1
|
Argueta-Gonzalez H, Swenson CS, Skowron KJ, Heemstra JM. Elucidating Sequence-Assembly Relationships for Bilingual PNA Biopolymers. ACS OMEGA 2023; 8:37442-37450. [PMID: 37841192 PMCID: PMC10569013 DOI: 10.1021/acsomega.3c05528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023]
Abstract
Nucleic acids and proteins possess encoded "languages" that can be used for information storage or to direct function. However, each biopolymer is limited to encoding its respective "language." Using a peptide nucleic acid (PNA) scaffold, nucleobase and amino acid residues can be installed on a singular backbone, enabling a single biopolymer to encode both languages. Our laboratory previously reported the development of a "bilingual" PNA biopolymer that incorporates a sequence-specific nucleic acid code interspersed with hydrophobic (alanine) and hydrophilic (lysine) amino acid residues at defined positions to produce amphiphilic character. We observed the amphiphilic amino acid residues directing the biopolymer to undergo self-assembly into micelle-like structures, while the nucleic acid recognition was harnessed for disassembly. Herein, we report a series of bilingual PNA sequences having amino acid residues with varying lengths, functional group charges, hydrophobicities, and spacings to elucidate the effect of these parameters on micelle assembly and nucleic acid recognition. Negative charges in the hydrophilic block or increased bulkiness of the hydrophobic side chains led to assembly into similarly sized micelles; however, the negative charge additionally led to increased critical micelle concentration. Upon PNA sequence truncation to decrease the spacing between side chains, the biopolymers remained capable of self-assembling but formed smaller structures. Characterization of disassembly revealed that each variant retained sequence recognition capabilities and stimuli-responsive disassembly. Together, these data show that the amino acid and nucleic acid sequences of amphiphilic bilingual biopolymers can be customized to finely tune the assembly and disassembly properties, which has implications for applications such as the encapsulation and delivery of cargo for therapeutics.
Collapse
Affiliation(s)
| | - Colin S. Swenson
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Kornelia J. Skowron
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United
States
| | - Jennifer M. Heemstra
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Cheng X, Gan Y, Zhang G, Song Q, Zhang Z, Zhang W. Conformationally supramolecular chirality prevails over configurational point chirality in side-chain liquid crystalline polymers. Chem Sci 2023; 14:5116-5124. [PMID: 37206386 PMCID: PMC10189893 DOI: 10.1039/d3sc00975k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/16/2023] [Indexed: 05/21/2023] Open
Abstract
In nature, the communication of primary amino acids in the polypeptides influences molecular-level packing, supramolecular chirality, and the resulting protein structures. In chiral side-chain liquid crystalline polymers (SCLCPs), however, the hierarchical chiral communication between supramolecular mesogens is still determined by the parent chiral source due to the intermolecular interactions. Herein, we present a novel strategy to enable the tunable chiral-to-chiral communication in azobenzene (Azo) SCLCPs, in which the chiroptical properties are not dominated by the configurational point chirality but by the conformationally supramolecular chirality that emerged. The communication of dyads biases supramolecular chirality with multiple packing preference, thereby overruling the configurational chirality of the stereocenter. The chiral communication mechanism between the side-chain mesogens is revealed through the systematic study of the chiral arrangement at the molecular level, including mesomorphic properties, stacking modes, chiroptical dynamics and further morphological dimensions.
Collapse
Affiliation(s)
- Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Yijing Gan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Gong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Qingping Song
- School of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu 241000 P. R. China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu 241000 P. R. China
| |
Collapse
|
3
|
Cadoni E, Pennati F, Muangkaew P, Elskens J, Madder A, Manicardi A. Synthesis and structure-activity relationship of peptide nucleic acid probes with improved interstrand-crosslinking abilities: application to biotin-mediated RNA-pulldown. RSC Chem Biol 2022; 3:1129-1143. [PMID: 36128507 PMCID: PMC9428673 DOI: 10.1039/d2cb00095d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
The development of interstrand-crosslinking (ICL) probes for the covalent targeting of DNA and RNA sequences of interest has been extensively reported in the past decade. However, most of the reactions reported so far induce the formation of a stable adduct that cannot be reverted, thus rendering these chemistries less useful in applications where the reversibility of the reaction is needed for further downstream processing of the targeted and isolated sequences, such as enzymatic amplification steps. In this work, we report on the reversibility of the furan-mediated ICL reaction. ICL formation can be conveniently triggered by either chemical (N-bromo succinimide, NBS) or luminous stimuli (visible light irradiation in presence of a photosensitizer) and quantitative reversion can be achieved by heating the crosslinked sample at 95 °C, while maintaining the structure of the DNA/RNA targets intact. As a proof-of-concept and showing the benefits of the ICL reversibility, we apply furan-mediated ICL to the pulldown of a target RNA strand from cell lysate.
Collapse
Affiliation(s)
- Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-7 9000 Gent Belgium
| | - Francesca Pennati
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-7 9000 Gent Belgium
| | - Penthip Muangkaew
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-7 9000 Gent Belgium
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Road Patumwan 10330 Bangkok Thailand
| | - Joke Elskens
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-7 9000 Gent Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-7 9000 Gent Belgium
| | - Alex Manicardi
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-7 9000 Gent Belgium
| |
Collapse
|
4
|
Suparpprom C, Vilaivan T. Perspectives on conformationally constrained peptide nucleic acid (PNA): insights into the structural design, properties and applications. RSC Chem Biol 2022; 3:648-697. [PMID: 35755191 PMCID: PMC9175113 DOI: 10.1039/d2cb00017b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Peptide nucleic acid or PNA is a synthetic DNA mimic that contains a sequence of nucleobases attached to a peptide-like backbone derived from N-2-aminoethylglycine. The semi-rigid PNA backbone acts as a scaffold that arranges the nucleobases in a proper orientation and spacing so that they can pair with their complementary bases on another DNA, RNA, or even PNA strand perfectly well through the standard Watson-Crick base-pairing. The electrostatically neutral backbone of PNA contributes to its many unique properties that make PNA an outstanding member of the xeno-nucleic acid family. Not only PNA can recognize its complementary nucleic acid strand with high affinity, but it does so with excellent specificity that surpasses the specificity of natural nucleic acids and their analogs. Nevertheless, there is still room for further improvements of the original PNA in terms of stability and specificity of base-pairing, direction of binding, and selectivity for different types of nucleic acids, among others. This review focuses on attempts towards the rational design of new generation PNAs with superior performance by introducing conformational constraints such as a ring or a chiral substituent in the PNA backbone. A large collection of conformationally rigid PNAs developed during the past three decades are analyzed and compared in terms of molecular design and properties in relation to structural data if available. Applications of selected modified PNA in various areas such as targeting of structured nucleic acid targets, supramolecular scaffold, biosensing and bioimaging, and gene regulation will be highlighted to demonstrate how the conformation constraint can improve the performance of the PNA. Challenges and future of the research in the area of constrained PNA will also be discussed.
Collapse
Affiliation(s)
- Chaturong Suparpprom
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Tah-Poe District, Muang Phitsanulok 65000 Thailand
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Road Pathumwan Bangkok 10330 Thailand
| | - Tirayut Vilaivan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Tah-Poe District, Muang Phitsanulok 65000 Thailand
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Road Pathumwan Bangkok 10330 Thailand
| |
Collapse
|
5
|
Lai Q, Chen W, Zhang Y, Liu Z. Application strategies of peptide nucleic acids toward electrochemical nucleic acid sensors. Analyst 2021; 146:5822-5835. [PMID: 34581324 DOI: 10.1039/d1an00765c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptide nucleic acids (PNAs) have attracted tremendous interest in the fabrication of highly sensitive electrochemical nucleic acid biosensors due to their higher stability and increased sensitivity than common DNA probes. The neutral pseudopeptide backbone of PNAs not only makes the PNA/DNA duplexes more stable but also provides many opportunities to construct ultrasensitive nucleic acid sensors. This review presents the details of various protocols for the construction of PNA-based electrochemical nucleic acid sensors. The crucial factors, origin, and development of PNA, immobilization methods of PNA probes and signal generation mechanisms, are discussed. This review aims to provide a reference for ultrasensitive PNA electrochemical biosensor preparation.
