1
|
Bhoyare VW, Bera A, Gandon V, Patil NT. Gold-Catalyzed Alkoxy-Carbonylation of Aryl and Vinyl Iodides. Angew Chem Int Ed Engl 2024; 63:e202410794. [PMID: 39039857 DOI: 10.1002/anie.202410794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Herein, for the first time, we disclose the gold-catalyzed alkoxy-carbonylation of aryl and vinyl iodides utilizing ligand-enabled Au(I)/Au(III) redox catalysis. The present methodology is found to be general, efficient, employs mild reaction conditions and showcases a broad substrate scope even with structurally complex molecules. Density functional theory (DFT) calculations revealed mechanistic pathways distinct from those of conventional transition metal-catalyzed carbonylation reactions.
Collapse
Affiliation(s)
- Vivek W Bhoyare
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-, 462 066, India
| | - Asish Bera
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-, 462 066, India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182), Paris-Saclay University, bâtiment Henri Moissan, 17 avenue des sciences, 91400, Orsay, France
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-, 462 066, India
| |
Collapse
|
2
|
León F, García-Rodeja Y, Mallet-Ladeira S, Miqueu K, Szalóki G, Bourissou D. Catechol/ o-benzoquinone exchange at gold(iii). Chem Sci 2024:d4sc04374j. [PMID: 39309082 PMCID: PMC11414447 DOI: 10.1039/d4sc04374j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/15/2024] [Indexed: 09/25/2024] Open
Abstract
Although gold(iii) chemistry has tremendously progressed in the past 2 decades, gold(iii) catecholate complexes remain extremely scarce and underdeveloped. Upon preparation and full characterization of P^C-cyclometalated gold(iii) complexes, we serendipitously uncovered an intriguing catechol exchange process at gold(iii). Electron-rich catecholates turned out to be readily displaced by electron-poor o-benzoquinones. DFT calculations revealed an original path for this transformation involving two consecutive Single Electron Transfer events between the catecholate and o-benzoquinone moieties while gold maintains its +III oxidation state. This catechol/o-benzoquinone exchange at gold(iii) represents a new path for the exchange of X-type ligands at transition metals.
Collapse
Affiliation(s)
- Félix León
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Yago García-Rodeja
- CNRS/Université de Pau et des Pays de l'Adour. E2S-UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), Hélioparc 2 Avenue du Président Angot 64053 Pau Cedex 09 France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (UAR 2599) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Karinne Miqueu
- CNRS/Université de Pau et des Pays de l'Adour. E2S-UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), Hélioparc 2 Avenue du Président Angot 64053 Pau Cedex 09 France
| | - György Szalóki
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Didier Bourissou
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| |
Collapse
|
3
|
Paroi B, Pegu C, Mane MV, Patil NT. Gold-Catalyzed Arylative Cope Rearrangement. Angew Chem Int Ed Engl 2024; 63:e202406936. [PMID: 38769939 DOI: 10.1002/anie.202406936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Cope rearrangements have garnered significant attention owing to their ability to undergo structural reorganization in stereoselective manner. While substantial advances have been achieved over decades, these rearrangements remained applicable exclusively to parent 1,5-hexadienes. Herein, we disclose the gold-catalyzed arylative Cope rearrangement of 1,6-heptadienes via a cyclization-induced [3,3]-rearrangement employing ligand-enabled gold redox catalysis. Detailed mechanistic investigations including several control experiments, cross-over experiment, HRMS analysis, 31P NMR and DFT studies have been performed to underpin the mechanism.
Collapse
Affiliation(s)
- Bidisha Paroi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-, 462 066, India
| | - Chayanika Pegu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-, 462 066, India
| | - Manoj V Mane
- Centre for Nano and Material Science, Jain (Deemed-to-be University), Jain Global Campus Kanakapura, Bangalore, Karnataka-, 562112, India
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-, 462 066, India
| |
Collapse
|
4
|
Kumar A, Bhattacharya N, Mane MV, Patil NT. Ligand-Enabled Gold-Catalyzed Cyanation of Organohalides. Angew Chem Int Ed Engl 2024:e202412682. [PMID: 39129346 DOI: 10.1002/anie.202412682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/13/2024]
Abstract
Herein, we disclose the first report on gold-catalyzed C(sp2)-CN cross-coupling reaction by employing a ligand-enabled Au(I)/Au(III) redox catalysis. This transformation utilizes acetone cyanohydrin as a nucleophilic cyanide source to convert simple aryl and alkenyl iodides into the corresponding nitriles. Combined experimental and computational studies highlighted the crucial role of cationic silver salts in activating the stable (P,N)-AuCN complex towards the oxidative addition of aryl iodides to subsequently generate key aryl-Au(III) cyanide complexes.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, India
| | - Nandita Bhattacharya
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, India
| | - Manoj V Mane
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus Kanakapura, Bangalore, Karnataka, 562112, India
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, India
| |
Collapse
|
5
|
Díaz-Salazar H, Osorio-Ocampo G, Porcel S. Straightforward Access to Isoindoles and 1,2-Dihydrophthalazines Enabled by a Gold-Catalyzed Three-Component Reaction. J Org Chem 2024; 89:10163-10174. [PMID: 38989839 DOI: 10.1021/acs.joc.4c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
We describe herein a gold-catalyzed three-component reaction of o-alkynylbenzaldehydes, aryldiazonium salts, and trimethoxybenzene. This process enables the one-pot formation of valuable isoindoles and 1,2-dihydrophathalazines. The regioselectivity of the reaction is dictated by the nature of the aryldiazonium salt. Noticeably, the reaction is performed at room temperature under mild conditions and tolerates a variety of functional groups on both the o-alkynylbenzaldehyde and the aryldiazonium salt. Experimental mechanistic studies suggest that it is catalyzed by arylAu(III) species.
