, divalent silicon(II) compounds, once considered highly reactive and transient species, are now widely employed as stable synthons in main-group and coordination chemistry for myriad applications. The synthesis of stable silylenes represents a major breakthrough, which led to extensive exploration of silylenes in stabilizing low-valent main-group elements and as versatile ligands in coordination chemistry and catalysis. In recent years, the exploration of transition metal complexes stabilized with silylene ligands has captivated significant research attention. This is due to their robust σ-donor characteristics and capacity to stabilize transition metals in low valent states. It has also been demonstrated that the transition metal complexes of silylenes are effective catalysts for hydroboration, hydrosilylation, hydrogenation, hydrogen isotope exchange reactions, and small molecule activation chemistry. This review article focuses on the recent progress in the synthesis and catalytic application of transition metal complexes of silylenes.
Collapse
Affiliation(s)
- Zohreh Hendi
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| | - Madhusudan K Pandey
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| | - Saroj Kumar Kushvaha
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| |
Collapse
|
3
|
Jain S, Danovich D, Shaik S. Dinitrogen Activation within Frustrated Lewis Pairs Is Promoted by Adding External Electric Fields. J Phys Chem A 2024; 128:4595-4604. [PMID: 38775015 DOI: 10.1021/acs.jpca.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This study uses computational means to explore the feasibility of N2 cleavage by frustrated Lewis pair (FLPs) species. The employed FLP systems are phosphane/borane (1) and carbene/borane (2). Previous studies show that 1 and 2 react with H2 and CO2 but do not activate N2. The present study demonstrates that N2 is indeed inert, and its activation requires augmentation of the FLPs by an external tool. As we demonstrate here, FLP-mediated N2 activation can be achieved by an external electric field oriented along the reaction axis of the FLP. Additionally, the study demonstrates that FLP -N2 activation generates useful nitrogen compound, e.g., hydrazine (H2N-NH2). In summary, we conclude that FLP effectively activates N2 in tandem with oriented external electric fields (OEEFs), which play a crucial role. This FLP/OEEF combination may serve as a general activator of inert molecules.
Collapse
Affiliation(s)
- Shailja Jain
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - David Danovich
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
4
|
Specklin D, Boegli MC, Coffinet A, Escomel L, Vendier L, Grellier M, Simonneau A. An orbitally adapted push-pull template for N 2 activation and reduction to diazene-diide. Chem Sci 2023; 14:14262-14270. [PMID: 38098710 PMCID: PMC10718075 DOI: 10.1039/d3sc04390h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023] Open
Abstract
A Lewis superacidic bis(borane) C6F4{B(C6F5)2}2 was reacted with tungsten N2-complexes [W(N2)2(R2PCH2CH2PR2)2] (R = Ph or Et), affording zwitterionic boryldiazenido W(ii) complexes trans-[W(L)(R2PCH2CH2PR2)2(N2{B(C6F5)2(C6F4B(C6F5)3})] (L = ø, N2 or THF). These compounds feature only one N-B linkage of the covalent type, as a result of intramolecular boron-to-boron C6F5 transfer. Complex trans-[W(THF)(Et2PCH2CH2PEt2)2(N2{B(C6F5)2C6F4B(C6F5)3})] (5) was shown to split H2, leading to a seven-coordinate complex [W(H)2(Et2PCH2CH2PEt2)2(N2{B(C6F5)2}2C6F4)] (7). Interestingly, hydride storage at the metal triggers backward C6F5 transfer. This reverts the bis(boron) moiety to its bis(borane) state, now doubly binding the distal N, with structural parameters and DFT computations pointing to dative N→B bonding. By comparison with an N2 complex [W(H)2(Et2PCH2CH2PEt2)2(N2{B(C6F5)3}] (10) differing only in the Lewis acid (LA), namely B(C6F5)3, coordinated to the distal N, we demonstrate that two-fold LA coordination imparts strong N2 activation up to the diazene-diide (N22-) state. To the best of our knowledge, this is the first example of a neutral LA coordination that induces reduction of N2.
Collapse
Affiliation(s)
- David Specklin
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 route de Narbonne BP44099 F-31077 Toulouse Cedex 4 France
| | - Marie-Christine Boegli
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 route de Narbonne BP44099 F-31077 Toulouse Cedex 4 France
| | - Anaïs Coffinet
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 route de Narbonne BP44099 F-31077 Toulouse Cedex 4 France
| | - Léon Escomel
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 route de Narbonne BP44099 F-31077 Toulouse Cedex 4 France
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 route de Narbonne BP44099 F-31077 Toulouse Cedex 4 France
| | - Mary Grellier
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 route de Narbonne BP44099 F-31077 Toulouse Cedex 4 France
| | - Antoine Simonneau
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 route de Narbonne BP44099 F-31077 Toulouse Cedex 4 France
| |
Collapse
|
5
|
Shima T, Zhuo Q, Hou Z. Dinitrogen activation and transformation by multimetallic polyhydride complexes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Dai C, Huang Y, Zhu J. Predicting Dinitrogen Activation by Carborane-Based Frustrated Lewis Pairs. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuanyuan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
7
|
Ashida Y, Egi A, Arashiba K, Tanaka H, Mitsumoto T, Kuriyama S, Yoshizawa K, Nishibayashi Y. Catalytic Reduction of Dinitrogen into Ammonia and Hydrazine by Using Chromium Complexes Bearing PCP-Type Pincer Ligands. Chemistry 2022; 28:e202200557. [PMID: 35199891 DOI: 10.1002/chem.202200557] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 11/10/2022]
Abstract
A series of chromium-halide, -nitride, and -dinitrogen complexes bearing carbene- and phosphine-based PCP-type pincer ligands has been newly prepared, and some of them are found to work as effective catalysts to reduce dinitrogen under atmospheric pressure, whereby up to 11.60 equiv. of ammonia and 2.52 equiv. of hydrazine (16.6 equiv. of fixed N atom) are produced based on the chromium atom. To the best of our knowledge, this is the first successful example of chromium-catalyzed conversion of dinitrogen to ammonia and hydrazine under mild reaction conditions.
Collapse
Affiliation(s)
- Yuya Ashida
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Akihito Egi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Kazuya Arashiba
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Minami-ku, Nagoya, Japan
| | - Taichi Mitsumoto
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
8
|
Ashida Y, Nishibayashi Y. Catalytic conversion of nitrogen molecule into ammonia using molybdenum complexes under ambient reaction conditions. Chem Commun (Camb) 2021; 57:1176-1189. [PMID: 33443504 DOI: 10.1039/d0cc07146c] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen fixation using homogeneous transition metal complexes under mild reaction conditions is a challenging topic in the field of chemistry. Several successful examples of the catalytic conversion of nitrogen molecule into ammonia using various transition metal complexes in the presence of reductants and proton sources have been reported so far, together with detailed investigations on the reaction mechanism. Among these, only molybdenum complexes have been shown to serve as effective catalysts under ambient reaction conditions, in stark contrast with other transition metal-catalysed reactions that proceed at low reaction temperature such as -78 °C. In this feature article, we classify the molybdenum-catalysed reactions into four types: reactions via the Schrock cycle, reactions via dinuclear reaction systems, reactions via direct cleavage of the nitrogen-nitrogen triple bond of dinitrogen, and reactions via the Chatt-type cycle. We describe these catalytic systems focusing on the catalytic activity and mechanistic investigations. We hope that the present feature article provides useful information to develop more efficient nitrogen fixation systems under mild reaction conditions.
Collapse
Affiliation(s)
- Yuya Ashida
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|