Collapse
Affiliation(s)
- Qingteng Lai
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Wei Chen
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China. .,Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Yanke Zhang
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Zhengchun Liu
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| |
Collapse
|
6
|
Chen Z, Chi Z, Sun Y, Lv Z. Chirality in peptide-based materials: From chirality effects to potential applications. Chirality 2021; 33:618-642. [PMID: 34342057 DOI: 10.1002/chir.23344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/24/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022]
Abstract
Chirality is ubiquitous in nature with primary cellular functions that include construction of right-/left-handed helix and selective communications among diverse biomolecules. Of particularly intriguing are the chiral peptide-based materials that can be deliberately designed to change physicochemistry properties via tuning peptide sequences. Critically, understanding their chiral effects are fundamental for the development of novel materials in chemistry and biomedicine fields. Here, we review recent researches on chirality in peptide-based materials, summarizing relevant typical chiral effects towards recognition, amplification, and induction. Driven forces for the chiral discrimination in affinity interaction as well as the handedness preferences in supramolecular structure formation at both the macroscale and microscale are illustrated. The implementation of such chirality effects of artificial copolymers, assembled aggregates and their composites in the fields of bioseparation and bioenrichment, cell incubation, protein aggregation inhibitors, chiral smart gels, and bionic electro devices are also presented. At last, the challenges in these areas and possible directions are pointed out. The diversity of chiral roles in the origin of life and chirality design in different organic or composite systems as well as their applications in drug development and chirality detection in environmental protection are discussed.
Collapse
Affiliation(s)
- Zhonghui Chen
- Guangdong Engineering Technology Research Center for High performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, China
| | - Zhenguo Chi
- Guangdong Engineering Technology Research Center for High performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yifeng Sun
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, China
| | - Ziyu Lv
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Kabza AM, Kundu N, Zhong W, Sczepanski JT. Integration of chemically modified nucleotides with DNA strand displacement reactions for applications in living systems. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1743. [PMID: 34328690 DOI: 10.1002/wnan.1743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 01/21/2023]
Abstract
Watson-Crick base pairing rules provide a powerful approach for engineering DNA-based nanodevices with programmable and predictable behaviors. In particular, DNA strand displacement reactions have enabled the development of an impressive repertoire of molecular devices with complex functionalities. By relying on DNA to function, dynamic strand displacement devices represent powerful tools for the interrogation and manipulation of biological systems. Yet, implementation in living systems has been a slow process due to several persistent challenges, including nuclease degradation. To circumvent these issues, researchers are increasingly turning to chemically modified nucleotides as a means to increase device performance and reliability within harsh biological environments. In this review, we summarize recent progress toward the integration of chemically modified nucleotides with DNA strand displacement reactions, highlighting key successes in the development of robust systems and devices that operate in living cells and in vivo. We discuss the advantages and disadvantages of commonly employed modifications as they pertain to DNA strand displacement, as well as considerations that must be taken into account when applying modified oligonucleotide to living cells. Finally, we explore how chemically modified nucleotides fit into the broader goal of bringing dynamic DNA nanotechnology into the cell, and the challenges that remain. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Adam M Kabza
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Nandini Kundu
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Wenrui Zhong
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
8
|
Kundu N, Young BE, Sczepanski JT. Kinetics of heterochiral strand displacement from PNA-DNA heteroduplexes. Nucleic Acids Res 2021; 49:6114-6127. [PMID: 34125895 PMCID: PMC8216467 DOI: 10.1093/nar/gkab499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/06/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Dynamic DNA nanodevices represent powerful tools for the interrogation and manipulation of biological systems. Yet, implementation remains challenging due to nuclease degradation and other cellular factors. Use of l-DNA, the nuclease resistant enantiomer of native d-DNA, provides a promising solution. On this basis, we recently developed a strand displacement methodology, referred to as ‘heterochiral’ strand displacement, that enables robust l-DNA nanodevices to be sequence-specifically interfaced with endogenous d-nucleic acids. However, the underlying reaction – strand displacement from PNA–DNA heteroduplexes – remains poorly characterized, limiting design capabilities. Herein, we characterize the kinetics of strand displacement from PNA–DNA heteroduplexes and show that reaction rates can be predictably tuned based on several common design parameters, including toehold length and mismatches. Moreover, we investigate the impact of nucleic acid stereochemistry on reaction kinetics and thermodynamics, revealing important insights into the biophysical mechanisms of heterochiral strand displacement. Importantly, we show that strand displacement from PNA–DNA heteroduplexes is compatible with RNA inputs, the most common nucleic acid target for intracellular applications. Overall, this work greatly improves the understanding of heterochiral strand displacement reactions and will be useful in the rational design and optimization of l-DNA nanodevices that operate at the interface with biology.
Collapse
Affiliation(s)
- Nandini Kundu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Brian E Young
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
9
|
Chen W, Dong B, Liu W, Liu Z. Recent Advances in Peptide Nucleic Acids as Antibacterial Agents. Curr Med Chem 2021; 28:1104-1125. [PMID: 32484766 DOI: 10.2174/0929867327666200602132504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
The emergence of antibiotic-resistant bacteria and the slow progress in searching for new antimicrobial agents makes it hard to treat bacterial infections and cause problems for the healthcare system worldwide, including high costs, prolonged hospitalizations, and increased mortality. Therefore, the discovery of effective antibacterial agents is of great importance. One attractive alternative is antisense peptide nucleic acid (PNA), which inhibits or eliminates gene expression by binding to the complementary messenger RNA (mRNA) sequence of essential genes or the accessible and functionally important regions of the ribosomal RNA (rRNA). Following 30 years of development, PNAs have played an extremely important role in the treatment of Gram-positive, Gram-negative, and acidfast bacteria due to their desirable stability of hybrid complex with target RNA, the strong affinity for target mRNA/rRNA, and the stability against nucleases. PNA-based antisense antibiotics can strongly inhibit the growth of pathogenic and antibiotic-resistant bacteria in a sequence-specific and dose-dependent manner at micromolar concentrations. However, several fundamental challenges, such as intracellular delivery, solubility, physiological stability, and clearance still need to be addressed before PNAs become broadly applicable in clinical settings. In this review, we summarize the recent advances in PNAs as antibacterial agents and the challenges that need to be overcome in the future.
Collapse
Affiliation(s)
- Wei Chen
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics Central South University, Changsha 410083, China
| | - Bo Dong
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics Central South University, Changsha 410083, China
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Zhengchun Liu
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics Central South University, Changsha 410083, China
| |
Collapse
|
10
|
Volpi S, Rozzi A, Rivi N, Neri M, Knoll W, Corradini R. Submonomeric Strategy with Minimal Protection for the Synthesis of C(2)-Modified Peptide Nucleic Acids. Org Lett 2021; 23:902-907. [PMID: 33417460 PMCID: PMC7880566 DOI: 10.1021/acs.orglett.0c04116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Indexed: 11/28/2022]
Abstract
A novel synthesis of C(2)-modified peptide nucleic acids (PNAs) is proposed, using a submonomeric strategy with minimally protected building blocks, which allowed a reduction in the required synthetic steps. N(3)-unprotected, d-Lys- and d-Arg-based backbones were used to obtain positively charged PNAs with high optical purity, as inferred from chiral GC measurements. "Chiral-box" PNAs targeting the G12D point mutation of the KRAS gene were produced using this method, showing improved sequence selectivity for the mutated- vs wild-type DNA strand with respect to unmodified PNAs.
Collapse
Affiliation(s)
- Stefano Volpi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma, 43123, Italy
| | - Andrea Rozzi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma, 43123, Italy
| | - Nicola Rivi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma, 43123, Italy
| | - Martina Neri
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma, 43123, Italy
| | - Wolfgang Knoll
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma, 43123, Italy
- Biosensor
Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430, Tulln an der Donau, Austria
| | - Roberto Corradini
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma, 43123, Italy
| |
Collapse
|
11
|
Volpi S, Cancelli U, Neri M, Corradini R. Multifunctional Delivery Systems for Peptide Nucleic Acids. Pharmaceuticals (Basel) 2020; 14:14. [PMID: 33375595 PMCID: PMC7823687 DOI: 10.3390/ph14010014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The number of applications of peptide nucleic acids (PNAs)-oligonucleotide analogs with a polyamide backbone-is continuously increasing in both in vitro and cellular systems and, parallel to this, delivery systems able to bring PNAs to their targets have been developed. This review is intended to give to the readers an overview on the available carriers for these oligonucleotide mimics, with a particular emphasis on newly developed multi-component- and multifunctional vehicles which boosted PNA research in recent years. The following approaches will be discussed: (a) conjugation with carrier molecules and peptides; (b) liposome formulations; (c) polymer nanoparticles; (d) inorganic porous nanoparticles; (e) carbon based nanocarriers; and (f) self-assembled and supramolecular systems. New therapeutic strategies enabled by the combination of PNA and proper delivery systems are discussed.
