1
|
Forero-Doria O, Guzmán L, Venturini W, Zapata-Gomez F, Duarte Y, Camargo-Ayala L, Echeverría C, Echeverría J. O-Alkyl derivatives of ferulic and syringic acid as lipophilic antioxidants: effect of the length of the alkyl chain on the improvement of the thermo-oxidative stability of sunflower oil. RSC Adv 2024; 14:22513-22524. [PMID: 39015663 PMCID: PMC11250141 DOI: 10.1039/d4ra01638f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/23/2024] [Indexed: 07/18/2024] Open
Abstract
Lipid oxidation is the major cause of the deterioration of fat-containing foods, especially those containing polyunsaturated fatty acids (PUFAs). Antioxidant additives of synthetic origin are added to matrices rich in PUFAs, such as sunflower oil (SO). However, there is controversy regarding their safety, and their low solubility in both water and fat has led to the search for new covalent modifications through lipophilicity. This work presents the synthesis of O-alkyl acid derivatives from ferulic and syringic acids and the study of their antioxidant capacity and effect on the thermoxidative degradation of SO. Antioxidant activities were evaluated by employing ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays in a concentration range of 10-100 µg mL-1. The IC50 values for DPPH scavenging activity ranged from 15.61-90.43 µg mL-1. The results of the FRAP assay for both O-alkyl ferulic (3a-f) and syringic (5a-f) series revealed a "cut-off" effect on antioxidant activity in carbon five (C5). Thermoxidation study of additives 3b-c and 5b-c showed a decrease in the slope of extinction coefficients K 232 and K 270 in comparison with SOcontrol. Furthermore, 3c presented higher antioxidant activity than 3b and 1, with a power to decrease the thiobarbituric acid reactive species (TBARS) 6 times higher than SOcontrol at 220 °C. Additives 5b-c exerted a protective effect on the thermoxidation of SO. The results suggest that increasing lipophilic and thermal properties of antioxidants through O-alkyl acid derivatization is an effective strategy for accessing lipophilic antioxidant additives with potential use in food matrices.
Collapse
Affiliation(s)
- Oscar Forero-Doria
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago 9170022 Chile +56-2-27181154
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás Talca 3460000 Chile
| | - Luis Guzmán
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca Maule Talca 3460000 Chile
| | - Whitney Venturini
- Departamento de Ciencias Pre-Clinicas, Facultad de Medicina, Universidad Católica del Maule Talca 3460000 Chile
| | - Felipe Zapata-Gomez
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca Maule Talca 3460000 Chile
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello Av. República 330 Santiago 8370146 Chile
| | - Lorena Camargo-Ayala
- Laboratorio de Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| | - Cesar Echeverría
- ATACAMA-OMICS, Laboratorio de Biología Molecular y Genómica, Facultad de Medicina, Universidad de Atacama 1532502 Copiapó Chile
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago 9170022 Chile +56-2-27181154
| |
Collapse
|
2
|
Muzammil K, Kzar MH, Mohammed F, Mohammed ZI, Hamood SA, Hussein TK, Hanoon SJ, Qasim MT, Hussien Alawadi A, Alsalamy A. Methanol extract of Iraqi Kurdistan Region Daphne mucronata as a potent source of antioxidant, antimicrobial, and anticancer agents for the synthesis of novel and bioactive polyvinylpyrrolidone nanofibers. Front Chem 2023; 11:1287870. [PMID: 37954957 PMCID: PMC10634434 DOI: 10.3389/fchem.2023.1287870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023] Open
Abstract
In this study, aqueous, ethanol, methanol, and hexane extracts from Iraqi Kurdistan Region Daphne mucronata were prepared due to the numerous applications and development of nanofibers in biological and medical fields, including food packaging, enzyme stabilization, and wound dressing. In the initial evaluation of the extracts, the antioxidant properties against DPPH, antimicrobial properties against 3-gram-positive bacterial species, 3-gram negative bacterial species, 3-common bacterial species between aquatic and human, and 3-fungal species, and anticancer properties against breast cancer cells were performed. The results proved that the methanol extract has the highest antimicrobial, antifungal, antioxidant, and anticancer properties. After identifying the compounds of prepared methanol extract using GC/MS, polyvinylpyrrolidone nanofibers containing methanol extract of Daphne mucronata were prepared. The structure and characteristics of prepared nanofibers were confirmed and determined using FTIR, TGA, BET, SEM, flexural strength, compressive strength, and hydrophilicity. Synthesized polyvinylpyrrolidone nanofibers containing methanol extract of D. mucronata were subjected to antimicrobial properties on the strains studied in methanol extract of D. mucronata. The antimicrobial properties of synthesized polyvinylpyrrolidone nanofibers containing methanol extract of D. mucronata were compared. The results showed that synthesized polyvinylpyrrolidone nanofibers containing methanol extract of D. mucronata have the potential to introduction bioactive natural synthesis nanoparticles.
