1
|
Upshur MA, Bé AG, Luo J, Varelas JG, Geiger FM, Thomson RJ. Organic synthesis in the study of terpene-derived oxidation products in the atmosphere. Nat Prod Rep 2023; 40:890-921. [PMID: 36938683 DOI: 10.1039/d2np00064d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Covering: 1997 up to 2022Volatile biogenic terpenes involved in the formation of secondary organic aerosol (SOA) particles participate in rich atmospheric chemistry that impacts numerous aspects of the earth's complex climate system. Despite the importance of these species, understanding their fate in the atmosphere and determining their atmospherically-relevant properties has been limited by the availability of authentic standards and probe molecules. Advances in synthetic organic chemistry directly aimed at answering these questions have, however, led to exciting discoveries at the interface of chemistry and atmospheric science. Herein we provide a review of the literature regarding the synthesis of commercially unavailable authentic standards used to analyze the composition, properties, and mechanisms of SOA particles in the atmosphere.
Collapse
Affiliation(s)
- Mary Alice Upshur
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Ariana Gray Bé
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Jingyi Luo
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Jonathan G Varelas
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| |
Collapse
|
2
|
Wei J, Wu L, Wang HX, Zhang X, Tse CW, Zhou CY, Huang JS, Che CM. Iron-Catalyzed Highly Enantioselective cis-Dihydroxylation of Trisubstituted Alkenes with Aqueous H 2 O 2. Angew Chem Int Ed Engl 2020; 59:16561-16571. [PMID: 32500643 DOI: 10.1002/anie.202002866] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 01/02/2023]
Abstract
Reliable methods for enantioselective cis-dihydroxylation of trisubstituted alkenes are scarce. The iron(II) complex cis-α-[FeII (2-Me2 -BQPN)(OTf)2 ], which bears a tetradentate N4 ligand (Me2 -BQPN=(R,R)-N,N'-dimethyl-N,N'-bis(2-methylquinolin-8-yl)-1,2-diphenylethane-1,2-diamine), was prepared and characterized. With this complex as the catalyst, a broad range of trisubstituted electron-deficient alkenes were efficiently oxidized to chiral cis-diols in yields of up to 98 % and up to 99.9 % ee when using hydrogen peroxide (H2 O2 ) as oxidant under mild conditions. Experimental studies (including 18 O-labeling, ESI-MS, NMR, EPR, and UV/Vis analyses) and DFT calculations were performed to gain mechanistic insight, which suggested possible involvement of a chiral cis-FeV (O)2 reaction intermediate as an active oxidant. This cis-[FeII (chiral N4 ligand)]2+ /H2 O2 method could be a viable green alternative/complement to the existing OsO4 -based methods for asymmetric alkene dihydroxylation reactions.
Collapse
Affiliation(s)
- Jinhu Wei
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hai-Xu Wang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiting Zhang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chun-Wai Tse
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Cong-Ying Zhou
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,HKU Shenzhen Institute of Research & Innovation, Shenzhen, China
| |
Collapse
|
3
|
Wei J, Wu L, Wang H, Zhang X, Tse C, Zhou C, Huang J, Che C. Iron‐Catalyzed Highly Enantioselective
cis
‐Dihydroxylation of Trisubstituted Alkenes with Aqueous H
2
O
2. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinhu Wei
- State Key Laboratory of Synthetic Chemistry and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Hai‐Xu Wang
- State Key Laboratory of Synthetic Chemistry and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Xiting Zhang
- State Key Laboratory of Synthetic Chemistry and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Chun‐Wai Tse
- State Key Laboratory of Synthetic Chemistry and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Cong‐Ying Zhou
- State Key Laboratory of Synthetic Chemistry and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Jie‐Sheng Huang
- State Key Laboratory of Synthetic Chemistry and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research & Innovation Shenzhen China
| |
Collapse
|
4
|
Cattaneo F, De Marino S, Parisi M, Festa C, Castaldo M, Finamore C, Duraturo F, Zollo C, Ammendola R, Zollo F, Iorizzi M. Wound healing activity and phytochemical screening of purified fractions of Sempervivum tectorum L. leaves on HCT 116. PHYTOCHEMICAL ANALYSIS : PCA 2019; 30:524-534. [PMID: 31168900 DOI: 10.1002/pca.2844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/12/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Sempervivum tectorum L. (Crassulaceae), is a succulent perennial plant widespread in Mediterranean countries and commonly used in traditional medicine for ear inflammation, ulcers and skin rashes as a refrigerant and astringent. OBJECTIVE To demonstrate the therapeutic effects of the plant, various fractions were purified and characterised. The potential wound healing activity, proliferation rate and intracellular signalling cascades were investigated by using human epithelial colorectal carcinoma (HCT 116) cells. METHODOLOGY An extraction method without organic solvents was applied for the first time. The purification was carried out by droplet counter current chromatography (DCCC) coupled with high-performance liquid chromatography (HPLC) and electrospray ionisation mass spectrometry (ESI-MS) data. By nuclear magnetic resonance (NMR) [1 H, 13 C and two-dimensional (2D) experiments] pure components were identified. Wound healing and cell proliferation assays were utilised to determine the role of the isolated S. tectorum (SVT) fraction on cellular migration and proliferation. The signalling pathways elicited from the SVT fractions, were analysed by Western blot analysis. RESULTS In this study two rare natural components were identified, namely monosaccharide sedoheptulose and polyalcohol 2-C-methyl-D-erythritol, along with known organic acids and flavonoids. The fractions with high level of sedoheptulose enhance the proliferation and the cellular migration of epithelial HCT 116 cells. The intracellular signalling cascades elicited from the purified fractions induce the c-Src-mediated transactivation of EGFR and the activation of the STAT3 pathway which, in turn, are crucially involved in the cellular proliferation and migration. CONCLUSIONS Our study demonstrates the efficacy of purified fractions of S. tectorum L. in enhancing cellular proliferation and migration, suggesting their potential role as topical therapeutic treatments for wound healing.