Collapse
Affiliation(s)
| | | | | | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.V.); (U.C.); (M.N.)
| |
Collapse
|
12
|
Cobos K, Rodríguez R, Quiñoá E, Riguera R, Freire F. From Sergeants and Soldiers to Chiral Conflict Effects in Helical Polymers by Acting on the Conformational Composition of the Comonomers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Katherine Cobos
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela E-15782 Santiago de Compostela Spain
| | - Rafael Rodríguez
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela E-15782 Santiago de Compostela Spain
| | - Emilio Quiñoá
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela E-15782 Santiago de Compostela Spain
| | - Ricardo Riguera
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela E-15782 Santiago de Compostela Spain
| | - Félix Freire
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela E-15782 Santiago de Compostela Spain
| |
Collapse
|
13
|
Cobos K, Rodríguez R, Quiñoá E, Riguera R, Freire F. From Sergeants and Soldiers to Chiral Conflict Effects in Helical Polymers by Acting on the Conformational Composition of the Comonomers. Angew Chem Int Ed Engl 2020; 59:23724-23730. [DOI: 10.1002/anie.202009215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/01/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Katherine Cobos
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela E-15782 Santiago de Compostela Spain
| | - Rafael Rodríguez
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela E-15782 Santiago de Compostela Spain
| | - Emilio Quiñoá
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela E-15782 Santiago de Compostela Spain
| | - Ricardo Riguera
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela E-15782 Santiago de Compostela Spain
| | - Félix Freire
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela E-15782 Santiago de Compostela Spain
| |
Collapse
|
14
|
Kumar S, Pearse A, Liu Y, Taylor RE. Modular self-assembly of gamma-modified peptide nucleic acids in organic solvent mixtures. Nat Commun 2020; 11:2960. [PMID: 32528008 PMCID: PMC7289805 DOI: 10.1038/s41467-020-16759-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/20/2020] [Indexed: 02/03/2023] Open
Abstract
Nucleic acid-based materials enable sub-nanometer precision in self-assembly for fields including biophysics, diagnostics, therapeutics, photonics, and nanofabrication. However, structural DNA nanotechnology has been limited to substantially hydrated media. Transfer to organic solvents commonly used in polymer and peptide synthesis results in the alteration of DNA helical structure or reduced thermal stabilities. Here we demonstrate that gamma-modified peptide nucleic acids (γPNA) can be used to enable formation of complex, self-assembling nanostructures in select polar aprotic organic solvent mixtures. However, unlike the diameter-monodisperse populations of nanofibers formed using analogous DNA approaches, γPNA structures appear to form bundles of nanofibers. A tight distribution of the nanofiber diameters could, however, be achieved in the presence of the surfactant SDS during self-assembly. We further demonstrate nanostructure morphology can be tuned by means of solvent solution and by strand substitution with DNA and unmodified PNA. This work thereby introduces a science of γPNA nanotechnology.
Collapse
Affiliation(s)
- Sriram Kumar
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alexander Pearse
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ying Liu
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Rebecca E Taylor
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. .,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. .,Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Swenson CS, Velusamy A, Argueta-Gonzalez HS, Heemstra JM. Bilingual Peptide Nucleic Acids: Encoding the Languages of Nucleic Acids and Proteins in a Single Self-Assembling Biopolymer. J Am Chem Soc 2019; 141:19038-19047. [PMID: 31711285 DOI: 10.1021/jacs.9b09146] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nucleic acids and proteins are the fundamental biopolymers that support all life on Earth. Nucleic acids store large amounts of information in nucleobase sequences while peptides and proteins utilize diverse amino acid functional groups to adopt complex structures and perform wide-ranging activities. Although nature has evolved machinery to read the nucleic acid code and translate it into amino acid code, the extant biopolymers are restricted to encoding amino acid or nucleotide sequences separately, limiting their potential applications in medicine and biotechnology. Here we describe the design, synthesis, and stimuli-responsive assembly behavior of a bilingual biopolymer that integrates both amino acid and nucleobase sequences into a single peptide nucleic acid (PNA) scaffold to enable tunable storage and retrieval of tertiary structural behavior and programmable molecular recognition capabilities. Incorporation of a defined sequence of amino acid side-chains along the PNA backbone yields amphiphiles having a "protein code" that directs self-assembly into micellar architectures in aqueous conditions. However, these amphiphiles also carry a "nucleotide code" such that subsequent introduction of a complementary RNA strand induces a sequence-specific disruption of assemblies through hybridization. Together, these properties establish bilingual PNA as a powerful biopolymer that combines two information systems to harness structural responsiveness and sequence recognition. The PNA scaffold and our synthetic system are highly generalizable, enabling fabrication of a wide array of user-defined peptide and nucleotide sequence combinations for diverse future biomedical and nanotechnology applications.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Arventh Velusamy
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | | | - Jennifer M Heemstra
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| |
Collapse
|
16
|
Abdelbaky AS, Prokhorov IA, Smirnov IP, Koroleva KM, Shvets VI, Kirillova YG. Synthesis of α-(R)-/γ-(S)-Dimethyl Substituted Peptide Nucleic Acid Submonomer Using Mitsunobu Reaction. LETT ORG CHEM 2019. [DOI: 10.2174/1570178616666190118155031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the major challenges facing modern biochemical and biomedical technologies are
finding molecular tools for diagnosis and detection of genetic diseases. In this connection, several classes
of oligonucleotides have been developed that can recognize and bind to DNA and RNA with high
affinity and sequence selectivity and withstand enzymatic degradation by proteases and nucleases;
however, few can traverse the cell membrane on their own. One such promising class of nucleic acid
mimics developed in the last two decades which showed good results in vitro, are the peptide nucleic
acids (PNAs). New chiral α- and γ-peptide Nucleic Acid (PNA) submonomer with methyl substituents
in pseudopeptide backbone were synthesized via Mitsunobu reaction. The α-(R)-/γ-(S)-configuration of
the chiral centres will ensure the preorganization of the PNA oligomer into a right-handed helix. The
results obtained showed that Boc/Fmoc-submonomer compatible with Boc-protocol PNAs solid-phase
synthesis on an MBHA resin. We synthesized simple and efficient α-R-, γ-S-disubstituted PNA submonomer
based on L-Ala and D-Ala with the construction of the intermediate pseudopeptide moiety
by Mitsunobu reaction for subsequent use in the Boc-Protocol of solid phase PNA synthesis.
Collapse
Affiliation(s)
- Ahmed S. Abdelbaky
- Department of Biotechnology and Industrial Pharmacy, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russian Federation
| | - Ivan A. Prokhorov
- Department of Biotechnology and Industrial Pharmacy, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russian Federation
| | - Igor P. Smirnov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine, 119571 Moscow, Russian Federation
| | - Kristina M. Koroleva
- Department of Biotechnology and Industrial Pharmacy, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russian Federation
| | - Vitaliy I. Shvets
- Department of Biotechnology and Industrial Pharmacy, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russian Federation
| | - Yulia G. Kirillova
- Department of Biotechnology and Industrial Pharmacy, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russian Federation
| |
Collapse
|
17
|
Hsieh WC, Shaikh AY, Perera JDR, Thadke SA, Ly DH. Synthesis of ( R)- and ( S)-Fmoc-Protected Diethylene Glycol Gamma PNA Monomers with High Optical Purity. J Org Chem 2019; 84:1276-1287. [PMID: 30608165 PMCID: PMC11104511 DOI: 10.1021/acs.joc.8b02714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A robust synthetic route has been developed for preparing optically pure, Fmoc-protected diethylene glycol-containing ( R)- and ( S)-γPNA monomers. The strategy involves the application of 9-(4-bromophenyl)-9-fluorenyl as a temporary, safety-catch protecting group for the suppression of epimerization in the O-alkylation and reductive amination steps. The optical purities of the final monomers were determined to be greater than 99.5% ee, as assessed by 19F-NMR and HPLC. The new synthetic methodology is well-suited for large-scale monomer production, with most synthetic steps providing excellent chemical yields without the need for chromatographic purification other than a simple workup and precipitation.