Collapse
Affiliation(s)
- Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | - Mazin Hadi Kzar
- College of Physical Education and Sport Sciences, Al-Mustaqbal University, Hillah, Iraq
| | - Faraj Mohammed
- Department of Medical Laboratories, Al-Manara College For Medical Sciences, Maysan, Iraq
| | | | - Sarah A. Hamood
- Department of Medical Engineering, Al-Esraa University College, Baghdad, Iraq
| | - Talib Kh. Hussein
- Department of Medical Laboratories, Al-Hadi University College, Baghdad, Iraq
| | - Saheb Jubeir Hanoon
- Department of Medical Laboratories, College of Health and Medical Technology, Sawa University, Almuthana, Iraq
| | - Maytham T. Qasim
- Department of Anesthesia, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja’afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
3
|
So V, Poul P, Oeung S, Srey P, Mao K, Ung H, Eng P, Heim M, Srun M, Chheng C, Chea S, Srisongkram T, Weerapreeyakul N. Bioactive Compounds, Antioxidant Activities, and HPLC Analysis of Nine Edible Sprouts in Cambodia. Molecules 2023; 28:molecules28062874. [PMID: 36985845 PMCID: PMC10059773 DOI: 10.3390/molecules28062874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The non-nutritional health benefits of sprouts are unconfirmed. Thus, nine sprout methanolic extracts were tested for phytoconstituents and antioxidant activity. The TPC, TCC, TFC, TAC, and TALC were measured. ABTS and DPPH radical scavenging and ferric-reducing antioxidant power assays were used to assess the antioxidant activity. HPLC detected gallic acid, vanillin, syringic acid, chlorogenic acid, caffeic acid, and rutin in the extracts. The sprout extracts contained six compounds, with caffeic acid being the most abundant. Gallic acid, syringic acid, chlorogenic acid, caffeic acid, vanillin, and rutin were highest in soybean, black sesame, mustard, sunflower, white radish, and black sesame sprouts, respectively. Sunflower sprouts had the highest level of TCC while soybean sprouts had the highest level of TFC, Taiwanese morning glory had the highest level of TPC, mustard sprouts had the highest level of TALC, and black sesame sprouts had the highest level of TAC. Taiwanese morning glories scavenged the most DPPH and ABTS radicals. Colored and white radish sprouts had similar ferric-reducing antioxidant power. Antioxidation mechanisms varied by compound. Our findings demonstrated that sprouts have biological effects, and their short time for mass production offers an alternative food source for health benefits, and that they are useful for future research development of natural products and dietary supplements.
Collapse
Affiliation(s)
- Visessakseth So
- Division of Pharmacognosy, Faculty of Pharmacy, University of Puthisastra, Phnom Penh 120204, Cambodia
| | - Philip Poul
- Division of Pharmacognosy, Faculty of Pharmacy, University of Puthisastra, Phnom Penh 120204, Cambodia
| | - Sokunvary Oeung
- Division of Toxicology, Faculty of Pharmacy, University of Puthisastra, Phnom Penh 120204, Cambodia
| | - Pich Srey
- Division of Pharmacognosy, Faculty of Pharmacy, University of Puthisastra, Phnom Penh 120204, Cambodia
| | - Kimchhay Mao
- Division of Basic Pharmaceutical Sciences, Faculty of Pharmacy, University of Puthisastra, Phnom Penh 120204, Cambodia
| | - Huykhim Ung
- Division of Basic Pharmaceutical Sciences, Faculty of Pharmacy, University of Puthisastra, Phnom Penh 120204, Cambodia
| | - Poliny Eng
- Division of Basic Pharmaceutical Sciences, Faculty of Pharmacy, University of Puthisastra, Phnom Penh 120204, Cambodia
| | - Mengkhim Heim
- Division of Pharmacology, Faculty of Pharmacy, University of Puthisastra, Phnom Penh 120204, Cambodia
| | - Marnick Srun
- Department of Technology Research and Development, National Institute of Science, Technology and Innovation, Phnom Penh 120601, Cambodia
| | - Chantha Chheng
- Division of Pharmaceutical Technology, Faculty of Pharmacy, University of Puthisastra, Phnom Penh 120204, Cambodia
| | - Sin Chea
- Faculty of Pharmacy, University of Puthisastra, Phnom Penh 120204, Cambodia
| | - Tarapong Srisongkram
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natthida Weerapreeyakul
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
4
|
Sallam IE, Rolle-Kampczyk U, Schäpe SS, Zaghloul SS, El-Dine RS, Shao P, von Bergen M, Farag MA. Evaluation of Antioxidant Activity and Biotransformation of Opuntia Ficus Fruit: The Effect of In Vitro and Ex Vivo Gut Microbiota Metabolism. Molecules 2022; 27:7568. [PMID: 36364395 PMCID: PMC9653959 DOI: 10.3390/molecules27217568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 09/05/2023] Open
Abstract
Opuntia ficus-indica biological effects are attributed to several bioactive metabolites. However, these actions could be altered in vivo by biotransformation reactions mainly via gut microbiota. This study assessed gut microbiota effect on the biotransformation of O. ficus-indica metabolites both in vitro and ex vivo. Two-time aliquots (0.5 and 24 h) from the in vitro assay were harvested post incubation of O. ficus-indica methanol extract with microbial consortium, while untreated and treated samples with fecal bacterial culture from the ex vivo assay were prepared. Metabolites were analyzed using UHPLC-QTOF-MS, with flavonoid glycosides completely hydrolyzed in vitro at 24 h being converted to two major metabolites, 3-(4-hydroxyphenyl)propanoic acid and phloroglucinol, concurrent with an increase in the gallic acid level. In case of the ex vivo assay, detected flavonoid glycosides in untreated sample were completely absent from treated counterpart with few flavonoid aglycones and 3-(4-hydroxyphenyl)propanoic acid in parallel to an increase in piscidic acid. In both assays, fatty and organic acids were completely hydrolyzed being used as energy units for bacterial growth. Chemometric tools were employed revealing malic and (iso)citric acids as the main discriminating metabolites in vitro showing an increased abundance at 0.5 h, whereas in ex vivo assay, (iso)citric, aconitic and mesaconic acids showed an increase at untreated sample. Piscidic acid was a significant marker for the ex vivo treated sample. DPPH, ORAC and FRAP assays were further employed to determine whether these changes could be associated with changes in antioxidant activity, and all assays showed a decline in antioxidant potential post biotransformation.