Collapse
Affiliation(s)
- Fabio Cattaneo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Simona De Marino
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Melania Parisi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Carmen Festa
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Martina Castaldo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Claudia Finamore
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Pesche, (Isernia), Italy
| | - Francesca Duraturo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Cristiana Zollo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Rosario Ammendola
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Franco Zollo
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Maria Iorizzi
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Pesche, (Isernia), Italy
| |
Collapse
|
5
|
Jacobsen EE, Anthonsen T. 2-C-Methyl-d-erythritol. Produced in plants, forms aerosols in the atmosphere. An alternative pathway in isoprenoid biosynthesis. BIOCATAL BIOTRANSFOR 2015. [DOI: 10.3109/10242422.2015.1095677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Lopes EV, Dias HB, Torres ZEDS, Chaves FCM, Siani AC, Pohlit AM. Coumarins, triterpenes and a hemiterpene from Bonamia ferruginea (Choisy) Hallier f. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.04.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Nozière B, Kalberer M, Claeys M, Allan J, D'Anna B, Decesari S, Finessi E, Glasius M, Grgić I, Hamilton JF, Hoffmann T, Iinuma Y, Jaoui M, Kahnt A, Kampf CJ, Kourtchev I, Maenhaut W, Marsden N, Saarikoski S, Schnelle-Kreis J, Surratt JD, Szidat S, Szmigielski R, Wisthaler A. The molecular identification of organic compounds in the atmosphere: state of the art and challenges. Chem Rev 2015; 115:3919-83. [PMID: 25647604 DOI: 10.1021/cr5003485] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Barbara Nozière
- †Ircelyon/CNRS and Université Lyon 1, 69626 Villeurbanne Cedex, France
| | | | | | | | - Barbara D'Anna
- †Ircelyon/CNRS and Université Lyon 1, 69626 Villeurbanne Cedex, France
| | | | | | | | - Irena Grgić
- ○National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | | | | | - Yoshiteru Iinuma
- ¶Leibniz-Institut für Troposphärenforschung, 04318 Leipzig, Germany
| | | | | | | | - Ivan Kourtchev
- ‡University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Willy Maenhaut
- §University of Antwerp, 2000 Antwerp, Belgium.,□Ghent University, 9000 Gent, Belgium
| | | | | | | | - Jason D Surratt
- ▼University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | | | | |
Collapse
|
8
|
Chalbot MCG, Kavouras IG. Nuclear magnetic resonance spectroscopy for determining the functional content of organic aerosols: a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 191:232-249. [PMID: 24861958 DOI: 10.1016/j.envpol.2014.04.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
The knowledge deficit of organic aerosol (OA) composition has been identified as the most important factor limiting our understanding of the atmospheric fate and implications of aerosol. The efforts to chemically characterize OA include the increasing utilization of nuclear magnetic resonance spectroscopy (NMR). Since 1998, the functional composition of different types, sizes and fractions of OA has been studied with one-dimensional, two-dimensional and solid state proton and carbon-13 NMR. This led to the use of functional group ratios to reconcile the most important sources of OA, including secondary organic aerosol and initial source apportionment using positive matrix factorization. Future research efforts may be directed towards the optimization of experimental parameters, detailed NMR experiments and analysis by pattern recognition methods to identify the chemical components, determination of the NMR fingerprints of OA sources and solid state NMR to study the content of OA as a whole.