Collapse
Affiliation(s)
- Howard Díaz-Salazar
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| | - Gabriel Osorio-Ocampo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| | - Susana Porcel
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
6
|
Font P, Valdés H, Ribas X. Consolidation of the Oxidant-Free Au(I)/Au(III) Catalysis Enabled by the Hemilabile Ligand Strategy. Angew Chem Int Ed Engl 2024; 63:e202405824. [PMID: 38687322 DOI: 10.1002/anie.202405824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
In this minireview we survey the challenges and strategies in gold redox catalysis. Gold's reluctance to oxidative addition reactions due to its high redox potential limits its applicability. Initial attempts to overcome this problem focused on the use of sacrificial external oxidants in stoichiometric amounts to bring Au(I) compounds to Au(III) reactive species. Recently, innovative approaches focused on employing hemilabile ligands, which are capable of coordinating to Au(I) and stabilizing square-planar Au(III) intermediates, thus facilitating oxidative addition steps and enabling oxidant-free catalysis. Notable examples include the use of the (P^N) bidendate MeDalphos ligand to achieve various cross-coupling reactions via oxidative addition Au(I)/Au(III). Importantly, hemilabile ligand-enabled catalysis allows merging oxidative addition with π-activation, such as oxy- and aminoarylation of alkenols and alkenamines using organohalides, expanding gold's versatility in C-C and C-heteroatom bond formations and unprecedented cyclizations. Moreover, recent advancements in enantioselective catalysis using chiral hemilabile (P^N) ligands are also surveyed. Strikingly, versatile bidentate (C^N) hemilabile ligands as competitors of MeDalphos have appeared recently, by designing scaffolds where phosphine groups are substituted by N-heterocyclic or mesoionic carbenes. Overall, these approaches highlight the evolving landscape of gold redox catalysis and its tremendous potential in a broad scope of transformations.
Collapse
Affiliation(s)
- Pau Font
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, E-17003, Catalonia, Spain
| | - Hugo Valdés
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, E-17003, Catalonia, Spain
- Current address: Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, E-17003, Catalonia, Spain
| |
Collapse
|
7
|
Vesseur D, Li S, Mallet-Ladeira S, Miqueu K, Bourissou D. Ligand-Enabled Oxidative Fluorination of Gold(I) and Light-Induced Aryl-F Coupling at Gold(III). J Am Chem Soc 2024. [PMID: 38607393 DOI: 10.1021/jacs.4c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
MeDalphos Au(I) complexes featuring aryl, alkynyl, and alkyl groups readily react with electrophilic fluorinating reagents such as N-fluorobenzenesulfonimide and Selectfluor. The ensuing [(MeDalphos)Au(R)F]+ complexes have been isolated and characterized by multinuclear NMR spectroscopy as well as X-ray diffraction. They adopt a square-planar contra-thermodynamic structure, with F trans to N. DFT/IBO calculations show that the N lone pair of MeDalphos assists and directs the transfer of F+ to gold. The [(MeDalphos)Au(Ar)F]+ (Ar = Mes, 2,6-F2Ph) complexes smoothly engage in C-C cross-coupling with PhCCSiMe3 and Me3SiCN, providing direct evidence for the oxidative fluorination/transmetalation/reductive elimination sequence proposed for F+-promoted gold-catalyzed transformations. Moreover, direct reductive elimination to forge a C-F bond at Au(III) was explored and substantiated. Thermal means proved unsuccessful, leading mostly to decomposition, but irradiation with UV-visible light enabled efficient promotion of aryl-F coupling (up to 90% yield). The light-induced reductive elimination proceeds under mild conditions; it works even with the electron-deprived 2,6-difluorophenyl group, and it is not limited to the contra-thermodynamic form of the aryl Au(III) fluoride complexes.
Collapse
Affiliation(s)
- David Vesseur
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) , CNRS/Université Paul Sabatier , 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| | - Shuo Li
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) , CNRS/Université Paul Sabatier , 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (UAR 2599) , 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| | - Karinne Miqueu
- E2S-UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), CNRS/Université de Pau et des Pays de l'Adour, Hélioparc, 2 Avenue du Président Angot, 64053 Pau, Cedex 09, France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) , CNRS/Université Paul Sabatier , 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| |
Collapse
|
8
|
Hidalgo N, Le Gac A, Mallet-Ladeira S, Bouhadir G, Bourissou D. Chemo-selective Stille-type coupling of acyl-chlorides upon phosphine-borane Au(i) catalysis. Chem Sci 2024; 15:5187-5191. [PMID: 38577365 PMCID: PMC10988615 DOI: 10.1039/d3sc06193k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Phosphine-boranes do not promote oxidative addition of acyl chlorides to gold, but the phosphine-borane gold triflimide complex [iPr2P(o-C6H4)BCy2]AuNTf2 was found to catalyze the coupling of acyl chlorides and aryl stannanes. The reaction involves aryl/chloride-bridged dinuclear gold(i) complexes as key intermediates, as substantiated by spectroscopic and crystallographic analyses. Similar to Pd(0)/Pd(ii)-catalyzed Stille coupling with phosphine-borane ligands, the gold-catalyzed variant shows complete chemoselectivity for acyl chlorides over aryl iodides and bromides, enabling straightforward access to halogenated aryl ketones.
Collapse
Affiliation(s)
- Nereida Hidalgo
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA UMR 5069) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
- Departamento de Química Inorgánica, Universidad de Sevilla 41071 Sevilla Spain
| | - Arnaud Le Gac
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA UMR 5069) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (FR 2599) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Ghenwa Bouhadir
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA UMR 5069) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Didier Bourissou
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA UMR 5069) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| |
Collapse
|
9
|
Pegu C, Paroi B, Patil NT. Enantioselective merged gold/organocatalysis. Chem Commun (Camb) 2024. [PMID: 38451222 DOI: 10.1039/d4cc00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Gold complexes, because of their unique carbophilic nature, have evolved as efficient catalysts for catalyzing various functionalization reactions of C-C multiple bonds. However, the realization of enantioselective transformations via gold catalysis remains challenging due to the geometrical constraints and coordination behaviors of gold complexes. In this context, merged gold/organocatalysis has emerged as one of the intriguing strategies to achieve enantioselective transformations which could not be possible by using a single catalytic system. Historically, in 2009, this field started with the merging of gold with axially chiral Brønsted acids and chiral amines to achieve enantioselective transformations. Since then, based on the unique reactivity profiles offered by each catalyst, several reports utilizing gold in conjunction with various chiral organocatalysts such as amines, Brønsted acids, N-heterocyclic carbenes, hydrogen-bonding and phosphine catalysts have been documented in the literature. This article demonstrates an up-to-date development in this field, especially focusing on the mechanistic interplay of gold catalysts with chiral organocatalysts.