Collapse
Affiliation(s)
- Ibrahim E. Sallam
- Pharmacognosy Department, College of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza 12566, Egypt
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research—UFZ GmbH, 04318 Leipzig, Germany
| | - Stephanie Serena Schäpe
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research—UFZ GmbH, 04318 Leipzig, Germany
| | - Soumaya S. Zaghloul
- Pharmacognosy Department, College of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza 12566, Egypt
| | - Riham S. El-Dine
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research—UFZ GmbH, 04318 Leipzig, Germany
- German Centre for Integrative Biodiversity Research, (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
5
|
Carboxymethylation of Desmodium styracifolium Polysaccharide and Its Repair Effect on Damaged HK-2 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2082263. [PMID: 35993017 PMCID: PMC9391130 DOI: 10.1155/2022/2082263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022]
Abstract
Objective Desmodium styracifolium is the best traditional medicine for treating kidney calculi in China. This study is aimed at increasing the carboxyl (-COOH) content of D. styracifolium polysaccharide (DSP0) and further increasing its antistone activity. Methods DSP0 was carboxymethylated with chloroacetic acid at varying degrees. Then, oxalate-damaged HK-2 cells were repaired with modified polysaccharide, and the changes in biochemical indices before and after repair were detected. Results Three modified polysaccharides with 7.45% (CDSP1), 12.2% (CDSP2), and 17.7% (CDSP3) -COOH are obtained. Compared with DSP0 (-COOH content = 1.17%), CDSPs have stronger antioxidant activity in vitro and can improve the vitality of damaged HK-2 cells. CDSPs repair the cell morphology and cytoskeleton, increase the cell healing ability, reduce reactive oxygen species and nitric oxide levels, increase mitochondrial membrane potential, limit autophagy level to a low level, reduce the eversion of phosphatidylserine in the cell membrane, weaken the inhibition of oxalate on DNA synthesis, restore cell cycle to normal state, promote cell proliferation, and reduce apoptosis/necrosis. Conclusion The carboxymethylation modification of DSP0 can improve its antioxidant activity and enhance its ability to repair damaged HK-2 cells. Among them, CDSP2 with medium -COOH content has the highest activity of repairing cells, whereas CDSP3 with the highest -COOH content has the highest antioxidant activity. This difference may be related to the active environment of polysaccharide and conformation of the polysaccharide and cell signal pathway. This result suggests that Desmodium styracifolium polysaccharide with increased -COOH content may have improved potential treatment and prevention of kidney calculi.
Collapse
|
6
|
Electrochemical and Mechanistic Study of Superoxide Scavenging by Pyrogallol in N,N-Dimethylformamide through Proton-Coupled Electron Transfer. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Scavenging of electrogenerated superoxide radical anion (O2•−) by pyrogallol (PyH3) was investigated on the basis of cyclic voltammetry and in situ electrolytic electron spin resonance spectrum in N,N-dimethylformamide with the aid of density functional theory (DFT) calculations. Quasi-reversible dioxygen/O2•− redox couple was modified by the presence of PyH3, suggesting that O2•− was scavenged by PyH3 through proton-coupled electron transfer (PCET) involving two proton transfer and one electron transfer. DFT calculation suggested that the pre-reactive formation of a hydrogen-bond (HB) complex and the subsequent concerted two-proton-coupled electron transfer characterized by catechol moiety in PyH3 is plausible mechanism that embodies the superior kinetics of the O2•− scavenging by PyH3 as shown in the electrochemical results. Furthermore, it was clarified that the three hydroxyl groups of PyH3 promote the formation of HB complex, in comparative analyses using related compounds, resulting in the promotion of the O2•− scavenging.
Collapse
|
7
|
Wu IT, Chu YH, Huang YR, Chen CC, Ding SJ. Antibacterial ability and osteogenic activity of polyphenols-tailored calcium silicate bone cement. J Mater Chem B 2022; 10:4640-4649. [DOI: 10.1039/d2tb00944g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calcium silicate-based cement (CSC) has attracted much interest because of its favourable osteogenic effect supporting its clinical use. Despite CSC has antibacterial activity, this activity still needs to be improved...