Collapse
Affiliation(s)
- Wei-Che Hsieh
- Institute for Biomolecular Design and Discovery (IBD) and Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Ashif Y. Shaikh
- Institute for Biomolecular Design and Discovery (IBD) and Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - J. Dinithi R. Perera
- Institute for Biomolecular Design and Discovery (IBD) and Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Shivaji A. Thadke
- Institute for Biomolecular Design and Discovery (IBD) and Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Danith H. Ly
- Institute for Biomolecular Design and Discovery (IBD) and Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
18
|
Yu Z, Hsieh WC, Asamitsu S, Hashiya K, Bando T, Ly DH, Sugiyama H. Orthogonal γPNA Dimerization Domains Empower DNA Binders with Cooperativity and Versatility Mimicking that of Transcription Factor Pairs. Chemistry 2018; 24:14183-14188. [PMID: 30003621 PMCID: PMC9724550 DOI: 10.1002/chem.201801961] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Synthetic molecules capable of DNA binding and mimicking cooperation of transcription factor (TF) pairs have long been considered a promising tool for manipulating gene expression. Our previously reported Pip-HoGu system, a programmable DNA binder pyrrole-imidazole polyamides (PIPs) conjugated to host-guest moiety, defined a general framework for mimicking cooperative TF pair-DNA interactions. Here, we supplanted the cooperation modules with left-handed (LH) γPNA modules: i.e., PIPs conjugated with nucleic acid-based cooperation system (Pip-NaCo). LH γPNA was chosen because of its bioorthogonality, sequence-specific interaction, and high binding affinity toward the partner strand. From the results of the Pip-NaCo system, cooperativity is highly comparable to the natural TF pair-DNA system, with a minimum energetics of cooperation of -3.27 kcal mol-1 . Moreover, through changing the linker conjugation site, binding mode, and the length of γPNAs sequence, the cooperative energetics of Pip-NaCo can be tuned independently and rationally. The current Pip-NaCo platform might also have the potential for precise manipulation of biological processes through the construction of triple to multiple heterobinding systems.
Collapse
Affiliation(s)
- Zutao Yu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Wei-Che Hsieh
- Institute for Biomolecular Design and Discovery (IBD), Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Sefan Asamitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Danith H Ly
- Institute for Biomolecular Design and Discovery (IBD), Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
19
|
Elskens J, Manicardi A, Costi V, Madder A, Corradini R. Synthesis and Improved Cross-Linking Properties of C5-Modified Furan Bearing PNAs. Molecules 2017; 22:molecules22112010. [PMID: 29156637 PMCID: PMC6150320 DOI: 10.3390/molecules22112010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 12/21/2022] Open
Abstract
Over the past decades, peptide nucleic acid/DNA (PNA:DNA) duplex stability has been improved via backbone modification, often achieved via introducing an amino acid side chain at the α- or γ-position in the PNA sequence. It was previously shown that interstrand cross-linking can further enhance the binding event. In this work, we combined both strategies to fine-tune PNA crosslinking towards single stranded DNA sequences using a furan oxidation-based crosslinking method; for this purpose, γ-l-lysine and γ-l-arginine furan-PNA monomers were synthesized and incorporated in PNA sequences via solid phase synthesis. It was shown that the l-lysine γ-modification had a beneficial effect on crosslink efficiency due to pre-organization of the PNA helix and a favorable electrostatic interaction between the positively-charged lysine and the negatively-charged DNA backbone. Moreover, the crosslink yield could be optimized by carefully choosing the type of furan PNA monomer. This work is the first to describe a selective and biocompatible furan crosslinking strategy for crosslinking of γ-modified PNA sequences towards single-stranded DNA.
Collapse
Affiliation(s)
- Joke Elskens
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium.
| | - Alex Manicardi
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium.
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Valentina Costi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium.
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| |
Collapse
|
20
|
Chen T, Li SY, Wang D, Wan LJ. Competitive chiral induction in a 2D molecular assembly: Intrinsic chirality versus coadsorber-induced chirality. SCIENCE ADVANCES 2017; 3:e1701208. [PMID: 29119137 PMCID: PMC5669609 DOI: 10.1126/sciadv.1701208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Noncovalently introducing stereogenic information is a promising approach to embed chirality in achiral molecular systems. However, the interplay of the noncovalently introduced chirality with the intrinsic chirality of molecules or molecular aggregations has rarely been addressed. We report a competitive chiral expression of the noncovalent interaction-mediated chirality induction and the intrinsic stereogenic center-controlled chirality induction in a two-dimensional (2D) molecular assembly at the liquid/solid interface. Two enantiomorphous honeycomb networks are formed by the coassembly of an achiral 5-(benzyloxy)isophthalic acid (BIC) derivative and 1-octanol at the liquid/solid interface. The preferential formation of the globally homochiral assembly can be achieved either by using the chiral analog of 1-octanol, (S)-6-methyl-1-octanol, as a chiral coadsorber to induce chirality to the BIC assembly via noncovalent hydrogen bonding or by covalently linking a chiral center in the side chain of BIC. Both the chiral coadsorber and the intrinsically chiral BIC derivative can act as a chiral seeds to induce a preferred handedness in the assembly of the achiral BIC derivatives. Furthermore, the noncovalent interaction-mediated chirality induction can restrain or even overrule the manifestation of the intrinsic chirality of the BIC molecule and dominate the handedness of the 2D molecular coassembly. This study provides insight into the interplay of intrinsically chiral centers and external chiral coadsorbers in the chiral induction, transfer, and amplification processes of 2D molecular assembly.
Collapse
Affiliation(s)
- Ting Chen
- Key Laboratory of Molecular Nanostructure and Nanotechnology and CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People’s Republic of China
| | - Shu-Ying Li
- Key Laboratory of Molecular Nanostructure and Nanotechnology and CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People’s Republic of China
- University of CAS, Beijing 100049, People’s Republic of China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology and CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People’s Republic of China
- University of CAS, Beijing 100049, People’s Republic of China
| | - Li-Jun Wan
- Key Laboratory of Molecular Nanostructure and Nanotechnology and CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People’s Republic of China
| |
Collapse
|
21
|
Saarbach J, Masi D, Zambaldo C, Winssinger N. Facile access to modified and functionalized PNAs through Ugi-based solid phase oligomerization. Bioorg Med Chem 2017. [PMID: 28624242 DOI: 10.1016/j.bmc.2017.05.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Peptide nucleic acids (PNAs) derivatized with functional molecules are increasingly used in diverse biosupramolecular applications. PNAs have proven to be highly tolerant to modifications and different applications benefit from the use of modified PNAs, in particular modifications at the γ position. Herein we report simple protocols to access modified PNAs from iterative Ugi couplings which allow modular modifications at the α, β or γ position of the PNA backbone from simple starting materials. We demonstrate the utility of the method with the synthesis of several bioactive small molecules (a peptide ligand, a kinase inhibitor and a glycan)-PNA conjugates.
Collapse
Affiliation(s)
- Jacques Saarbach
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, Geneva, Switzerland
| | - Daniela Masi
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, Geneva, Switzerland
| | - Claudio Zambaldo
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, Geneva, Switzerland
| | - Nicolas Winssinger
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, Geneva, Switzerland.
| |
Collapse
|
22
|
Verona MD, Verdolino V, Palazzesi F, Corradini R. Focus on PNA Flexibility and RNA Binding using Molecular Dynamics and Metadynamics. Sci Rep 2017; 7:42799. [PMID: 28211525 PMCID: PMC5314342 DOI: 10.1038/srep42799] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/13/2017] [Indexed: 12/20/2022] Open
Abstract
Peptide Nucleic Acids (PNAs) can efficiently target DNA or RNA acting as chemical tools for gene regulation. Their backbone modification and functionalization is often used to increase the affinity for a particular sequence improving selectivity. The understanding of the trading forces that lead the single strand PNA to bind the DNA or RNA sequence is preparatory for any further rational design, but a clear and unique description of this process is still not complete. In this paper we report further insights into this subject, by a computational investigation aiming at the characterization of the conformations of a single strand PNA and how these can be correlated to its capability in binding DNA/RNA. Employing Metadynamics we were able to better define conformational pre-organizations of the single strand PNA and γ-modified PNA otherwise unrevealed through classical molecular dynamics. Our simulations driven on backbone modified PNAs lead to the conclusion that this γ-functionalization affects the single strand preorganization and targeting properties to the DNA/RNA, in agreement with circular dichroism (CD) spectra obtained for this class of compounds. MD simulations on PNA:RNA dissociation and association mechanisms allowed to reveal the critical role of central bases and preorganization in the binding process.