Collapse
Affiliation(s)
- Chayanika Pegu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| | - Bidisha Paroi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| |
Collapse
|
10
|
Muratov K, Zaripov E, Berezovski MV, Gagosz F. DFT-Enabled Development of Hemilabile (P ∧N) Ligands for Gold(I/III) RedOx Catalysis: Application to the Thiotosylation of Aryl Iodides. J Am Chem Soc 2024; 146:3660-3674. [PMID: 38315643 DOI: 10.1021/jacs.3c08943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Ligand-enabled oxidative addition of Csp2-X bonds to Au(I) centers has recently appeared as a valuable strategy for the development of catalytic RedOx processes. Several cross-coupling reactions that were previously considered difficult to achieve were reported lately, thus expanding the synthetic potential of gold(I) complexes beyond the traditional nucleophilic functionalization of π-systems. MeDalPhos has played an important role in this development and, despite several studies on alternative structures, remains, so far, the only general ligand for such process. We report herein the discovery and DFT-enabled structural optimization of a new family of hemilabile (P∧N) ligands that can promote the oxidative addition of aryl iodides to gold(I). These flexible ligands, which possess a common 2-methylamino heteroaromatic N-donor motif, are structurally and electronically tunable, beyond being easily accessible and affordable. The corresponding Au(I) complexes were shown to outperform the reactivity of (MeDalPhos)Au(I) in a series of alkoxy- and amidoarylations of alkenes. Their synthetic potential and comparatively higher reactivity were further highlighted in the thiotosylation of aryl iodides, a challenging unreported C-S cross-coupling reaction that could not be achieved under classical Pd(0/II) catalysis and that allows for general and divergent access to aryl sulfur derivatives.
Collapse
Affiliation(s)
- Karim Muratov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Emil Zaripov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| |
Collapse
|
11
|
Shiri F, Ho CC, Bissember AC, Ariafard A. Advancing Gold Redox Catalysis: Mechanistic Insights, Nucleophilicity-Guided Transmetalation, and Predictive Frameworks for the Oxidation of Aryl Gold(I) Complexes. Chemistry 2024; 30:e202302990. [PMID: 37967304 DOI: 10.1002/chem.202302990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Indexed: 11/17/2023]
Abstract
Gold redox catalysis, often facilitated by hypervalent iodine(III) reagents, offers unique reactivity but its progress is mainly hindered by an incomplete mechanistic understanding. In this study, we investigated the reaction between the gold(I) complexes [(aryl)Au(PR3 )] and the hypervalent iodine(III) reagent PhICl2 , both experimentally and computationally and provided an explanation for the formation of divergent products as the ligands bonded to the gold(I) center change. We tackled this essential question by uncovering an intriguing transmetalation mechanism that takes place between gold(I) and gold(III) complexes. We found that the ease of transmetalation is governed by the nucleophilicity of the gold(I) complex, [(aryl)Au(PR3 )], with greater nucleophilicity leading to a lower activation energy barrier. Remarkably, transmetalation is mainly controlled by a single orbital - the gold dx 2 -y 2 orbital. This orbital also has a profound influence on the reactivity of the oxidative addition step. In this way, the fundamental mechanistic basis of divergent outcomes in reactions of aryl gold(I) complexes with PhICl2 was established and these observations are reconciled from first principles. The theoretical model developed in this study provides a conceptual framework for anticipating the outcomes of reactions involving [(aryl)Au(PR3 )] with PhICl2 , thereby establishing a solid foundation for further advancements in this field.
Collapse
Affiliation(s)
- Farshad Shiri
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran
| | - Curtis C Ho
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Alireza Ariafard
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
12
|
Bhoyare VW, Tathe AG, Gandon V, Patil NT. Unlocking the Chain-Walking Process in Gold Catalysis. Angew Chem Int Ed Engl 2023; 62:e202312786. [PMID: 37779346 DOI: 10.1002/anie.202312786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
The successful realization of gold-catalyzed chain-walking reactions, facilitated by ligand-enabled Au(I)/Au(III) redox catalysis, has been reported for the first time. This breakthrough has led to the development of gold-catalyzed annulation reaction of alkenes with iodoarenes by leveraging the interplay of chain-walking and π-activation reactivity mode. The reaction mechanism has been elucidated through comprehensive experimental and computational studies.
Collapse
Affiliation(s)
- Vivek W Bhoyare
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462 066, Bhopal, India
| | - Akash G Tathe
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462 066, Bhopal, India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182), Paris-Saclay University, bâtiment Henri Moissan, 17 avenue des sciences, 91400, Orsay, France
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462 066, Bhopal, India
| |
Collapse
|
13
|
Yang L, Lai Y, Cheung CI, Ye Z, Huang T, Wang Y, Chin Y, Chia Z, Chen Y, Li M, Tseng H, Tsai Y, Zhang Z, Chen K, Tsai B, Shieh D, Lee N, Tsai P, Huang C. Novel metal peroxide nanoboxes restrain Clostridioides difficile infection beyond the bactericidal and sporicidal activity. Bioeng Transl Med 2023; 8:e10593. [PMID: 38023694 PMCID: PMC10658501 DOI: 10.1002/btm2.10593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 12/01/2023] Open
Abstract
Clostridioides difficile spores are considered as the major source responsible for the development of C. difficile infection (CDI), which is associated with an increased risk of death in patients and has become an important issue in infection control of nosocomial infections. Current treatment against CDI still relies on antibiotics, which also damage normal flora and increase the risk of CDI recurrence. Therefore, alternative therapies that are more effective against C. difficile bacteria and spores are urgently needed. Here, we designed an oxidation process using H2O2 containing PBS solution to generate Cl- and peroxide molecules that further process Ag and Au ions to form nanoboxes with Ag-Au peroxide coat covering Au shell and AgCl core (AgAu-based nanoboxes). The AgAu-based nanoboxes efficiently disrupted the membrane structure of bacteria/spores of C. difficile after 30-45 min exposure to the highly reactive Ag/Au peroxide surface of the nano structures. The Au-enclosed AgCl provided sustained suppression of the growth of 2 × 107 pathogenic Escherichia coli for up to 19 days. In a fecal bench ex vivo test and in vivo CDI murine model, biocompatibility and therapeutic efficacy of the AuAg nanoboxes to attenuate CDI was demonstrated by restoring the gut microbiota and colon mucosal structure. The treatment successfully rescued the CDI mice from death and prevented their recurrence mediated by vancomycin treatment. The significant outcomes indicated that the new peroxide-derived AgAu-based nanoboxes possess great potential for future translation into clinical application as a new alternative therapeutic strategy against CDI.