Collapse
Affiliation(s)
- Marie-Cecile G Chalbot
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205-7199, USA.
| | - Ilias G Kavouras
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205-7199, USA
| |
Collapse
|
9
|
González NJD, Borg-Karlson AK, Artaxo P, Guenther A, Krejci R, Nozière B, Noone K. Primary and secondary organics in the tropical Amazonian rainforest aerosols: chiral analysis of 2-methyltetraols. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:1413-1421. [PMID: 24777436 DOI: 10.1039/c4em00102h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This work presents the application of a new method to facilitate the distinction between biologically produced (primary) and atmospherically produced (secondary) organic compounds in ambient aerosols based on their chirality. The compounds chosen for this analysis were the stereomers of 2-methyltetraols, (2R,3S)- and (2S,3R)-methylerythritol, (l- and d-form, respectively), and (2S,3S)- and (2R,3R)-methylthreitol (l- and d-form), shown previously to display some enantiomeric excesses in atmospheric aerosols, thus to have at least a partial biological origin. In this work PM10 aerosol fractions were collected in a remote tropical rainforest environment near Manaus, Brazil, between June 2008 and June 2009 and analysed. Both 2-methylerythritol and 2-methylthreitol displayed a net excess of one enantiomer (either the l- or the d-form) in 60 to 72% of these samples. These net enantiomeric excesses corresponded to compounds entirely biological but accounted for only about 5% of the total 2-methyltetrol mass in all the samples. Further analysis showed that, in addition, a large mass of the racemic fractions (equal mixtures of d- and l-forms) was also biological. Estimating the contribution of secondary reactions from the isomeric ratios measured in the samples (=ratios 2-methylthreitol over 2-methylerythritol), the mass fraction of secondary methyltetrols in these samples was estimated to a maximum of 31% and their primary fraction to a minimum of 69%. Such large primary fractions could have been expected in PM10 aerosols, largely influenced by biological emissions, and would now need to be investigated in finer aerosols. This work demonstrates the effectiveness of chiral and isomeric analyses as the first direct tool to assess the primary and secondary fractions of organic aerosols.
Collapse
Affiliation(s)
- N J D González
- Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
10
|
Yang L, Peng K, Zhao S, Zhao F, Chen L, Qiu F. 2-Methyl-l-erythritol glycosides from Gardenia jasminoides. Fitoterapia 2013; 89:126-30. [DOI: 10.1016/j.fitote.2013.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 11/27/2022]
|
11
|
Ghosh SK, Butler MS, Lear MJ. Synthesis of 2-C-methylerythritols and 2-C-methylthreitols via enantiodivergent Sharpless dihydroxylation of trisubstituted olefins. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.03.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Ghosh SK, Somanadhan B, Tan KSW, Butler MS, Lear MJ. Absolute Configuration and Total Synthesis of a Novel Antimalarial Lipopeptide by the de Novo Preparation of Chiral Nonproteinogenic Amino Acids. Org Lett 2012; 14:1560-3. [DOI: 10.1021/ol300293a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shibaji K. Ghosh
- Department of Chemistry, Faculty of Science, and Medicinal Chemistry Program of the Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore, MerLion Pharmaceuticals, The Capricorn #05-01, Singapore Science Park II, Singapore 117528, and Department of Microbiology, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - Brinda Somanadhan
- Department of Chemistry, Faculty of Science, and Medicinal Chemistry Program of the Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore, MerLion Pharmaceuticals, The Capricorn #05-01, Singapore Science Park II, Singapore 117528, and Department of Microbiology, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - Kevin S.-W. Tan
- Department of Chemistry, Faculty of Science, and Medicinal Chemistry Program of the Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore, MerLion Pharmaceuticals, The Capricorn #05-01, Singapore Science Park II, Singapore 117528, and Department of Microbiology, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - Mark S. Butler
- Department of Chemistry, Faculty of Science, and Medicinal Chemistry Program of the Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore, MerLion Pharmaceuticals, The Capricorn #05-01, Singapore Science Park II, Singapore 117528, and Department of Microbiology, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - Martin J. Lear
- Department of Chemistry, Faculty of Science, and Medicinal Chemistry Program of the Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore, MerLion Pharmaceuticals, The Capricorn #05-01, Singapore Science Park II, Singapore 117528, and Department of Microbiology, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| |
Collapse
|
13
|
González NJ, Borg-Karlson AK, Redeby JP, Nozière B, Krejci R, Pei Y, Dommen J, Prévôt AS. New method for resolving the enantiomeric composition of 2-methyltetrols in atmospheric organic aerosols. J Chromatogr A 2011; 1218:9288-94. [DOI: 10.1016/j.chroma.2011.10.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 11/17/2022]
|
14
|
Sharma A, Das P, Chattopadhyay S. Concise asymmetric syntheses of the (+)-2-C-methyltetritol isomers. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.tetasy.2008.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Moen AR, Ruud K, Anthonsen T. Combination of stereospecific dihydroxylation and enzyme catalyzed enantioselective resolution for synthesis of enantiopure vicinal diols. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.molcatb.2007.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|