Collapse
Affiliation(s)
| | - Vincenzo Verdolino
- Department of Chemistry and Applied Biosciences, ETH Zurich, c/o Università della Svizzera Italiana Campus, 6900 Lugano, Switzerland
- Facoltà di Informatica, Instituto di Scienze Computazionali, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Ferruccio Palazzesi
- Department of Chemistry and Applied Biosciences, ETH Zurich, c/o Università della Svizzera Italiana Campus, 6900 Lugano, Switzerland
- Facoltà di Informatica, Instituto di Scienze Computazionali, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Roberto Corradini
- Dipartimento di Chimica, University of Parma, Italy, 43124, Italy
- National Institute for Biostructures and Biosystems (INBB)-Viale delle Medaglie d’Oro, 305, 00136 Roma, Italy
| |
Collapse
|
23
|
Sugiyama T, Kuwata K, Imamura Y, Demizu Y, Kurihara M, Takano M, Kittaka A. Peptide Nucleic Acid with a Lysine Side Chain at the β-Position: Synthesis and Application for DNA Cleavage. Chem Pharm Bull (Tokyo) 2017; 64:817-23. [PMID: 27373637 DOI: 10.1248/cpb.c16-00191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This paper reports the synthesis of new β-Lys peptide nucleic acid (PNA) monomers and their incorporation into a 10-residue PNA sequence. PNA containing β-Lys PNA units formed a stable hybrid duplex with DNA. However, incorporation of β-Lys PNA units caused destabilization of PNA-DNA duplexes to some extent. Electrostatic attractions between β-PNA and DNA could reduce this destabilization effect. Subsequently, bipyridine-conjugated β-Lys PNA was prepared and exhibited sequence selective cleavage of DNA. Based on the structures of the cleavage products and molecular modeling, we reasoned that bipyridine moiety locates within the minor groove of the PNA-DNA duplexes. The lysine side chain of β-PNA is a versatile handle for attaching various functional molecules.
Collapse
Affiliation(s)
- Toru Sugiyama
- Faculty of Pharmaceutical Sciences, Teikyo University
| | | | | | | | | | | | | |
Collapse
|
24
|
Manicardi A, Bertucci A, Rozzi A, Corradini R. A Bifunctional Monomer for On-Resin Synthesis of Polyfunctional PNAs and Tailored Induced-Fit Switching Probes. Org Lett 2016; 18:5452-5455. [PMID: 27768299 DOI: 10.1021/acs.orglett.6b02363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A synthetic strategy for the production of polyfunctional PNAs bearing substituent groups both on the nucleobase and on the backbone C5 carbon of the same monomer is described; this is based on the use of a tris-orthogonally protected monomer and subsequent solid-phase selective functionalization. This strategy can be used for synthesizing PNAs that are not readily accessible by use of preformed modified monomers. As an example, a PNA-based probe that undergoes a switch in its fluorescence emission upon hybridization with a target oligonucleotide, induced by tailor-made movement of two pyrene substituent groups, was synthesized.
Collapse
Affiliation(s)
- Alex Manicardi
- Department of Chemistry, University of Parma , Parco Area delle Scienze 17/A, Parma 43123, Italy
| | - Alessandro Bertucci
- Department of Chemistry, University of Parma , Parco Area delle Scienze 17/A, Parma 43123, Italy
| | - Andrea Rozzi
- Department of Chemistry, University of Parma , Parco Area delle Scienze 17/A, Parma 43123, Italy
| | - Roberto Corradini
- Department of Chemistry, University of Parma , Parco Area delle Scienze 17/A, Parma 43123, Italy.,I.N.B.B. Consortium , Viale delle Medaglie D'Oro, 305, 00136 Roma, Italy
| |
Collapse
|
25
|
Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K. Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chem Rev 2016; 116:13752-13990. [PMID: 27754649 DOI: 10.1021/acs.chemrev.6b00354] [Citation(s) in RCA: 1230] [Impact Index Per Article: 153.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this review, we describe the recent advances in supramolecular helical assemblies formed from chiral and achiral small molecules, oligomers (foldamers), and helical and nonhelical polymers from the viewpoints of their formations with unique chiral phenomena, such as amplification of chirality during the dynamic helically assembled processes, properties, and specific functionalities, some of which have not been observed in or achieved by biological systems. In addition, a brief historical overview of the helical assemblies of small molecules and remarkable progress in the synthesis of single-stranded and multistranded helical foldamers and polymers, their properties, structures, and functions, mainly since 2009, will also be described.
Collapse
Affiliation(s)
- Eiji Yashima
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Naoki Ousaka
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Daisuke Taura
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Kouhei Shimomura
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Tomoyuki Ikai
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
26
|
|
27
|
Kirillova Y, Boyarskaya N, Dezhenkov A, Tankevich M, Prokhorov I, Varizhuk A, Eremin S, Esipov D, Smirnov I, Pozmogova G. Polyanionic Carboxyethyl Peptide Nucleic Acids (ce-PNAs): Synthesis and DNA Binding. PLoS One 2015; 10:e0140468. [PMID: 26469337 PMCID: PMC4607454 DOI: 10.1371/journal.pone.0140468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/25/2015] [Indexed: 11/29/2022] Open
Abstract
New polyanionic modifications of polyamide nucleic acid mimics were obtained. Thymine decamers were synthesized from respective chiral α- and γ-monomers, and their enantiomeric purity was assessed. Here, we present the decamer synthesis, purification and characterization by MALDI-TOF mass spectrometry and an investigation of the hybridization properties of the decamers. We show that the modified γ-S-carboxyethyl-T10 PNA forms a stable triplex with polyadenine DNA.
Collapse
Affiliation(s)
- Yuliya Kirillova
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
- * E-mail:
| | - Nataliya Boyarskaya
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
| | - Andrey Dezhenkov
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
| | - Mariya Tankevich
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
| | - Ivan Prokhorov
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
| | - Anna Varizhuk
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
- Department of Structure-Functional Analysis of Biopolymers, Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Sergei Eremin
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
| | - Dmitry Esipov
- Department of Bioorganic Chemistry, Biology Faculty, Moscow State University, Moscow, Russia
| | - Igor Smirnov
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
| | - Galina Pozmogova
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
28
|
Accetta A, Petrovic AG, Marchelli R, Berova N, Corradini R. Structural Studies on Porphyrin-PNA Conjugates in Parallel PNA:PNA Duplexes: Effect of Stacking Interactions on Helicity. Chirality 2015; 27:864-74. [PMID: 26412743 DOI: 10.1002/chir.22521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 02/01/2023]
Abstract
Parallel PNA:PNA duplexes were synthesized and conjugated with meso-tris(pyridyl)phenylporphyrin carboxylic acid at the N-terminus. The introduction of one porphyrin unit was shown to affect slightly the stability of the PNA:PNA parallel duplex, whereas the presence of two porphyrin units at the same end resulted in a dramatic increase of the melting temperature, accompanied by hysteresis between melting and cooling curves. The circular dichroism (CD) profile of the Soret band and fluorescence quenching strongly support the occurrence of a face-to-face interaction between the two porphyrin units. Introduction of a L-lysine residue at the C-terminal of one strand of the parallel duplex induced a left-handed helical structure in the PNA:PNA duplex if the latter contains only one or no porphyrin moiety. The left-handed helicity was revealed by nucleobase CD profile at 240-280 nm and by the induced-CD observed in the presence of the DiSC2 (5) cyanine dye at ~500-550 nm. Surprisingly, the presence of two porphyrin units led to the disappearance of the nucleobase CD signal and the absence of CD exciton coupling within the Soret band region. In addition, a dramatic decrease of induced CD of DiSC2 (5) was observed. These results are in agreement with a model where the porphyrin-porphyrin interactions cause partial loss of chirality of the PNA:PNA parallel duplex, forcing it to adopt a ladder-like conformation.