Collapse
Affiliation(s)
- Li‐Xing Yang
- Department of PhotonicsNational Cheng Kung UniversityTainanTaiwan
- School of Dentistry and Institute of Oral MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Yi‐Hsin Lai
- Institute of Basic MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Chun In Cheung
- Department of PhotonicsNational Cheng Kung UniversityTainanTaiwan
| | - Zhi Ye
- Department of Medical Laboratory Science and BiotechnologyNational Cheng Kung UniversityTainanTaiwan
| | - Tzu‐Chi Huang
- Department of PhotonicsNational Cheng Kung UniversityTainanTaiwan
| | - Yu‐Chin Wang
- Department of Medical Laboratory Science and BiotechnologyNational Cheng Kung UniversityTainanTaiwan
| | - Yu‐Cheng Chin
- Department of PhotonicsNational Cheng Kung UniversityTainanTaiwan
| | - Zi‐Chun Chia
- Department of PhotonicsNational Cheng Kung UniversityTainanTaiwan
| | - Ya‐Jyun Chen
- Department of PhotonicsNational Cheng Kung UniversityTainanTaiwan
| | - Meng‐Jia Li
- Institute of Basic MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Hsiu‐Ying Tseng
- Department of Medical Laboratory Science and BiotechnologyNational Cheng Kung UniversityTainanTaiwan
| | - Yi‐Tseng Tsai
- Department of PhotonicsNational Cheng Kung UniversityTainanTaiwan
| | - Zhi‐Bin Zhang
- Department of PhotonicsNational Cheng Kung UniversityTainanTaiwan
| | - Kuan‐Hsu Chen
- Department of PhotonicsNational Cheng Kung UniversityTainanTaiwan
| | - Bo‐Yang Tsai
- Institute of Basic MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Dar‐Bin Shieh
- School of Dentistry and Institute of Oral MedicineNational Cheng Kung UniversityTainanTaiwan
- Institute of Basic MedicineNational Cheng Kung UniversityTainanTaiwan
- Center of Applied Nanomedicine and Core Facility CenterNational Cheng Kung UniversityTainanTaiwan
- iMANI Center of the National Core Facility for BiopharmaceuticalsNational Science and Technology CouncilTaipeiTaiwan
- Department of StomatologyNational Cheng Kung University HospitalTainanTaiwan
| | - Nan‐Yao Lee
- Department of MedicineNational Cheng Kung UniversityTainanTaiwan
- Division of Infectious Diseases, Department of Internal Medicine and Center for Infection ControlNational Cheng Kung University HospitalTainanTaiwan
| | - Pei‐Jane Tsai
- Institute of Basic MedicineNational Cheng Kung UniversityTainanTaiwan
- Department of Medical Laboratory Science and BiotechnologyNational Cheng Kung UniversityTainanTaiwan
- Research Center of Infectious Disease and SignalingNational Cheng Kung UniversityTainanTaiwan
- Department of Pathology, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Chih‐Chia Huang
- Department of PhotonicsNational Cheng Kung UniversityTainanTaiwan
- Center of Applied Nanomedicine and Core Facility CenterNational Cheng Kung UniversityTainanTaiwan
| |
Collapse
|
14
|
Wei C, Zhang L, Xia Z. Hemilabile P,N-Ligand-Assisted Gold-Catalyzed Heck Reaction of Aryl and Styryl Iodides with Styrenes. Org Lett 2023; 25:6808-6812. [PMID: 37690122 DOI: 10.1021/acs.orglett.3c02244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
A gold-catalyzed Heck reaction of aryl and styryl iodides with styrenes was developed. The hemilabile P,N-ligand-assisted gold-catalyzed C(sp2)-C(sp2) cross-coupling can synthesize stilbenes and bistyryl complexes, with good functional-group tolerance and mild conditions. The elementary organometallic steps of migratory insertion and β-hydride elimination might be involved in this ligand-enabled Au(I)/Au(III)-catalyzed Heck reaction with styrenes.
Collapse
Affiliation(s)
- Cunbo Wei
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lizhu Zhang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhonghua Xia
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
15
|
Scott SC, Cadge JA, Boden GK, Bower JF, Russell CA. A Hemilabile NHC-Gold Complex and its Application to the Redox Neutral 1,2-Oxyarylation of Feedstock Alkenes. Angew Chem Int Ed Engl 2023; 62:e202301526. [PMID: 36995930 PMCID: PMC10962591 DOI: 10.1002/anie.202301526] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 03/31/2023]
Abstract
We describe a AuI complex of a hemi-labile (C^N) N-heterocyclic carbene ligand that is able to mediate oxidative addition of aryl iodides. Detailed computational and experimental investigations have been undertaken to verify and rationalize the oxidative addition process. Application of this initiation mode has resulted in the first examples of "exogenous oxidant-free" AuI /AuIII catalyzed 1,2-oxyarylations of ethylene and propylene. These demanding yet powerful processes establish these commodity chemicals as nucleophilic-electrophilic building blocks in catalytic reaction design.
Collapse
Affiliation(s)
- Samuel C. Scott
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Jamie A. Cadge
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Grace K. Boden
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - John F. Bower
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | | |
Collapse
|
16
|
Das A, Patil NT. Ligand-Enabled Gold-Catalyzed C(sp 2)–O Cross-Coupling Reactions. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Avishek Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Nitin T. Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| |
Collapse
|
17
|
McCallum T. Heart of gold: enabling ligands for oxidative addition of haloorganics in Au(I)/Au(III) catalysed cross-coupling reactions. Org Biomol Chem 2023; 21:1629-1646. [PMID: 36727215 DOI: 10.1039/d3ob00002h] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The field of Au-catalysis has been an area rich with new discoveries due to the unique properties of the lustrous element. In the past decade, developments in Au(I)/Au(III) cross-coupling methodology have been made possible with the use of external oxidants that facilitate the challenging oxidation of Au(I) to Au(III) in a stable and catalytically competent fashion. Until recently, Au-chemistry was not known to undergo catalytic transformations that feature oxidative addition of haloarenes like those that were made famous by transition metals such as Pd and Ni. The discovery that ligand modification could facilitate the oxidative addition of Au(I) with haloorganics to provide Au(III) intermediates that are competent in other areas of catalysis (i.e. Lewis acid catalysis) has revolutionized this field and has led to the invention of new cross-coupling methodology. The recent advances at the leading edge in the emerging field of Au(I)/Au(III) catalysis under redox-neutral conditions are highlighted.
