1
|
Meleschko D, Palui P, Gomila RM, Schnakenburg G, Filippou AC, Frontera A, Bismuto A. Light-Dependent Reactivity of Heavy Pnictogen Double Bonds. Angew Chem Int Ed Engl 2024; 63:e202405400. [PMID: 38727609 DOI: 10.1002/anie.202405400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Indexed: 06/16/2024]
Abstract
The chemistry of light dipnictenes has been widely investigated in the last century with remarkable achievements especially for azobenzene derivatives. In contrast, distibenes and dibismuthenes are relatively rare and show very limited reactivity. Herein, we have designed a protocol using visible light to enhance the reactivity of heavy dipnictenes. Exploiting the distinctive π-π* transition, we have been able to isolate unique examples of dipnictene-cobalt complexes. The reactivity of the distibene complex was further exploited using red light in the presence of a diazoolefin to access an unusual four-membered bicyclo[1.1.0]butane analog, containing only a single carbon atom. These findings set the bases to a conceptually new strategy in heavy element double bonds chemistry where visible light is at the front seat of bond activation.
Collapse
Affiliation(s)
- Daniel Meleschko
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Prasenjit Palui
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Rosa M Gomila
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122, Palma (Baleares), Spain
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Alexander C Filippou
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122, Palma (Baleares), Spain
| | - Alessandro Bismuto
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| |
Collapse
|
2
|
Weinert HM, Wölper C, Radović A, Cutsail GE, Siera H, Haberhauer G, Schulz S. From Neutral Diarsenes to Diarsene Radical Ions and Diarsene Dications. Chemistry 2024; 30:e202400204. [PMID: 38391392 DOI: 10.1002/chem.202400204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 02/24/2024]
Abstract
Diarsene [L(MeO)GaAs]2 (L=HC[C(Me)N(Ar)]2, Ar=2,6-iPr2C6H3, 4) reacts with MeOTf and MeNHC (MeNHC=1,3,4,5-tetra-methylimidazol-2-ylidene) to the diarsene [L(TfO)GaAs]2 (5) and the carbene-coordinated diarsene [L(MeO)GaAsAs(MeNHC)Ga(OMe)L] (6). The NHC-coordination results in an inversion of the redox properties of the diarsene 4, which shows only a reversible reduction event at E1/2=-2.06 V vs Fc0/+1, whereas the carbene-coordinated diarsene 6 shows a reversible oxidation event at E1/2=-1.31 V vs Fc0/+1. Single electron transfer reactions of 4 and 6 yielded [K[2.2.2.]cryp][L(MeO)GaAs]2 (8) and [L(MeO)GaAsAs(MeNHC)-Ga(OMe)L][B(C6F5)4] (9) containing the radical anion [L(MeO)GaAs]2⋅- (8⋅-) and the NHC-coordinated radical cation [L(MeO)GaAsAs(MeNHC)Ga(OMe)L]⋅+ (9⋅+), respectively, while the salt-elimination reaction of the triflate-coordinated diarsene 5 with Na[B(C6F5)4] gave [LGaAs]2[B(C6F5)4]2 (11) containing the dication [LGaAs]2 2+ (112+). Compounds 1-11 were characterized by 1H and 13C NMR, EPR (8, 9), IR, and UV-Vis spectroscopy and by single crystal X-ray diffraction (sc-XRD). DFT calculations provided a detailed understanding of the electronic nature of the diarsenes (4, 6) and the radical ions (8⋅-, 9⋅+), respectively.
Collapse
Affiliation(s)
- Hanns Micha Weinert
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Aleksa Radović
- Max Planck Institute for Chemical Energy Conversion (CEC), Stiftstraße 34-36, 45470, Mülheim a. d. Ruhr, Germany
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion (CEC), Stiftstraße 34-36, 45470, Mülheim a. d. Ruhr, Germany
| | - Hannah Siera
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Gebhard Haberhauer
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| |
Collapse
|
3
|
Sharma MK, Weinert HM, Wölper C, Schulz S. Gallaphosphene L(Cl)GaPGaL: A novel phosphinidene transfer reagent. Chemistry 2024:e202400110. [PMID: 38235843 DOI: 10.1002/chem.202400110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/19/2024]
Abstract
Gallaphosphene L(Cl)GaPGaL 1 (L=HC[C(Me)N(Ar)]2 ; Ar=2,6-iPr2 C6 H3 ) reacts with N-heterocyclic carbenes R NHC (R NHC=[CMeN(R)]2 C; R=Me, iPr) to R NHC-coordinated phosphinidenes R NHC→PGa(Cl)L (R=Me 2 a, iPr 2 b) and with isonitriles RNC (R=iPr, Cy) to 1,3-phosphaazaallenes L(Cl)GaP=C=N-R (R=iPr 3 a, Cy 3 b), respectively. Quantum chemical calculations reveal that 2 a/2 b possess two localized lone pair of electrons, whereas 3 a/3 b only show one localized lone pair as was reported for gallaphosphene 1. 2 b reacts with 2.5 equivalents of a borane (THF ⋅ BH3 ) to the NHC-stabilized phosphinidene-borane complex [iPr NHC→P(BH2 )]2 (BH3 )3 4 with concomitant formation of LGa(H)Cl 5. 2-5 are characterized by heteronuclear (1 H, 13 C{1 H}, 31 P{1 H}) NMR and IR spectroscopy, elemental analysis, and single crystal X-ray diffraction (sc-XRD).
Collapse
Affiliation(s)
- Mahendra K Sharma
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, D-45141, Essen
| | - Hanns M Weinert
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, D-45141, Essen
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, D-45141, Essen
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, D-45141, Essen
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, D-47057, Duisburg
| |
Collapse
|
4
|
Wu M, Chen W, Wang D, Chen Y, Ye S, Tan G. Triplet bismuthinidenes featuring unprecedented giant and positive zero field splittings. Natl Sci Rev 2023; 10:nwad169. [PMID: 38034397 PMCID: PMC10684269 DOI: 10.1093/nsr/nwad169] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 12/02/2023] Open
Abstract
Isolation of triplet pnictinidenes, which bear two unpaired electrons at the pnictogen centers, has long been a great challenge due to their intrinsic high reactivity. Herein, we report the syntheses and characterizations of two bismuthinidenes MsFluindtBu-Bi (3) and MsFluind*-Bi (4) stabilized by sterically encumbered hydrindacene ligands. They were facilely prepared through reductions of the corresponding dichloride precursors with 2 molar equivalents of potassium graphite. The structural analyses revealed that 3 and 4 contain a one-coordinate bismuth atom supported by a Bi-C single σ bond. As a consequence, the remaining two Bi 6p orbitals are nearly degenerate, and 3 and 4 possess triplet ground states. Experimental characterizations with multinuclear magnetic resonance, magnetometry and near infrared spectroscopy coupled to wavefunction based ab initio calculations concurred to evidence that there exist giant and positive zero field splittings (>4300 cm-1) in their S = 1 ground states. Hence even at room temperature the systems almost exclusively populate the lowest-energy nonmagnetic Ms = 0 level, which renders them seemingly diamagnetic.
Collapse
Affiliation(s)
- Mengyuan Wu
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmin Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yizhen Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gengwen Tan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Sieg G, Fischer MM, Dankert F, Siewert JE, Hering-Junghans C, Werncke G. A Diarsene Radical Anion. Chem Commun (Camb) 2022; 58:9786-9789. [DOI: 10.1039/d2cc03237f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The isolation of the first diarsene radical anion by reduction of a neutral diarsene is presented. Comprehensive characterisation in conjunction with DFT calculations reveal unpaired spin density residing in the...
Collapse
|