Collapse
Affiliation(s)
- Alessandro Accetta
- Department of Chemistry, University of Parma, Parma, Italy.,Department of Chemistry, Columbia University, New York, New York, USA
| | - Ana G Petrovic
- Department of Chemistry, Columbia University, New York, New York, USA.,Department of Life Sciences, New York Institute of Technology (NYIT), New York, New York, USA
| | | | - Nina Berova
- Department of Chemistry, Columbia University, New York, New York, USA
| | | |
Collapse
|
29
|
Barluenga S, Winssinger N. PNA as a Biosupramolecular Tag for Programmable Assemblies and Reactions. Acc Chem Res 2015; 48:1319-31. [PMID: 25947113 DOI: 10.1021/acs.accounts.5b00109] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The programmability of oligonucleotide hybridization offers an attractive platform for the design of assemblies with emergent properties or functions. Developments in DNA nanotechnologies have transformed our thinking about the applications of nucleic acids. Progress from designed assemblies to functional outputs will continue to benefit from functionalities added to the nucleic acids that can participate in reactions or interactions beyond hybridization. In that respect, peptide nucleic acids (PNAs) are interesting because they combine the hybridization properties of DNA with the modularity of peptides. In fact, PNAs form more stable duplexes with DNA or RNA than the corresponding natural homoduplexes. The high stability achieved with shorter oligomers (an 8-mer is sufficient for a stable duplex at room temperature) typically results in very high sequence fidelity in the hybridization with negligible impact of the ionic strength of the buffer due to the lack of electrostatic repulsion between the duplex strands. The simple peptidic backbone of PNA has been shown to be tolerant of modifications with substitutions that further enhance the duplex stability while providing opportunities for functionalization. Moreover, the metabolic stability of PNAs facilitates their integration into systems that interface with biology. Over the past decade, there has been a growing interest in using PNAs as biosupramolecular tags to program assemblies and reactions. A series of robust templated reactions have been developed with functionalized PNA. These reactions can be used to translate DNA templates into functional polymers of unprecedented complexity, fluorescent outputs, or bioactive small molecules. Furthermore, cellular nucleic acids (mRNA or miRNA) have been harnessed to promote assemblies and reactions in live cells. The tolerance of PNA synthesis also lends itself to the encoding of small molecules that can be further assembled on the basis of their nucleic acid sequences. It is now well-established that hybridization-based assemblies displaying two or more ligands can interact synergistically with a target biomolecule. These assemblies have now been shown to be functional in vivo. Similarly, PNA-tagged macromolecules have been used to prepare bioactive assemblies and three-dimensional nanostructures. Several technologies based on DNA-templated synthesis of sequence-defined polymers or DNA-templated display of ligands have been shown to be compatible with reiterative cycles of selection/amplification starting with large libraries of DNA templates, bringing the power of in vitro evolution to synthetic molecules and offering the possibility of exploring uncharted molecular diversity space with unprecedented scope and speed.
Collapse
Affiliation(s)
- Sofia Barluenga
- Department of Organic Chemistry,
NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry,
NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, Geneva, Switzerland
| |
Collapse
|
30
|
Murayama K, Kashida H, Asanuma H. Acyclic
l-threoninol nucleic acid (l-aTNA) with suitable structural rigidity cross-pairs with DNA and RNA. Chem Commun (Camb) 2015; 51:6500-3. [DOI: 10.1039/c4cc09244a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We newly synthesized l-aTNA, which showed the best affinity to DNA and RNA among acyclic nucleic acids with phosphodiester linkages.
Collapse
Affiliation(s)
- Keiji Murayama
- Department of Molecular Design and Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Hiromu Kashida
- Department of Molecular Design and Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Hiroyuki Asanuma
- Department of Molecular Design and Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| |
Collapse
|
31
|
Moccia M, Adamo MFA, Saviano M. Insights on chiral, backbone modified peptide nucleic acids: Properties and biological activity. ARTIFICIAL DNA, PNA & XNA 2014; 5:e1107176. [PMID: 26752710 PMCID: PMC5329900 DOI: 10.1080/1949095x.2015.1107176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 10/02/2015] [Accepted: 10/07/2015] [Indexed: 12/14/2022]
Abstract
PNAs are emerging as useful synthetic devices targeting natural miRNAs. In particular 3 classes of structurally modified PNAs analogs are herein described, namely α, β and γ, which differ by their backbone modification. Their mode and binding affinity for natural nucleic acids and their use in medicinal chemistry as potential miRNA binders is discussed.
Collapse
Affiliation(s)
- Maria Moccia
- Consiglio Nazionale delle Ricerche-Institute of Cristallography; Bari, Italy
| | - Mauro F A Adamo
- Centre for Synthesis and Chemical Biology (CSCB); Department of Pharmaceutical & Medicinal Chemistry; Royal College of Surgeons in Ireland; Dublin, Ireland
| | - Michele Saviano
- Consiglio Nazionale delle Ricerche-Institute of Cristallography; Bari, Italy
| |
Collapse
|
32
|
Manicardi A, Corradini R. Effect of chirality in gamma-PNA: PNA interaction, another piece in the picture. ARTIFICIAL DNA, PNA & XNA 2014; 5:e1131801. [PMID: 26744081 PMCID: PMC5329894 DOI: 10.1080/1949095x.2015.1131801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/23/2022]
Abstract
Modification of the PNA backbone can be used to broaden their utility by introducing new functional groups. In particular, gamma-modified PNA have been found to be quite effective in a number of applications, and exhibit particularly high DNA binding affinity. The introduction of one side chain imply that the achiral backbone of PNA becomes chiral, and binding properties depend on the stereochemistry. A new paper on gamma-modified PNA by Ly and co-workers complete the existing knowledge by displaying that in binding to complementary PNA stereochemical orthogonality can be demonstrated. This opens the way to the exploitation of stereochemical features in diagnostic assays and in nanofabrication.
Collapse
Affiliation(s)
- Alex Manicardi
- Dipartimento di Chimica; University of Parma; Parma, Italy
| | | |
Collapse
|
33
|
Abstract
Chiral open-chain PNAs have been shown to have improved properties in terms of control of helical handedness, DNA affinity, sequence selectivity, and cellular uptake. They can be synthesized either using preformed chiral monomers or by means of a submonomeric strategy. The former is preferred when only a stereogenic center is present at C-5, whereas for PNA-bearing substituents at C-2, the submonomeric approach is preferred, since racemization, generally occurring during the solid-phase synthesis, can be minimized by this procedure. Here we describe the protocols for the synthesis of PNA oligomers containing C-2- or C-5- (or both) modified monomers and a GC method for checking the optical purity of C-2-modified PNAs.
Collapse
|
34
|
Kumar V, Gore KR, Pradeepkumar PI, Kesavan V. Design, synthesis, biophysical and primer extension studies of novel acyclic butyl nucleic acid (BuNA). Org Biomol Chem 2014; 11:5853-65. [PMID: 23903805 DOI: 10.1039/c3ob41244j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A novel nucleic acid analogue called acyclic (S)-butyl nucleic acid (BuNA) composed of an acyclic backbone containing a phosphodiester linkage and bearing natural nucleobases was synthesized. Next, (S)-BuNA nucleotides were incorporated in DNA strands and their effect on duplex stability and changes in structural conformation were investigated. Circular dichroism (CD), UV-melting and non-denatured gel electrophoresis (native PAGE) studies revealed that (S)-BuNA is capable of making duplexes with its complementary strands and integration of (S)-BuNA nucleotides into DNA duplex does not alter the B-type-helical structure of the duplex. Furthermore, (S)-BuNA oligonucleotides and (S)-BuNA substituted DNA strands were studied as primer extensions by DNA polymerases. This study revealed that the acyclic scaffold is tolerated by enzymes and is therefore to some extent biocompatible.
Collapse
Affiliation(s)
- Vipin Kumar
- Chemical Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai 600036, India.
| | | | | | | |
Collapse
|
35
|
Abstract
Peptide nucleic acids (PNAs) are attractive, as compared to other classes of oligonucleotides that have been developed to date, in that they are relatively easy to synthesize and modify, hybridize to DNA and RNA with high affinity and sequence selectivity, and are resistant to enzymatic degradation by proteases and nucleases; however, the downside is that they are only moderately soluble in aqueous solution. Herein we describe the protocols for synthesizing the second-generation γPNAs, both the monomers and oligomers, containing MiniPEG side chain with considerable improvements in water solubility, biocompatibility, and hybridization properties.