Collapse
Affiliation(s)
- Terry McCallum
- The Canadian Bank Note Company, Ottawa, Ontario, Canada.
| |
Collapse
|
18
|
Portugués A, Martínez-Nortes MÁ, Bautista D, González-Herrero P, Gil-Rubio J. Reductive Elimination Reactions in Gold(III) Complexes Leading to C(sp 3)-X (X = C, N, P, O, Halogen) Bond Formation: Inner-Sphere vs S N2 Pathways. Inorg Chem 2023; 62:1708-1718. [PMID: 36658748 PMCID: PMC9890567 DOI: 10.1021/acs.inorgchem.2c04166] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The reactions leading to the formation of C-heteroatom bonds in the coordination sphere of Au(III) complexes are uncommon, and their mechanisms are not well known. This work reports on the synthesis and reductive elimination reactions of a series of Au(III) methyl complexes containing different Au-heteroatom bonds. Complexes [Au(CF3)(Me)(X)(PR3)] (R = Ph, X = OTf, OClO3, ONO2, OC(O)CF3, F, Cl, Br; R = Cy, X = Me, OTf, Br) were obtained by the reaction of trans-[Au(CF3)(Me)2(PR3)] (R = Ph, Cy) with HX. The cationic complex cis-[Au(CF3)(Me)(PPh3)2]OTf was obtained by the reaction of [Au(CF3)(Me)(OTf)(PPh3)] with PPh3. Heating these complexes led to the reductive elimination of MeX (X = Me, Ph3P+, OTf, OClO3, ONO2, OC(O)CF3, F, Cl, Br). Mechanistic studies indicate that these reductive elimination reactions occur either through (a) the formation of tricoordinate intermediates by phosphine dissociation, followed by reductive elimination of MeX, or (b) the attack of weakly coordinating anionic (TfO- or ClO4-) or neutral nucleophiles (PPh3 or NEt3) to the Au-bound methyl carbon. The obtained results show for the first time that the nucleophilic substitution should be considered as a likely reductive elimination pathway in Au(III) alkyl complexes.
Collapse
Affiliation(s)
- Alejandro Portugués
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Miguel Ángel Martínez-Nortes
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Delia Bautista
- ACTI,
Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Pablo González-Herrero
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Juan Gil-Rubio
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain,
| |
Collapse
|
19
|
Trifonova EA, Leach IF, de Haas WB, Havenith RWA, Tromp M, Klein JEMN. Spectroscopic Manifestations and Implications for Catalysis of Quasi-d 10 Configurations in Formal Gold(III) Complexes. Angew Chem Int Ed Engl 2023; 62:e202215523. [PMID: 36508713 PMCID: PMC10107628 DOI: 10.1002/anie.202215523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Several gold +I and +III complexes are investigated computationally and spectroscopically, focusing on the d-configuration and physical oxidation state of the metal center. Density functional theory calculations reveal the non-negligible electron-sharing covalent character of the metal-to-ligand σ-bonding framework. The bonding of gold(III) is shown to be isoelectronic to the formal CuIII complex [Cu(CF3 )4 ]1- , in which the metal center tries to populate its formally unoccupied 3dx2-y2 orbital via σ-bonding, leading to a reduced d10 CuI description. However, Au L3 -edge X-ray absorption spectroscopy reveals excitation into the d-orbital of the AuIII species is still possible, showing that a genuine d10 configuration is not achieved. We also find an increased electron-sharing nature of the σ-bonds in the AuI species, relative to their AgI and CuI analogues, due to the low-lying 6s orbital. We propose that gold +I and +III complexes form similar bonds with substrates, owing primarily to participation of the 5dx2-y2 or 6s orbital, respectively, in bonding, indicating why AuI and AuIII complexes often have similar reactivity.
Collapse
Affiliation(s)
- Evgeniya A. Trifonova
- Molecular Inorganic ChemistryStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
| | - Isaac F. Leach
- Molecular Inorganic ChemistryStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
| | - Winfried B. de Haas
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
| | - Remco W. A. Havenith
- Molecular Inorganic ChemistryStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
- Ghent Quantum Chemistry GroupDepartment of ChemistryGhent University9000GentBelgium
| | - Moniek Tromp
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
| | - Johannes E. M. N. Klein
- Molecular Inorganic ChemistryStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
| |
Collapse
|
20
|
Engbers S, Klein JEMN. Understanding the Surprising Oxidation Chemistry of Au-OH Complexes. Chemphyschem 2023; 24:e202200475. [PMID: 36104296 PMCID: PMC10091708 DOI: 10.1002/cphc.202200475] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Indexed: 01/07/2023]
Abstract
Au is known to be fairly redox inactive (in catalysis) and bind oxygen adducts only quite weakly. It is thus rather surprising that stable Au-OH complexes can be synthesized and used as oxidants for both one- and two-electron oxidations. A charged AuIII -OH complex has been shown to cleave C-H and O-H bonds homolytically, resulting in a one-electron reduction of the metal center. Contrasting this, a neutral AuIII -OH complex performs oxygen atom transfer to phosphines, resulting in a two-electron reduction of the hydroxide proton to form a AuIII -H rather than causing a change in oxidation state of the metal. We explore the details of these two examples and draw comparisons to the more conventional reactivity exhibited by AuI -OH. Although the current scope of known Au-OH oxidation chemistry is still in its infancy, the current literature exemplifies the unique properties of Au chemistry and shows promise for future findings in the field.
Collapse
Affiliation(s)
- Silène Engbers
- Molecular Inorganic ChemistryStratingh Institute for ChemistryFaculty of Science and EngineeringUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Johannes E. M. N. Klein
- Molecular Inorganic ChemistryStratingh Institute for ChemistryFaculty of Science and EngineeringUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
21
|
Rigoulet M, Miqueu K, Bourissou D. Mechanistic Insights about the Ligand-Enabled Oxy-arylation/vinylation of Alkenes via Au(I)/Au(III) Catalysis. Chemistry 2022; 28:e202202110. [PMID: 35876716 PMCID: PMC9805180 DOI: 10.1002/chem.202202110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 01/09/2023]
Abstract
The mechanism of oxy-arylation/vinylation of alkenes catalyzed by the (MeDalphos)AuCl complex was comprehensively investigated by DFT. (P,N)Au(Ph)2+ and (P,N)Au(vinyl)2+ are key intermediates accounting for the activation of the alkenols and for their cyclization by outer-sphere nucleophilic attack of oxygen. The 5-exo and 6-endo paths have been computed and compared, reproducing the peculiar regioselectivity difference observed experimentally between 4-penten-1-ol, (E) and (Z)-4-hexen-1-ols. Examining the way the alkenol coordinates to gold (more η2 or η1 ) can offer, in some cases, a simple way to predict the favored path of cyclization.
