1
|
Pazderová L, Tüzün EZ, Bavol D, Litecká M, Fojt L, Grűner B. Chemistry of Carbon-Substituted Derivatives of Cobalt Bis(dicarbollide)(1 -) Ion and Recent Progress in Boron Substitution. Molecules 2023; 28:6971. [PMID: 37836814 PMCID: PMC10574808 DOI: 10.3390/molecules28196971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The cobalt bis(dicarbollide)(1-) anion (1-), [(1,2-C2B9H11)2-3,3'-Co(III)](1-), plays an increasingly important role in material science and medicine due to its high chemical stability, 3D shape, aromaticity, diamagnetic character, ability to penetrate cells, and low cytotoxicity. A key factor enabling the incorporation of this ion into larger organic molecules, biomolecules, and materials, as well as its capacity for "tuning" interactions with therapeutic targets, is the availability of synthetic routes that enable easy modifications with a wide selection of functional groups. Regarding the modification of the dicarbollide cage, syntheses leading to substitutions on boron atoms are better established. These methods primarily involve ring cleavage of the ether rings in species containing an oxonium oxygen atom connected to the B(8) site. These pathways are accessible with a broad range of nucleophiles. In contrast, the chemistry on carbon vertices has remained less elaborated over the previous decades due to a lack of reliable methods that permit direct and straightforward cage modifications. In this review, we present a survey of methods based on metalation reactions on the acidic C-H vertices, followed by reactions with electrophiles, which have gained importance in only the last decade. These methods now represent the primary trends in the modifications of cage carbon atoms. We discuss the scope of currently available approaches, along with the stereochemistry of reactions, chirality of some products, available types of functional groups, and their applications in designing unconventional drugs. This content is complemented with a report of the progress in physicochemical and biological studies on the parent cobalt bis(dicarbollide) ion and also includes an overview of recent syntheses and emerging applications of boron-substituted compounds.
Collapse
Affiliation(s)
- Lucia Pazderová
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| | - Ece Zeynep Tüzün
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
- Department of Inorganic Chemistry, Faculty of Natural Science, Charles University, Hlavova 2030/8, 128 43 Prague, Czech Republic
| | - Dmytro Bavol
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| | - Miroslava Litecká
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| | - Lukáš Fojt
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic;
| | - Bohumír Grűner
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| |
Collapse
|
2
|
Post-Functionalization of Organometallic Complexes via Click-Reaction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196494. [PMID: 36235030 PMCID: PMC9614606 DOI: 10.3390/molecules27196494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
CuAAC (Cu catalyzed azide-alkyne cycloaddition) click-reaction is a simple and powerful method for the post-synthetic modification of organometallic complexes of transition metals. This approach allows the selective introduction of additional donor sites or functional groups to the periphery of the ligand environment. This is especially important if a metalloligand with free donor sites, which are of the same nature as the primary site for the coordination of the primary metal, has to be created. The concept of post-synthetic modification of organometallic complexes by click-reaction is relatively recent and the currently available experimental material does not yet allow us to identify trends and formulate recommendations to address specific problems. In the present study, we have applied the CuAAC reaction for the post-synthetic modification of diimine mononuclear complexes Re(I), Pt(II) and Ir(III) with C≡C bonds at the periphery of the ligand environment and demonstrated that click-chemistry is a powerful tool for the tunable chemical post-synthetic modification of coordination compounds.
Collapse
|
3
|
Druzina AA, Grammatikova NE, Zhidkova OB, Nekrasova NA, Dudarova NV, Kosenko ID, Grin MA, Bregadze VI. Synthesis and Antibacterial Activity Studies of the Conjugates of Curcumin with closo-Dodecaborate and Cobalt Bis(Dicarbollide) Boron Clusters. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092920. [PMID: 35566270 PMCID: PMC9101702 DOI: 10.3390/molecules27092920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 01/26/2023]
Abstract
A series of novel conjugates of cobalt bis(dicarbollide) and closo-dodecaborate with curcumin were synthesized by copper(I)-catalyzed azide-alkyne cycloaddition. These conjugates were tested for antibacterial activity. It was shown that all derivatives are active when exposed to Bacillus cereus ATCC 10702 and are not active against Gram-negative microorganisms and Candida albicans at the maximum studied concentration of 1000 mg/L. The conjugate of alkynyl-curcumin with azide synthesized from the tetrahydropyran derivative of cobalt bis(dicarbollide) exhibited activity against Gram-positive microorganisms: Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212 and the clinical isolate MRSA 17, that surpassed curcumin by 2–4 times.
Collapse
Affiliation(s)
- Anna A. Druzina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.A.N.); (N.V.D.); (I.D.K.); (V.I.B.)
- Correspondence: ; Tel.: +7-926-404-5566
| | | | - Olga B. Zhidkova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.A.N.); (N.V.D.); (I.D.K.); (V.I.B.)
| | - Natalia A. Nekrasova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.A.N.); (N.V.D.); (I.D.K.); (V.I.B.)