Collapse
|
8
|
Kongdang P, Dukaew N, Pruksakorn D, Koonrungsesomboon N. Biochemistry of Amaranthus polyphenols and their potential benefits on gut ecosystem: A comprehensive review of the literature. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114547. [PMID: 34425138 DOI: 10.1016/j.jep.2021.114547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Amaranthus is phytonutrients-rich plant distributed worldwide and has been recognized as having medicinal value in traditional use against several diseases and conditions. There are a large amount of research data on the polyphenol profiles of Amaranthus plants and their links with potential benefits against gastrointestinal disorders. AIM OF THE REVIEW This review article aims to provide a comprehensive review of Amaranthus phenolic compounds and their microbial metabolites, as well as the biological and/or pharmacological effects of those compounds/metabolites. METHODOLOGY The relevant information about the genus Amaranthus was collected from various sources and databases, including Google Scholar, Google Books, PubMed, Web of Science, Scopus, Science Direct, and other internet sources. The World Flora Online (2021) database was used to verify the scientific names of the plants. RESULTS Comprehensive review of identified compounds in Amaranthus plants revealed the presence of phenolic acids, flavonoids, and coumarins in each part of the plants. The biotransformation by gut microbiota enzymes prominently produces diverse bioactive metabolites that are potentially active than their precursors. Lines of the evidence support the beneficial roles of Amaranthus extracts in several gastrointestinal diseases, particularly with the polar extracts of several plant parts. Dietary fibers in Amaranthus plants also coordinate the alteration of gut microbiota-related metabolisms and may be beneficial to certain gastrointestinal disorders in particular, such as constipation. CONCLUSIONS Amaranthus plants are rich in polyphenols and dietary fibers. Several microbial metabolites are biologically active, so alteration of gut microbiota is largely linked to the metabolic feature of the plants. Based on the evidence available to date, several Amaranthus plants containing a combination of phytonutrients, particularly polyphenols and dietary fibers, may be a promising candidate that is of interest to be further developed for use in the treatment of certain gastrointestinal conditions/disorders.
Collapse
Affiliation(s)
- Patiwat Kongdang
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Nahathai Dukaew
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand.
| | - Nut Koonrungsesomboon
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
9
|
Farhoosh R. New insights into the kinetic and thermodynamic evaluations of lipid peroxidation. Food Chem 2021; 375:131659. [PMID: 34865926 DOI: 10.1016/j.foodchem.2021.131659] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/01/2021] [Accepted: 11/20/2021] [Indexed: 11/27/2022]
Abstract
Simultaneous evaluations over the whole practical range of peroxidation, including the initiation and propagation phases, provide more informative and reliable data than single-parameter analyses being mostly employed only over the course of the initiation phase. Besides an overview on the dominant mechanisms governing the initiation and propagation phases, this article highlights a number of unifying parameters that represent inclusively the two phases. Then, the reliable method to calculate induction period and critical reverse micelle concentration of lipid hydroperoxides as the two interstitial parameters when transitioning from the initiation to the propagation phase is reviewed. Next, a reconsidered form of the conventional methodology on the kinetics of chain-breaking antioxidants is presented. After that, the Arrhenius kinetic and thermodynamic Eyring-Polanyi parameters calculated from the initiation, composite, and decomposition rate constants are compared in order to assess oxidative stabilities. Finally, shelf-life predictions based on a number of proposed end-points of peroxidation are addressed.
Collapse
Affiliation(s)
- Reza Farhoosh
- Ferdowsi University of Mashhad, Faculty of Agriculture, Department of Food Science and Technology, P.O. Box: 91775-1163, Mashhad, Iran.
| |
Collapse
|
10
|
Kaur B, Maity HS, Rakshit M, Srivastav PP, Nag A. Cryo-Ground Mango Kernel Powder: Characterization, LC-MS/MS Profiling, Purification of Antioxidant-Rich Gallic Acid, and Molecular Docking Study of Its Major Polyphenols as Potential Inhibitors against SARS-CoV-2 M pro. ACS FOOD SCIENCE & TECHNOLOGY 2021; 1:1776-1786. [PMID: 37556283 PMCID: PMC8525339 DOI: 10.1021/acsfoodscitech.1c00179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022]
Abstract
Mango processing waste (MPW) is an inexpensive and rich source of valuable substances. Hence, the mango kernel powder (MKP) from four cultivars (Chausa, Neelum, Barahmasi, and Dashehari) was characterized for the selection of the best cultivar. The MKP of the best cultivar (Dashehari) was analyzed for the profiling of polyphenols using LC-MS/MS in both modes of ionization (positive and negative) and indicated the presence of 50 compounds with specific retention times. After identification, gallic acid (GA), an important industrial compound, was targeted and purified followed by its confirmation using NMR (600 MHz) and HRMS. The antioxidant activity (IC50: 1.96 μg/mL) of extracted GA proposes its use as a natural antioxidant in novel food formulations. Additionally, SARS-CoV-2 main protease (Mpro) was selected for molecular docking based virtual screening of seven major polyphenols (MKP), and the results were compared with hydroxychloroquine. The docking scores of targeted polyphenols revealed that three compounds (epicatechin, mangiferin, and quercetin) exhibited appreciable proteolytic activity against Mpro. In this way, it is a favorable approach toward environmental safety on the standpoint of green chemistry owing to the use of food processing waste and elimination of the waste dumping/composting problems.