Collapse
Affiliation(s)
- Mathilde Rigoulet
- CNRS/Université Paul SabatierUPS Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA UMR 5069)118 route de Narbonne31062ToulouseFrance
| | - Karinne Miqueu
- CNRS/Université de Pau et des Pays de l'AdourE2S-UPPAInstitut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM UMR 5254)Hélioparc, 2 Avenue du Président Angot64053Pau Cedex 09France
| | - Didier Bourissou
- CNRS/Université Paul SabatierUPS Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA UMR 5069)118 route de Narbonne31062ToulouseFrance
| |
Collapse
|
22
|
Cadge JA, Gates PJ, Bower JF, Russell CA. Migratory Insertion of CO into a Au–C Bond. J Am Chem Soc 2022; 144:19719-19725. [DOI: 10.1021/jacs.2c10432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jamie A. Cadge
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Paul J. Gates
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - John F. Bower
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Christopher A. Russell
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
23
|
Bayer L, Birenheide BS, Krämer F, Lebedkin S, Breher F. Heterobimetallic Gold/Ruthenium Complexes Synthesized via Post-functionalization and Applied in Dual Photoredox Gold Catalysis. Chemistry 2022; 28:e202201856. [PMID: 35924459 DOI: 10.1002/chem.202201856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 01/07/2023]
Abstract
The synthesis of heterobimetallic AuI /RuII complexes of the general formula syn- and anti-[{AuCl}(L1∩L2){Ru(bpy)2 }][PF6 ]2 is reported. The ditopic bridging ligand L1∩L2 refers to a P,N hybrid ligand composed of phosphine and bipyridine substructures, which was obtained via a post-functionalization strategy based on Diels-Alder reaction between a phosphole and a maleimide moiety. It was found that the stereochemistry at the phosphorus atom of the resulting 7-phosphanorbornene backbone can be controlled by executing the metal coordination and the cycloaddition reaction in a different order. All precursors, as well as the mono- and multimetallic complexes, were isolated and fully characterized by various spectroscopic methods such as NMR, IR, and UV-vis spectroscopy as well as cyclic voltammetry. Photophysical measurements show efficient phosphorescence for the investigated monometallic complex anti-[(L1∩L2){Ru(bpy)2 }][PF6 ]2 and the bimetallic analogue syn-[{AuCl}(L1∩L2){Ru(bpy)2 }][PF6 ]2 , thus indicating a small influence of the {AuCl} fragment on the photoluminescence properties. The heterobimetallic AuI /RuII complexes syn- and anti-[{AuCl}(L1∩L2){Ru(bpy)2 }][PF6 ]2 are both active catalysts in the P-arylation of aryldiazonium salts promoted by visible light with H-phosphonate affording arylphosphonates in yields of up to 91 %. Both dinuclear complexes outperform their monometallic counterparts.
Collapse
Affiliation(s)
- Lea Bayer
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Division Molecular Chemistry, Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Bernhard S Birenheide
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Division Molecular Chemistry, Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Felix Krämer
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Division Molecular Chemistry, Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Sergei Lebedkin
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Postfach 3630, 76021, Karlsruhe, Germany
| | - Frank Breher
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Division Molecular Chemistry, Engesserstraße 15, 76131, Karlsruhe, Germany
| |
Collapse
|
24
|
Szalóki G, Babinot J, Martin-Diaconescu V, Mallet-Ladeira S, García-Rodeja Y, Miqueu K, Bourissou D. Ligand-enabled oxidation of gold(i) complexes with o-quinones. Chem Sci 2022; 13:10499-10505. [PMID: 36277619 PMCID: PMC9473537 DOI: 10.1039/d2sc03724f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Chelating P^P and hemilabile P^N ligands were found to trigger the oxidation of Au(i) complexes by o-benzoquinones. The ensuing Au(iii) catecholate complexes have been characterized by NMR spectroscopy, single crystal X-ray diffraction and X-ray absorption spectroscopy. They adopt tetracoordinate square-planar structures. Reactivity studies substantiate the reversibility of the transformation. In particular, the addition of competing ligands such as chloride and alkenes gives back Au(i) complexes with concomitant release of the o-quinone. DFT calculations provide insight about the structure and relative stability of the Au(i) o-quinone and Au(iii) catecholate forms, and shed light on the 2-electron transfer from gold to the o-quinone.
Collapse
Affiliation(s)
- György Szalóki
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, Université Toulouse III - Paul Sabatier 118 Route de Narbonne Toulouse 31062 Cedex 09 France
| | - Julien Babinot
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, Université Toulouse III - Paul Sabatier 118 Route de Narbonne Toulouse 31062 Cedex 09 France
| | - Vlad Martin-Diaconescu
- ALBA Synchrotron - CELLS Carrer de la Llum 2-26 Cerdanyola del Vallès 08290 Barcelona Spain
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (UAR 2599) 118 Route de Narbonne Toulouse 31062 Cedex 09 France
| | - Yago García-Rodeja
- Institut des Sciences Analytiques et Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), CNRS, Université de Pau et des Pays de l'Adour E2S UPPA, Hélioparc 2 Avenue du Président Angot Pau 64053 Cedex 09 France
| | - Karinne Miqueu
- Institut des Sciences Analytiques et Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), CNRS, Université de Pau et des Pays de l'Adour E2S UPPA, Hélioparc 2 Avenue du Président Angot Pau 64053 Cedex 09 France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, Université Toulouse III - Paul Sabatier 118 Route de Narbonne Toulouse 31062 Cedex 09 France
| |
Collapse
|
25
|
Mishra S, Urvashi, Patil NT. Chiral Ligands for Au(I), Au(III), and Au(I)/Au(III) Redox Catalysis. Isr J Chem 2022. [DOI: 10.1002/ijch.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sampoorna Mishra
- Sampoorna Mishra Urvashi and Nitin T. Patil Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhauri Bhopal 462 066 India
| | - Urvashi
- Sampoorna Mishra Urvashi and Nitin T. Patil Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhauri Bhopal 462 066 India
| | - Nitin T. Patil
- Sampoorna Mishra Urvashi and Nitin T. Patil Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhauri Bhopal 462 066 India
| |
Collapse
|
26
|
Dahiya A, Schoenebeck F. Orthogonal and Modular Arylation of Alkynylgermanes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amit Dahiya
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
27
|
Qiao B, Bai R, Zhang T, Li SJ, Lan Y. An alternative non-redox Ni(I) pathway in hydroaminomethylation: A theoretical perspective. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Zhao F, Abdellaoui M, Hagui W, Ballarin-Marion M, Berthet J, Corcé V, Delbaere S, Dossmann H, Espagne A, Forté J, Jullien L, Le Saux T, Mouriès-Mansuy V, Ollivier C, Fensterbank L. Reactant-induced photoactivation of in situ generated organogold intermediates leading to alkynylated indoles via Csp 2-Csp cross-coupling. Nat Commun 2022; 13:2295. [PMID: 35484155 PMCID: PMC9051093 DOI: 10.1038/s41467-022-29982-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Photosensitization of organogold intermediates is an emerging field in catalysis. In this context, an access to 2,3-disubstituted indoles from o-alkynyl aniline and iodoalkyne derivatives via a gold-catalyzed sequence under visible-light irradiation and in the absence of an exogenous photocatalyst was uncovered. A wide scope of the process is observed. Of note, 2-iodo-ynamides can be used as electrophiles in this cross-coupling reaction. The resulting N-alkynyl indoles lend themselves to post-functionalization affording valuable scaffolds, notably benzo[a]carbazoles. Mechanistic studies converge on the fact that a potassium sulfonyl amide generates emissive aggregates in the reaction medium. Static quenching of these aggregates by a vinylgold(I) intermediate yields to an excited state of the latter, which can react with an electrophile via oxidative addition and reductive elimination to forge the key C-C bond. This reactant-induced photoactivation of an organogold intermediate opens rich perspectives in the field of cross-coupling reactions.