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA—Russian Technological University, 86 Vernadsky Av., 119571 Moscow, Russia;
| | - Nadezhda V. Dudarova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.A.N.); (N.V.D.); (I.D.K.); (V.I.B.)
| | - Irina D. Kosenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.A.N.); (N.V.D.); (I.D.K.); (V.I.B.)
| | - Mikhail A. Grin
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA—Russian Technological University, 86 Vernadsky Av., 119571 Moscow, Russia;
| | - Vladimir I. Bregadze
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.A.N.); (N.V.D.); (I.D.K.); (V.I.B.)
| |
Collapse
|
4
|
Druzina AA, Dudarova NV, Zhidkova OB, Razumov IA, Solovieva OI, Kanygin VV, Bregadze VI. Synthesis and cytotoxicity of novel cholesterol–cobalt bis(dicarbollide) conjugates. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Zheng L, Chen K, Wu M, Zheng C, Liao Q, Wei X, Wang C, Zhao Y. 用于硼中子俘获治疗的含硼药物研究现状与热点前沿:基于文献计量的分析与思考. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Druzina AA, Zhidkova OB, Dudarova NV, Nekrasova NA, Suponitsky KY, Timofeev SV, Bregadze VI. Synthesis of Zwitter-Ionic Conjugate of Nido-Carborane with Cholesterol. Molecules 2021; 26:molecules26216687. [PMID: 34771096 PMCID: PMC8588508 DOI: 10.3390/molecules26216687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
9-HC≡CCH2Me2N-nido-7,8-C2B9H11, a previously described carboranyl terminal alkyne, was used for the copper(I)-catalyzed azide-alkyne cycloaddition with azido-3β-cholesterol to form a novel zwitter-ionic conjugate of nido-carborane with cholesterol, bearing a 1,2,3-triazol fragment. The conjugate of nido-carborane with cholesterol, containing a charge-compensated group in the linker, can be used as a precursor for the preparation of liposomes for BNCT (Boron Neutron Capture Therapy). The solid-state molecular structure of a nido-carborane derivative with the 9-Me2N(CH2)2Me2N-nido-7,8-C2B9H11 terminal dimethylamino group was determined by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Anna A. Druzina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.V.D.); (N.A.N.); (K.Y.S.); (S.V.T.); (V.I.B.)
- Correspondence: ; Tel.: +7-926-404-5566
| | - Olga B. Zhidkova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.V.D.); (N.A.N.); (K.Y.S.); (S.V.T.); (V.I.B.)
| | - Nadezhda V. Dudarova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.V.D.); (N.A.N.); (K.Y.S.); (S.V.T.); (V.I.B.)
| | - Natalia A. Nekrasova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.V.D.); (N.A.N.); (K.Y.S.); (S.V.T.); (V.I.B.)
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA—Russian Technological University, 86 Vernadsky Av., 119571 Moscow, Russia
| | - Kyrill Yu. Suponitsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.V.D.); (N.A.N.); (K.Y.S.); (S.V.T.); (V.I.B.)
- Basic Department of Chemistry of Innovative Materials and Technologies, G.V. Plekhanov Russian University of Economics, 36 Stremyannyi Line, 117997 Moscow, Russia
| | - Sergey V. Timofeev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.V.D.); (N.A.N.); (K.Y.S.); (S.V.T.); (V.I.B.)
| | - Vladimir I. Bregadze
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.V.D.); (N.A.N.); (K.Y.S.); (S.V.T.); (V.I.B.)
| |
Collapse
|
7
|
Druzina AA, Zhidkova OB, Dudarova NV, Kosenko ID, Ananyev IV, Timofeev SV, Bregadze VI. Synthesis and Structure of Nido-Carboranyl Azide and Its "Click" Reactions. Molecules 2021; 26:530. [PMID: 33498488 PMCID: PMC7930967 DOI: 10.3390/molecules26030530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 11/30/2022] Open
Abstract
Novel zwitter-ionic nido-carboranyl azide 9-N3(CH2)3Me2N-nido-7,8-C2B9H11 was prepared by the reaction of 9-Cl(CH2)3Me2N-nido-7,8-C2B9H11 with NaN3. The solid-state molecular structure of nido-carboranyl azide was determined by single-crystal X-ray diffraction. 9-N3(CH2)3Me2N-nido-7,8-C2B9H11 was used for the copper(I)-catalyzed azide-alkyne cycloaddition with phenylacetylene, alkynyl-3β-cholesterol and cobalt/iron bis(dicarbollide) terminal alkynes to form the target 1,2,3-triazoles. The nido-carborane-cholesterol conjugate 9-3β-Chol-O(CH2)C-CH-N3(CH2)3Me2N-nido-7,8-C2B9H11 with charge-compensated group in a linker can be used as a precursor for preparation of liposomes for Boron Neutron Capture Therapy (BNCT). A series of novel zwitter-ionic boron-enriched cluster compounds bearing a 1,2,3-triazol-metallacarborane-carborane conjugated system was synthesized. Prepared conjugates contain a large amount of boron atom in the biomolecule and potentially can be used for BNCT.
Collapse
Affiliation(s)
- Anna A. Druzina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.V.D.); (I.D.K.); (I.V.A.); (S.V.T.); (V.I.B.)
| | | | | | | | | | | | | |
Collapse
|