Collapse
Affiliation(s)
- Arunava Manna
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, USA
| | | | | | | |
Collapse
|
36
|
Piva R, Spandidos DA, Gambari R. From microRNA functions to microRNA therapeutics: novel targets and novel drugs in breast cancer research and treatment (Review). Int J Oncol 2013; 43:985-94. [PMID: 23939688 PMCID: PMC3829774 DOI: 10.3892/ijo.2013.2059] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/12/2013] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are a family of small non-coding RNAs that regulate gene expression by the sequence-selective targeting of mRNAs, leading to translational repression or mRNA degradation, depending on the degree of complementarity with target mRNA sequences. miRNAs play a crucial role in cancer. In the case of breast tumors, several studies have demonstrated a correlation between: i) the expression profile of oncogenic miRNAs (oncomiRs) or tumor suppressor miRNAs and ii) the tumorigenic potential of triple-negative [estrogen receptor (ER), progesterone receptor (PR) and Her2/neu] primary breast cancers. Among the miRNAs involved in breast cancer, miR-221 plays a crucial role for the following reasons: i) miR-221 is significantly overexpressed in triple-negative primary breast cancers; ii) the oncosuppressor p27
Kip1
, a validated miR-221 target, is downregulated in aggressive cancer cell lines; and iii) the upregulation of a key transcription factor, Slug, appears to be crucial, since it binds to the miR-221/miR-222 promoter and is responsible for the high expression of the miR-221/miR-222 cluster in breast cancer cells. A Slug/miR-221 network has been suggested, linking miR-221 activity with the downregulation of a Slug repressor, leading to Slug/miR-221 upregulation and p27
Kip1
downregulation. Interference with this process can be achieved using antisense miRNA (antagomiR) molecules targeting miR-221, inducing the down-regulation of Slug and the upregulation of p27
Kip1
.
Collapse
Affiliation(s)
- Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, Ferrara University, Ferrara, Italy
| | | | | |
Collapse
|
37
|
Manicardi A, Fabbri E, Tedeschi T, Sforza S, Bianchi N, Brognara E, Gambari R, Marchelli R, Corradini R. Cellular uptakes, biostabilities and anti-miR-210 activities of chiral arginine-PNAs in leukaemic K562 cells. Chembiochem 2012; 13:1327-37. [PMID: 22639449 PMCID: PMC3401907 DOI: 10.1002/cbic.201100745] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Indexed: 12/11/2022]
Abstract
A series of 18-mer peptide nucleic acids (PNAs) targeted against micro-RNA miR-210 was synthesised and tested in a cellular system. Unmodified PNAs, R8-conjugated PNAs and modified PNAs containing eight arginine residues on the backbone, either as C2-modified (R) or C5-modified (S) monomers, all with the same sequence, were compared. Two different models were used for the modified PNAs: one with alternated chiral and achiral monomers and one with a stretch of chiral monomers at the N terminus. The melting temperatures of these derivatives were found to be extremely high and 5 m urea was used to assess differences between the different structures. FACS analysis and qRT-PCR on K562 chronic myelogenous leukaemic cells indicated that arginine-conjugated and backbone-modified PNAs display good cellular uptake, with best performances for the C2-modified series. Resistance to enzymatic degradation was found to be higher for the backbone-modified PNAs, thus enhancing the advantage of using these derivatives rather than conjugated PNAs in the cells in serum, and this effect is magnified in the presence of peptidases such as trypsin. Inhibition of miR-210 activity led to changes in the erythroid differentiation pathway, which were more evident in mithramycin-treated cells. Interestingly, the anti-miR activities differed with use of different PNAs, thus suggesting a role of the substituents not only in the cellular uptake, but also in the mechanism of miR recognition and inactivation. This is the first report relating to the use of backbone-modified PNAs as anti-miR agents. The results clearly indicate that backbone-modified PNAs are good candidates for the development of very efficient drugs based on anti-miR activity, due to their enhanced bioavailabilities, and that overall anti-miR performance is a combination of cellular uptake and RNA binding.
Collapse
Affiliation(s)
- Alex Manicardi
- Dipartimento di Chimica Organica e Industriale, Università di Parma, Parco Area delle Scienze 17A, 43124 Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Totsingan F, Jain V, Green MM. Helix control in polymers: case of peptide nucleic acids (PNAs). ARTIFICIAL DNA, PNA & XNA 2012; 3:31-44. [PMID: 22772039 PMCID: PMC3429529 DOI: 10.4161/adna.20572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The helix is a critical conformation exhibited by biological macromolecules and plays a key role in fundamental biological processes. Biological helical polymers exist in a single helical sense arising from the chiral effect of their primary units-for example, DNA and proteins adopt predominantly a right-handed helix conformation in response to the asymmetric conformational propensity of D-sugars and L-amino acids, respectively. In using these homochiral systems, nature blocks our observations of some fascinating aspects of the cooperativity in helical systems, although when useful for a specific purpose, "wrong" enantiomers may be incorporated in specific places. In synthetic helical systems, on the contrary, incorporation of non-racemic chirality is an additional burden, and the findings discussed in this review show that this burden may be considerably alleviated by taking advantage of the amplification of chirality, in which small chiral influences lead to large consequences. Peptide nucleic acid (PNA), which is a non-chiral synthetic DNA mimic, shows a cooperative response to a small chiral effect induced by a chiral amino acid, which is limited, however, due to the highly flexible nature of this oligomeric chimera. The lack of internal stereochemical bias is an important factor which makes PNA an ideal system to understand some cooperative features that are not directly accessible from DNA.
Collapse
|
39
|
Manicardi A, Accetta A, Tedeschi T, Sforza S, Marchelli R, Corradini R. PNA bearing 5-azidomethyluracil: a novel approach for solid and solution phase modification. ARTIFICIAL DNA, PNA & XNA 2012; 3:53-62. [PMID: 22772040 PMCID: PMC3429531 DOI: 10.4161/adna.20158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fmoc- and Boc-protected modified monomers bearing 5-azidomethyluracil nucleobase were synthesized. Four different solid-phase synthetic strategies were tested in order to evaluate the application of this series of monomers for the solid-phase synthesis of modified PNA. The azide was used as masked amine for the introduction of amide-linked functional groups, allowing the production of a library of compounds starting from a single modified monomer. The azide function was also exploited as reactive group for the modification of PNA in solution via azide-alkyne click cycloaddition.
Collapse
Affiliation(s)
- Alex Manicardi
- Dipartimento di Chimica Organica e Industriale, Università di Parma, Parma, Italy.
| | | | | | | | | | | |
Collapse
|
40
|
De Cola C, Manicardi A, Corradini R, Izzo I, De Riccardis F. Carboxyalkyl peptoid PNAs: synthesis and hybridization properties. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Corradini R, Tedeschi T, Sforza S, Green MM, Marchelli R. Control of helical handedness in DNA and PNA nanostructures. Methods Mol Biol 2011; 749:79-92. [PMID: 21674366 DOI: 10.1007/978-1-61779-142-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Helical handedness and the twist and tilt parameters of the base pairs in duplex DNA can be affected by base sequence variation and change in environmental conditions as occurs in the transformation between right-handed B-DNA and left-handed Z-DNA. For duplexes of DNA with oligonucleotide analogs such as peptide nucleic acids (PNAs), less is known about the effects on structure such as the base pair twist and tilt parameters and handedness. However, in PNA:PNA duplexes, the absence of chiral information determining helical handedness allows the relationship between preferred helical handedness and structural design to be manipulated and, therefore, better understood. In this chapter, we report a protocol for switching between B- and Z-DNA:DNA duplexes, and the experimental procedures for obtaining right- or left-handed PNA:PNA duplexes.