Collapse
Affiliation(s)
- Fen Zhao
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Mehdi Abdellaoui
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Wided Hagui
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Maria Ballarin-Marion
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Jérôme Berthet
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, 59000, Lille, France
| | - Vincent Corcé
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Stéphanie Delbaere
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, 59000, Lille, France
| | - Héloïse Dossmann
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Agathe Espagne
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, Rue Lhomond, 75005, Paris, France
| | - Jérémy Forté
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Ludovic Jullien
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, Rue Lhomond, 75005, Paris, France
| | - Thomas Le Saux
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, Rue Lhomond, 75005, Paris, France
| | - Virginie Mouriès-Mansuy
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France.
| | - Cyril Ollivier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France.
| | - Louis Fensterbank
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France.
| |
Collapse
|
29
|
Chintawar CC, Bhoyare VW, Mane MV, Patil NT. Enantioselective Au(I)/Au(III) Redox Catalysis Enabled by Chiral (P,N)-Ligands. J Am Chem Soc 2022; 144:7089-7095. [PMID: 35436097 DOI: 10.1021/jacs.2c02799] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Presented herein is the first report of enantioselective Au(I)/Au(III) redox catalysis, enabled by a newly designed hemilabile chiral (P,N)-ligand (ChetPhos). The potential of this concept has been demonstrated by the development of enantioselective 1,2-oxyarylation and 1,2-aminoarylation of alkenes which provided direct access to the medicinally relevant 3-oxy- and 3-aminochromans (up to 88% yield and 99% ee). DFT studies were carried out to unravel the enantiodetermining step, which revealed that the stronger trans influence of phosphorus allows selective positioning of the substrate in the C2-symmetric chiral environment present around nitrogen, imparting a high level of enantioselectivity.
Collapse
Affiliation(s)
- Chetan C Chintawar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Vivek W Bhoyare
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Manoj V Mane
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 025, India.,KAUST Catalysis Centre, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| |
Collapse
|
30
|
Di Terlizzi L, Scaringi S, Raviola C, Pedrazzani R, Bandini M, Fagnoni M, Protti S. Visible Light-Driven, Gold(I)-Catalyzed Preparation of Symmetrical (Hetero)biaryls by Homocoupling of Arylazo Sulfones. J Org Chem 2022; 87:4863-4872. [PMID: 35316603 PMCID: PMC8981317 DOI: 10.1021/acs.joc.2c00225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Indexed: 01/02/2023]
Abstract
The preparation of symmetrical (hetero)biaryls via arylazo sulfones has been successfully carried out upon visible light irradiation in the presence of PPh3AuCl as the catalyst. The present protocol led to the efficient synthesis of a wide range of target compounds in an organic-aqueous solvent under photocatalyst-free conditions.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Simone Scaringi
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
- Department
of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Carlotta Raviola
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Riccardo Pedrazzani
- Dipartimento
di Chimica ″Giacomo Ciamician″, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Marco Bandini
- Dipartimento
di Chimica ″Giacomo Ciamician″, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Stefano Protti
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
31
|
Shibata T, Nagai R, Okazaki S, Nishibe S, Ito M. Synthesis of NHC Ligands Containing a Sulfoxide Moiety and Their Use in Cross-Coupling via a Au(I)/(III) Catalytic Cycle. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takanori Shibata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Rikako Nagai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Sari Okazaki
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Shun Nishibe
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Mamoru Ito
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
32
|
Xu J, Ma X, Liu C, Zhang D. Density Functional Theory Study of Gold-Catalyzed 1,2-Diarylation of Alkenes: π-Activation versus Migratory Insertion Mechanisms. J Org Chem 2022; 87:4078-4087. [PMID: 35232016 DOI: 10.1021/acs.joc.1c02861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Density functional theory calculations are carried out to better understand the first gold-catalyzed 1,2-diarylation reactions of alkenes reported in the recent literature. The calculations on two representative reactions, aryl alkene/aryl iodide coupling pair (the aryl-I bond is located outside the aryl alkene) versus iodoaryl alkene/indole coupling pair (the aryl-I bond is located in the aryl alkene), confirm that the reaction involves a π-activation mechanism rather than the general migratory insertion mechanism in previously known metal catalysis by Pd, Ni, and Cu complexes. Theoretical results rationalize the regioselectivity of the reactions controlled by the aryl-I bond position (intermolecular or intramolecular) and also the ligand and substituent effects on the reactivity.