Collapse
Affiliation(s)
- Bhupinder Kaur
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Himadri Sekhar Maity
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Madhulekha Rakshit
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Ahindra Nag
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
11
|
Structure–antioxidant activity relationships of gallic acid and phloroglucinol. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01045-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Zou GJ, Huang WB, Sun XY, Tang GH, Ouyang JM. Carboxymethylation of Corn Silk Polysaccharide and Its Inhibition on Adhesion of Nanocalcium Oxalate Crystals to Damaged Renal Epithelial Cells. ACS Biomater Sci Eng 2021; 7:3409-3422. [PMID: 34170660 DOI: 10.1021/acsbiomaterials.1c00176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to explore the repair effect of carboxymethyl-modified corn silk polysaccharide (CSP) on oxidatively damaged renal epithelial cells and the difference in adhesion between cells and calcium oxalate crystals. The CSP was degraded and modified through carboxymethylation. An oxidatively damaged cell model was constructed by oxalate damage to human kidney proximal tubular epithelial (HK-2) cells. Then, the damaged cells were repaired by modified polysaccharides, and the changes in biochemical indexes and adhesion ability between cells and crystals before and after repair were detected. Four modified polysaccharides with carboxyl group (-COOH) contents of 3.92% (CSP0), 7.75% (CCSP1), 12.90% (CCSP2), and 16.38% (CCSP3) were obtained. Compared with CSP0, CCSPs had stronger antioxidant activity, could repair damaged HK-2 cells, and could reduce phosphorylated serine eversion on the cell membrane, the expression of osteopontin (OPN) and Annexin A1, and crystal adhesion. However, its effect on the expression of hyaluronic acid synthase was not substantial. The carboxymethyl modification of the CSP can improve its ability to repair cells and inhibit crystal adhesion and aggregation. A high carboxymethylation degree results in strong polysaccharide activity. CCSPs are expected to reduce the risk of kidney stone formation and recurrence.
Collapse
Affiliation(s)
- Guo-Jun Zou
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Wei-Bo Huang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Xin-Yuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510230, Guangdong, China
| | - Gu-Hua Tang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
13
|
Initiation and propagation kinetics of inhibited lipid peroxidation. Sci Rep 2021; 11:6864. [PMID: 33767264 PMCID: PMC7994636 DOI: 10.1038/s41598-021-86341-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/15/2021] [Indexed: 11/12/2022] Open
Abstract
Effect of hydroxytyrosol (HT) and tert-butylhydroquinone (TBHQ) on the kinetics of lipid hydroperoxides (LOOH) accumulation during the initiation and propagation peroxidations of canola and fish oils at 60 °C was studied. The initiation kinetics of the inhibited peroxidation indicated considerable relative activities, A, for HT and TBHQ in the canola (> 3200 and > 27,000, respectively) and fish (> 120 and > 5000, respectively) oils. The critical concentrations of LOOH reverse micelles (CMCL = 33 mM and 57 mM in the canola and fish, respectively, oils) significantly decreased, on average, to about one-third and 8% of the initial values for HT and TBHQ, respectively. Interestingly, the propagation kinetics of the inhibited peroxidation demonstrated that the antioxidants were still able to inhibit peroxidation, so that the relative propagation oxidizability parameter Rn′ was significantly improved to < 0.5 for HT and to < 0.2 for TBHQ in the canola and fish, respectively, oils.
Collapse
|
14
|
Hossen K, Das KR, Okada S, Iwasaki A, Suenaga K, Kato-Noguchi H. Allelopathic Potential and Active Substances from Wedelia Chinensis (Osbeck). Foods 2020; 9:foods9111591. [PMID: 33147830 PMCID: PMC7692298 DOI: 10.3390/foods9111591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022] Open
Abstract
Wedelia chinensis (Asteraceae) is a wetland herb native to India, China, and Japan. It is a valuable medicinal plant recorded to have pharmaceutical properties. However, the phytotoxic potential of Wedelia chinensis has not yet been examined. Thus, we carried out this study to establish the allelopathic effects of Wedelia chinensis and to identify its phytotoxic substances. Extracts of Wedelia chinensis exhibited high inhibitory activity against the root and shoot growth of cress, alfalfa, rapeseed, lettuce, foxtail fescue, Italian ryegrass, timothy, and barnyard grass. The inhibition was varied with species and was dependent on concentrations. The extracts were separated through several purification steps, and the two effective substances were isolated and characterized as vanillic acid and gallic acid using spectral analysis. Vanillic acid and gallic acid significantly arrested the growth of cress and Italian ryegrass seedlings. The concentrations of vanillic acid and gallic acid needed for 50% inhibition (I50 values) of the seedling growth of the cress and Italian ryegrass were 0.04–15.4 and 0.45–6.6 mM, respectively. The findings suggest that vanillic acid and gallic acid may be required for the growth inhibitory activities of Wedelia chinensis.
Collapse
Affiliation(s)
- Kawsar Hossen
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan; (K.H.); (K.R.D.); (S.O.)
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Krishna Rany Das
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan; (K.H.); (K.R.D.); (S.O.)
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
- Department of Entomology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shun Okada
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan; (K.H.); (K.R.D.); (S.O.)
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Arihiro Iwasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan; (A.I.); (K.S.)
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan; (A.I.); (K.S.)
| | - Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan; (K.H.); (K.R.D.); (S.O.)