Collapse
Affiliation(s)
- Jihong Xu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Xuexiang Ma
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Chengbu Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
33
|
Pérez-Sánchez JC, HERRERA RAQUELPEREZ, Gimeno MC. Ferrocenyl gold complexes as efficient catalysts. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - M. Concepción Gimeno
- Instituto de Síntesis Química y Catálisis Homogénea, CSIC-Universidad de Zaragoza Química Inorgánica Pedro Cerbuna, 12 50009 Zaragoza SPAIN
| |
Collapse
|
34
|
Waniek SD, Förster C, Heinze K. Protic Ferrocenyl Acyclic Diamino Carbene Gold(I) Complexes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sven D. Waniek
- Department of Chemistry Johannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Christoph Förster
- Department of Chemistry Johannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Katja Heinze
- Department of Chemistry Johannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
35
|
Rodriguez J, Vesseur D, Tabey A, Mallet-Ladeira S, Miqueu K, Bourissou D. Au(I)/Au(III) Catalytic Allylation Involving π-Allyl Au(III) Complexes. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jessica Rodriguez
- Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069) CNRS/Université Paul Sabatier 118 Route de Narbonne, 31062 Cedex 09, Toulouse, France
| | - David Vesseur
- Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069) CNRS/Université Paul Sabatier 118 Route de Narbonne, 31062 Cedex 09, Toulouse, France
| | - Alexis Tabey
- Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069) CNRS/Université Paul Sabatier 118 Route de Narbonne, 31062 Cedex 09, Toulouse, France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (FR 2599) 118 Route de Narbonne, 31062 Cedex 09, Toulouse, France
| | - Karinne Miqueu
- CNRS/Université de Pau et des Pays de l’Adour, E2S-UPPA Institut des Sciences Analytiques et Physico-Chimie pour l’Environnement et les Matériaux (IPREM, UMR 5254) Hélioparc, 2 Avenue du Président Angot, 64053 Cedex 09, Pau, France
| | - Didier Bourissou
- Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069) CNRS/Université Paul Sabatier 118 Route de Narbonne, 31062 Cedex 09, Toulouse, France
| |
Collapse
|
36
|
Font P, Valdés H, Guisado-Barrios G, Ribas X. Hemilabile MIC^N ligands allow oxidant-free Au(I)/Au(III) arylation-lactonization of γ-alkenoic acids. Chem Sci 2022; 13:9351-9360. [PMID: 36093006 PMCID: PMC9384699 DOI: 10.1039/d2sc01966c] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022] Open
Abstract
Oxidant-free Au-catalyzed reactions are emerging as a new synthetic tool for innovative organic transformations. Oxidant-free Au-catalyzed reactions are emerging as a new synthetic tool for innovative organic transformations. Still, a deeper mechanistic understanding is needed for a rational design of these processes. Here we describe the synthesis of two Au(i) complexes bearing bidentated hemilabile MIC^N ligands, [AuI(MIC^N)Cl], and their ability to stabilize square-planar Au(iii) species (MIC = mesoionic carbene). The presence of the hemilabile N-ligand contributed to stabilize the ensuing Au(iii) species acting as a five-membered ring chelate upon its coordination to the metal center. The Au(iii) complexes can be obtained either by using external oxidants or, alternatively, by means of feasible oxidative addition with strained biphenylene Csp2–Csp2 bonds as well as with aryl iodides. Based on the fundamental knowledge gained on the redox properties on these Au(i)/Au(iii) systems, we successfully develop a novel Au(i)-catalytic procedure for the synthesis of γ-substituted γ-butyrolactones through the arylation-lactonization reaction of the corresponding γ-alkenoic acid. The oxidative addition of the aryl iodide, which in turn is allowed by the hemilabile nature of the MIC^N ligand, is an essential step for this transformation. A novel hemilabile MIC^N ligand-based Au(i)-catalytic procedure for the synthesis of γ-substituted γ-butyrolactones through the arylation-lactonization reaction of the corresponding γ-alkenoic acid is presented.![]()
Collapse
Affiliation(s)
- Pau Font
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi Girona E-17003 Catalonia Spain
| | - Hugo Valdés
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi Girona E-17003 Catalonia Spain
| | - Gregorio Guisado-Barrios
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC Zaragoza 50009 Spain
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi Girona E-17003 Catalonia Spain
| |
Collapse
|
37
|
Cadge JA, Bower JF, Russell CA. A Systematic Study of the Effects of Complex Structure on Aryl Iodide Oxidative Addition at Bipyridyl‐Ligated Gold(I) Centers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jamie A. Cadge
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS United Kingdom
| | - John F. Bower
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS United Kingdom
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD United Kingdom
| | - Christopher A. Russell
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS United Kingdom
| |
Collapse
|
38
|
Cadge JA, Bower JF, Russell CA. A Systematic Study of the Effects of Complex Structure on Aryl Iodide Oxidative Addition at Bipyridyl-Ligated Gold(I) Centers. Angew Chem Int Ed Engl 2021; 60:24976-24983. [PMID: 34533267 PMCID: PMC9298241 DOI: 10.1002/anie.202108744] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/14/2021] [Indexed: 01/30/2023]
Abstract
A combined theoretical and experimental approach has been used to study the unusual mechanism of oxidative addition of aryl iodides to [bipyAu(C2 H4 )]+ complexes. The modular nature of this system allowed a systematic assessment of the effects of complex structure. Computational comparisons between cationic gold and the isolobal (neutral) Pd0 and Pt0 complexes revealed similar mechanistic features, but with oxidative addition being significantly favored for the group 10 metals. Further differences between Au and Pd were seen in experimental studies: studying reaction rates as a function of electronic and steric properties showed that ligands bearing more electron-poor functionality increase the rate of oxidative addition; in a complementary way, electron-rich aryl iodides give faster rates. This divergence in mechanism compared to Pd suggests that Ar-X oxidative addition with Au can underpin a broad range of new or complementary transformations.
Collapse
Affiliation(s)
- Jamie A. Cadge
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUnited Kingdom
| | - John F. Bower
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUnited Kingdom
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| | | |
Collapse
|
39
|
Li J, Shi H, Zhang S, Rudolph M, Rominger F, Hashmi ASK. Switchable Divergent Synthesis in Gold-Catalyzed Difunctionalizations of o-Alkynylbenzenesulfonamides with Aryldiazonium Salts. Org Lett 2021; 23:7713-7717. [PMID: 34569242 DOI: 10.1021/acs.orglett.1c02621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gold-catalyzed difunctionalizations of o-alkynylbenzenesulfonamides with aryldiazonium salts are reported herein. Upon irradiation with the blue LEDs, benzosultam products were formed via aminoarylation accompanied by the release of N2. Without irradiation, aryldiazonium salts were engaged as efficient electrophiles, facilitating electrophilic deaurations of the vinyl-Au(I) intermediates, followed by tautomerization to give the N-aryl-substituted α-imino (E)-hydrazones. The regioselectivities of 6-endo-dig and 5-exo-dig cyclizations were excellent.
Collapse
Affiliation(s)
- Jun Li
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Hongwei Shi
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Shan Zhang
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Matthias Rudolph
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - A Stephen K Hashmi
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.,Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
40
|
Medina-Mercado I, Colin-Molina A, Barquera-Lozada JE, Rodríguez-Molina B, Porcel S. Gold-Catalyzed Ascorbic Acid-Induced Arylative Carbocyclization of Alkynes with Aryldiazonium Tetrafluoroborates. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ignacio Medina-Mercado
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| | - Abraham Colin-Molina
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| | - José Enrique Barquera-Lozada
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| | - Braulio Rodríguez-Molina
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| | - Susana Porcel
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|