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
- Correspondence:
| |
Collapse
|
15
|
Antioxidant activity and inhibitory mechanism of γ-oryzanol as influenced by the unsaturation degree of lipid systems. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Mykhailenko O, Korinek M, Ivanauskas L, Bezruk I, Myhal A, Petrikaitė V, El-Shazly M, Lin GH, Lin CY, Yen CH, Chen BH, Georgiyants V, Hwang TL. Qualitative and Quantitative Analysis of Ukrainian Iris Species: A Fresh Look on Their Antioxidant Content and Biological Activities. Molecules 2020; 25:molecules25194588. [PMID: 33050063 PMCID: PMC7582944 DOI: 10.3390/molecules25194588] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 01/13/2023] Open
Abstract
The major groups of antioxidant compounds (isoflavonoids, xanthones, hydroxycinnamic acids) in the rhizome methanol extracts of four Ukrainian Iris sp. (Iris pallida, Iris hungarica, Iris sibirica, and Iris variegata) were qualitatively and quantitatively analyzed using HPLC-DAD and UPLC-MS/MS. Gallic acid, caffeic acid, mangiferin, tectoridin, irigenin, iristectorigenin B, irisolidone, 5,6-dihydroxy-7,8,3',5'-tetramethoxyisoflavone, irisolidone-7-O-β-d-glucopyranoside, germanaism B, and nigricin were recognized by comparing their UV/MS spectra, chromatographic retention time (tR) with those of standard reference compounds. I. hungarica and I. variegata showed the highest total amount of phenolic compounds. Germanaism B was the most abundant component in the rhizomes of I. variegata (7.089 ± 0.032 mg/g) and I. hungarica (6.285 ± 0.030 mg/g). The compound analyses showed good calibration curve linearity (r2 > 0.999) and low detection and quantifications limit. These results validated the method for its use in the simultaneous quantitative evaluation of phenolic compounds in the studied Iris sp. I. hungarica and I. variegata rhizomes exhibited antioxidant activity, as demonstrated by the HPLC-ABTS system and NRF2 expression assay and anti-inflammatory activity on respiratory burst in human neutrophils. Moreover, the extracts showed anti-allergic and cytotoxic effects against cancer cells. Anti-coronavirus 229E and lipid formation activities were also evaluated. In summary, potent antioxidant marker compounds were identified in the examined Iris sp.
Collapse
Affiliation(s)
- Olha Mykhailenko
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4-Valentinivska st., 61168 Kharkiv, Ukraine; (O.M.); (I.B.); (A.M.)
| | - Michal Korinek
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.K.); (B.-H.C.)
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, LT 44307 Kaunas, Lithuania;
| | - Ivan Bezruk
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4-Valentinivska st., 61168 Kharkiv, Ukraine; (O.M.); (I.B.); (A.M.)
| | - Artem Myhal
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4-Valentinivska st., 61168 Kharkiv, Ukraine; (O.M.); (I.B.); (A.M.)
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-50162 Kaunas, Lithuania;
- Institute of Physiology and Pharmacology, Faculty of Medicine, Lithuanian University of Health Sciences, Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania
- Institute of Biotechnology, Life Sciences Centre, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Mohamed El-Shazly
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, the German University in Cairo, Cairo 11835, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo 11566, Egypt
| | - Guan-Hua Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-H.L.); (C.-Y.L.)
| | - Chia-Yi Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-H.L.); (C.-Y.L.)
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Bing-Hung Chen
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.K.); (B.-H.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- The Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Victoriya Georgiyants
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4-Valentinivska st., 61168 Kharkiv, Ukraine; (O.M.); (I.B.); (A.M.)
- Correspondence: (V.G.); (T.-L.H.); Tel.: +380572-67-91-97 (V.G.); +886-3-2118800 (ext. 5523) (T.-L.H.)
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (V.G.); (T.-L.H.); Tel.: +380572-67-91-97 (V.G.); +886-3-2118800 (ext. 5523) (T.-L.H.)
| |
Collapse
|
17
|
Farhoosh R. A reconsidered approach providing kinetic parameters and rate constants to analyze the oxidative stability of bulk lipid systems. Food Chem 2020; 327:127088. [DOI: 10.1016/j.foodchem.2020.127088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 11/30/2022]
|
18
|
Interfacial performance of gallic acid and methyl gallate accompanied by lecithin in inhibiting bulk phase oil peroxidation. Food Chem 2020; 328:127128. [DOI: 10.1016/j.foodchem.2020.127128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
|
19
|
Sachithanandam V, Parthiban A, Lalitha P, Muthukumaran J, Jain M, Elumalai D, Jayabal K, Sridhar R, Ramachandran P, Ramachandran R. Biological evaluation of gallic acid and quercetin derived from Ceriops tagal: insights from extensive in vitro and in silico studies. J Biomol Struct Dyn 2020; 40:1490-1502. [PMID: 32996435 DOI: 10.1080/07391102.2020.1828173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Gallic acid (PubChem CID: 370) and quercetin (PubChem CID: 5280343) are major phenolic compounds in many mangrove plants that have been related to health cure. In the present study, the active fractions namely gallic acid (1) and quercetin (2) were isolated from the methanolic extract of leaves of Ceriops tagal in a Tropical mangrove ecosystem of Andaman and Nicobar Island (ANI), India. The chemical structures were determined by spectroscopic analysis: Fourier-Transform Infrared spectroscopy (FT-IR), 1H, 13C Nuclear Magnetic Resonance (NMR) spectroscopy, and High-resolution mass spectrometry (HRMS). The anticancer activity of isolated compounds (1) and (2) were evaluated by in vitro assays against two human cancer cell lines namely, HeLa (Cervical) and MDA-MB231 (Breast) cancer cells revealed that IC50 values of gallic acid (HeLa: 4.179197 ± 0.45 µg/ml; MDA-MB231: 80.0427 ± 0.19 µg/ml at 24 h) and quercetin (HeLa: 99.914 ± 0.18 µg/ml; MDA-MB231: 18.288382 ± 0.12 µg/ml at 24 h), respectively. Antioxidant properties of gallic acid (1) and quercetin (2) are found to be IC50 value of 0.77 ± 0.41 µg/ml and 1.897 ± 0.81 µg/ml, respectively. Molecular docking results explained that gallic acid (1) and quercetin (2) showed estimated binding free energy (ΔG) of -5.4 and -6.9 kcal/mol towards drug target Bcl-B protein, respectively. The estimated inhibition constant (Ki) for these two molecules are 110 and 8.75 μM, respectively. The MD simulation additionally supported that quercetin molecule is significantly improved the structural stability of Bcl-B protein. The present study provides key insights about the importance of polyphenols, and thus leads to open the therapeutic route for anti-cancer drug discovery process.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- V Sachithanandam
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - A Parthiban
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - P Lalitha
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | | | | | - R Sridhar
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - Purvaja Ramachandran
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - Ramesh Ramachandran
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| |
Collapse
|
20
|
Jisha N, Vysakh A, Vijeesh V, Anand PS, Latha MS. Methanolic Extract of Muntingia Calabura L. Mitigates 1,2-Dimethyl Hydrazine Induced Colon Carcinogenesis in Wistar Rats. Nutr Cancer 2020; 73:2363-2375. [PMID: 32972250 DOI: 10.1080/01635581.2020.1823438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The present study aimed to evaluate the efficacy of methanolic extract of Muntingia calabura L. leaves (MEMC) in ameliorating oxidative stress and inflammation associated with 1,2-dimethyl hydrazine (DMH) induced colon cancer. METHODS The antioxidant enzymes, oxidative stress markers, liver and renal toxicity markers were evaluated. Histopathological examination of colon tissues was carried out with the aid of alcian blue stain and Hematoxylin and Eosin stain. RESULTS MEMC supplementation at doses of 100 and 200 mg/kg body weight of rats causes the antioxidant enzymic levels to retain near to its normal range. Meanwhile the oxidative stress markers, which showed an elevation from its normal level upon DMH administration, gets significantly reduced on MEMC treatment. Histopathological observation also revealed that the severity of colorectal cancer was reduced by the supplementation of MEMC. CONCLUSION The findings from the present study showed that MEMC can exert a potential role to ameliorate the oxidative stress and inflammation associated with colorectal cancer.
Collapse
Affiliation(s)
- Ninan Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - A Vysakh
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - V Vijeesh
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - P S Anand
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - M S Latha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
21
|
Farhoosh R. Critical kinetic parameters and rate constants representing lipid peroxidation as affected by temperature. Food Chem 2020; 340:128137. [PMID: 33027720 DOI: 10.1016/j.foodchem.2020.128137] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 11/29/2022]
Abstract
This study aimed to comparatively investigate the temperature effect on the kinetic parameters and rate constants representing lipid hydroperoxides (LOOH) formation and decomposition during initiation and propagation peroxidations. The initiation phase was characterized by induction period IP, overall initiation rate constant kIP, initiation oxidizability Oi, and the critical reverse micelle concentration of LOOH, CMCL. The propagation phase was characterized by its duration tp, the maximum rate of LOOH accumulation Rmax, maximum LOOH concentration [LOOH]max, propagation oxidizability Rn, composite rate constant kc, and LOOH decomposition rate constant kd. Oi and Rn indicated relatively high dependencies on temperature, respectively. Among the rate constants, kd better highlighted oxidizabilities as affected by temperature. The oxidizabilities had good correspondences with the Arrhenius kinetic (A and Ea) and Eyring thermodynamic (ΔS++ and ΔH++) parameters. The most endergonic reactions (ΔG++>0) were LOOH decompositions, followed by LOOH formations during the propagation and initiation phases, respectively.
Collapse
Affiliation(s)
- Reza Farhoosh
- Ferdowsi University of Mashhad, Faculty of Agriculture, Department of Food Science and Technology, P.O. Box 91775-1163, Mashhad, Iran.
| |
Collapse
|
22
|
Kishikawa N, El-Maghrabey M, Nagamune Y, Nagai K, Ohyama K, Kuroda N. A Smart Advanced Chemiluminescence-Sensing Platform for Determination and Imaging of the Tissue Distribution of Natural Antioxidants. Anal Chem 2020; 92:6984-6992. [PMID: 32316724 DOI: 10.1021/acs.analchem.0c00044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antioxidants have gained marked attention owing to their ability to prevent the oxidation of biological components and to protect the body from reactive oxygen species, thereby maintaining human health. Thus, antioxidant-rich dietary supplements and natural foods can be effective against oxidative stress and can even act as chemopreventive agents. Therefore, a simple and rapid assay for evaluation of antioxidant capacity and assessment of their distribution profile in natural sources is vital. Herein, we report a rapid, innovative chemiluminescence (CL) platform for evaluation and visualization of antioxidant capacity. We found that intense and long-lasting CL was formed upon the redox reaction of quinones, e.g., menadione, with antioxidants, e.g., l-ascorbic acid, in the presence of luminol. The produced CL intensities were proportional to the antioxidants' concentrations with a detection limit of 0.18 μM for the model antioxidant, l-ascorbic acid. As the formed CL was long-lasting, it could be easily captured and detected with a charge-coupled device (CCD) camera. To evaluate the quantification ability of the CCD camera, we developed a smart and fast microplate-based assay based on photographing the generated CL with a cooled CCD camera. The photographed CL intensities were linearly proportional with the antioxidant concentrations, and then the method was applied for photographing multiple food sample extracts. Ultimately, we utilized our method for the distribution profiling of antioxidant capacity in food cut sections. Samples were dipped in luminol and then in quinone, followed by CCD camera photography, without the need for any pulverization/extraction procedure, giving precise antioxidant distribution information.
Collapse
Affiliation(s)
- Naoya Kishikawa
- Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mahmoud El-Maghrabey
- Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yuusuke Nagamune
- Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kaishu Nagai
- School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kaname Ohyama
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto-machi, Nagasaki 852-8588, Japan
| | - Naotaka Kuroda
- Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
23
|
Kiokias S, Proestos C, Oreopoulou V. Phenolic Acids of Plant Origin-A Review on Their Antioxidant Activity In Vitro (O/W Emulsion Systems) Along with Their in Vivo Health Biochemical Properties. Foods 2020; 9:E534. [PMID: 32344540 PMCID: PMC7231038 DOI: 10.3390/foods9040534] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 01/05/2023] Open
Abstract
Nature has generously offered a wide range of herbs (e.g., thyme, oregano, rosemary, sage, mint, basil) rich in many polyphenols and other phenolic compounds with strong antioxidant and biochemical properties. This paper focuses on several natural occurring phenolic acids (caffeic, carnosic, ferulic, gallic, p-coumaric, rosmarinic, vanillic) and first gives an overview of their most common natural plant sources. A summary of the recently reported antioxidant activities of the phenolic acids in o/w emulsions is also provided as an in vitro lipid-based model system. Exploring the interfacial activity of phenolic acids could help to further elucidate their potential health properties against oxidative stress conditions of biological membranes (such as lipoproteins). Finally, this review reports on the latest literature evidence concerning specific biochemical properties of the examined phenolic acids.
Collapse
Affiliation(s)
- Sotirios Kiokias
- Research Executive Agency (REA), Place Charles Rogier 16, 1210 Bruxelles, Belgium;
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece;
| | - Vassiliki Oreopoulou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Iron Politechniou, 9, 15780 Athens, Greece
| |
Collapse
|
24
|
Cudalbeanu M, Furdui B, Cârâc G, Barbu V, Iancu AV, Marques F, Leitão JH, Sousa SA, Dinica RM. Antifungal, Antitumoral and Antioxidant Potential of the Danube Delta Nymphaea alba Extracts. Antibiotics (Basel) 2019; 9:antibiotics9010007. [PMID: 31877815 PMCID: PMC7168328 DOI: 10.3390/antibiotics9010007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
This study aimed to explore for the first time the biological properties such as antifungal, antitumoral and antioxidant of Danube Delta Nymphaea alba (N. alba) leaf and root methanolic extracts. The toxicity studies of N. alba extracts showed no inhibitory effect on wheat seed germination by evaluating the most sensitive physiological parameters (Germination %, Germination index, Vigor index) and using confocal laser scanning microscopy images. The analyzed extracts were found to have high antifungal activity against Candida glabrata with MIC values of 1.717 µg/mL for leaf and 1.935 µg/mL for root. The antitumor activity of the both extracts against A2780/A2780cisR ovarian, LNCaP prostate and MCF-7 breast cancer cells was promising with IC50 values ranging from 23–274 µg/mL for leaf and 18–152 µg/mL for root, and the combination of N. alba extracts with cisplatin showed a synergistic effect (coefficient of drug interaction <1). The antioxidant properties were assessed by β-carotene bleaching, ABTS and FRAP assays and cyclic voltammetry. Quercetin, the most prominent antioxidant, was quantified in very good yields by spectroelectrochemical assay.
Collapse
Affiliation(s)
- Mihaela Cudalbeanu
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania; (M.C.); (G.C.)
| | - Bianca Furdui
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania; (M.C.); (G.C.)
- Correspondence: (B.F.); (R.M.D.)
| | - Geta Cârâc
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania; (M.C.); (G.C.)
| | - Vasilica Barbu
- Faculty of Food Science and Engineering, Department of Food Science, Food Engineering, Biotechnology and Aquaculture, ‘‘Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania;
| | - Alina Viorica Iancu
- Faculty of Medicine and Pharmacy, Department of Morphological and Functional Sciences, ‘‘Dunărea de Jos” University of Galati, 800008 Romania, 47 Domnească Street, 8000008 Galati, Romania;
| | - Fernanda Marques
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, University of Lisbon, 2695-066 Bobadela, Portugal;
| | - Jorge Humberto Leitão
- IBB-Institute of Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (J.H.L.); (S.A.S.)
| | - Sílvia Andreia Sousa
- IBB-Institute of Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (J.H.L.); (S.A.S.)
| | - Rodica Mihaela Dinica
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania; (M.C.); (G.C.)
- Correspondence: (B.F.); (R.M.D.)
| |
Collapse
|