Collapse
Affiliation(s)
- Roberto Corradini
- Dipartimento di Chimica Organica e Industriale, Univeristà di Parma, Parma, Italy
| | | | | | | | | |
Collapse
|
42
|
Bezer S, Rapireddy S, Skorik YA, Ly DH, Achim C. Coordination-driven inversion of handedness in ligand-modified PNA. Inorg Chem 2011; 50:11929-37. [PMID: 22059624 DOI: 10.1021/ic200855p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide nucleic acid (PNA) is a synthetic analogue of DNA, which has the same nucleobases as DNA but typically has a backbone based on aminoethyl glycine (Aeg). PNA forms duplexes by Watson Crick hybridization. The Aeg-based PNA duplexes adopt a chiral helical structure but do not have a preferred handedness because they do not contain a chiral center. An L-lysine situated at the C-end of one or both strands of a PNA duplex causes the duplex to preferably adopt a left-handed structure. We have introduced into the PNA duplexes both a C-terminal L-lysine and one or two PNA monomers that have a γ-(S)-methyl-aminoethyl glycine backbone, which is known to induce a preference for a right-handed structure. Indeed, we found that in these duplexes the γ-methyl monomer exerts the dominant chiral induction effect causing the duplexes to adopt a right-handed structure. The chiral PNA monomer had a 2,2':6',2''-terpyridine (Tpy) ligand instead of a nucleobase and PNA duplexes that contained one or two Tpys formed [Cu(Tpy)(2)](2+) complexes in the presence of Cu(2+). The CD spectroscopy studies showed that these metal-coordinated duplexes were right-handed due to the chiral induction effect exerted by the S-Tpy PNA monomer(s) except for the cases when the [Cu(Tpy)(2)](2+) complex was formed with Tpy ligands from two different PNA duplexes. In the latter case, the metal complex bridged the two PNA duplexes and the duplexes were left-handed. The results of this study show that the preferred handedness of a ligand-modified PNA can be switched as a consequence of metal coordination to the ligand. This finding could be used as a tool in the design of functional nucleic-acid based nanostructures.
Collapse
Affiliation(s)
- Silvia Bezer
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, USA
| | | | | | | | | |
Collapse
|
43
|
β-PNA: peptide nucleic acid (PNA) with a chiral center at the β-position of the PNA backbone. Bioorg Med Chem Lett 2011; 21:7317-20. [PMID: 22050888 DOI: 10.1016/j.bmcl.2011.10.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 10/04/2011] [Accepted: 10/07/2011] [Indexed: 11/22/2022]
Abstract
Peptide nucleic acid (PNA) monomers with a methyl group at the β-position have been synthesized. The modified monomers were incorporated into PNA oligomers using Fmoc chemistry for solid-phase synthesis. Thermal denaturation and circular dichroism (CD) studies have shown that PNA containing the S-form monomers was well suited to form a hybrid duplex with DNA, whose stability was comparable to that of unmodified PNA-DNA duplex, whereas PNA containing the R-form monomers was not.
Collapse
|
44
|
Gambari R, Fabbri E, Borgatti M, Lampronti I, Finotti A, Brognara E, Bianchi N, Manicardi A, Marchelli R, Corradini R. Targeting microRNAs involved in human diseases: a novel approach for modification of gene expression and drug development. Biochem Pharmacol 2011; 82:1416-29. [PMID: 21864506 DOI: 10.1016/j.bcp.2011.08.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 11/30/2022]
Abstract
The identification of all epigenetic modifications (i.e. DNA methylation, histone modifications and expression of noncoding RNAs such as microRNAs) involved in gene regulation is one of the major steps forward for understanding human biology in both normal and pathological conditions and for development of novel drugs. In this context, microRNAs play a pivotal role. This review article focuses on the involvement of microRNAs in the regulation of gene expression, on the possible role of microRNAs in the onset and development of human pathologies, and on the pharmacological alteration of the biological activity of microRNAs. RNA and DNA analogs, which can selectively target microRNAs using Watson-Crick base pairing schemes, provide a rational and efficient way to modulate gene expression. These compounds, termed antago-miR or anti-miR have been described in many examples in the recent literature and have proved to be able to perform regulatory as well as therapeutic functions. Among these, a still not fully exploited class is that of peptide nucleic acids (PNAs), promising tools for the inhibition of miRNA activity, with important applications in gene therapy and in drug development. PNAs targeting miR-122, miR-155 and miR-210 have already been developed and their biological effects studied both in vitro and in vivo.
Collapse
Affiliation(s)
- Roberto Gambari
- Laboratory for Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sahu B, Sacui I, Rapireddy S, Zanotti KJ, Bahal R, Armitage BA, Ly DH. Synthesis and characterization of conformationally preorganized, (R)-diethylene glycol-containing γ-peptide nucleic acids with superior hybridization properties and water solubility. J Org Chem 2011; 76:5614-27. [PMID: 21619025 PMCID: PMC3175361 DOI: 10.1021/jo200482d] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Developed in the early 1990s, peptide nucleic acid (PNA) has emerged as a promising class of nucleic acid mimic because of its strong binding affinity and sequence selectivity toward DNA and RNA and resistance to enzymatic degradation by proteases and nucleases; however, the main drawbacks, as compared to other classes of oligonucleotides, are water solubility and biocompatibility. Herein we show that installation of a relatively small, hydrophilic (R)-diethylene glycol ("miniPEG", R-MP) unit at the γ-backbone transforms a randomly folded PNA into a right-handed helix. Synthesis of optically pure (R-MP)γPNA monomers is described, which can be accomplished in a few simple steps from a commercially available and relatively cheap Boc-l-serine. Once synthesized, (R-MP)γPNA oligomers are preorganized into a right-handed helix, hybridize to DNA and RNA with greater affinity and sequence selectivity, and are more water soluble and less aggregating than the parental PNA oligomers. The results presented herein have important implications for the future design and application of PNA in biology, biotechnology, and medicine, as well as in other disciplines, including drug discovery and molecular engineering.
Collapse
Affiliation(s)
- Bichismita Sahu
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Iulia Sacui
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Srinivas Rapireddy
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Kimberly J. Zanotti
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Raman Bahal
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Bruce A. Armitage
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Danith H. Ly
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
46
|
Manicardi A, Calabretta A, Bencivenni M, Tedeschi T, Sforza S, Corradini R, Marchelli R. Affinity and selectivity of C2- and C5-substituted "chiral-box" PNA in solution and on microarrays. Chirality 2011; 22 Suppl 1:E161-72. [PMID: 21038387 DOI: 10.1002/chir.20865] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two peptide nucleic acids (PNAs) containing three adjacent modified chiral monomers (chiral box) were synthesized. The chiral monomers contained either a C2- or a C5-modified backbone, synthesized starting from D- and L-arginine, respectively (2D- and 5L-PNA). The C2-modified chiral PNA was synthesized using a submonomeric strategy to avoid epimerization during solid-phase synthesis, whereas for the C5-derivative, the monomers were first obtained and then used in solid-phase synthesis. The melting temperature of these PNA duplexes formed with the full-match or with single-mismatch DNA were measured both by UV and by CD spectroscopy and compared with the unmodified PNA. The 5L-chiral-box-PNA showed the highest T(m) with full-match DNA, whereas the 2D-chiral-box-PNA showed the highest sequence selectivity. The PNA were spotted on microarray slides and then hybridized with Cy5-labeled full match and mismatched oligonucleotides. The results obtained showed a signal intensity in the order achiral >2D-chiral box >5L-chiral box, whereas the full-match/mismatch selectivity was higher for the 2D chiral box PNA.
Collapse
Affiliation(s)
- Alex Manicardi
- Dipartimento di Chimica Organica e Industriale Università di Parma, 43100 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Calabretta A, Wasserberg D, Posthuma-Trumpie GA, Subramaniam V, van Amerongen A, Corradini R, Tedeschi T, Sforza S, Reinhoudt DN, Marchelli R, Huskens J, Jonkheijm P. Patterning of peptide nucleic acids using reactive microcontact printing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:1536-1542. [PMID: 20799750 DOI: 10.1021/la102756k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
PNAs (peptide nucleic acids) have been immobilized onto surfaces in a fast, accurate way by employing reactive microcontact printing. Surfaces have been first modified with aldehyde groups to react with the amino end of the synthesized PNAs. When patterning fluorescein-labeled PNAs by reactive microcontact printing using oxygen-oxidized polydimethylsiloxane stamps, homogeneous arrays were fabricated and characterized using optical methods. PNA-patterned surfaces were hybridized with complementary and mismatched dye-labeled oligonucleotides to test their ability to recognize DNA sequences. The stability and selectivity of the PNA-DNA duplexes on surfaces have been verified by fluorescence microscopy, and the melting curves have been recorded. Finally, the technique has been applied to the fabrication of chips by spotting a PNA microarray onto a flat PDMS stamp and reproducing the same features onto many slides. The chips were finally applied to single nucleotide polymorphism detection on oligonucleotides.
Collapse
Affiliation(s)
- Alessandro Calabretta
- Molecular Nanofabrication and Biophysical Engineering, Department of Science and Technology, University of Twente, PEnschede, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
DNA and RNA binding properties of an arginine-based ‘Extended Chiral Box’ Peptide Nucleic Acid. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2010.11.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Yeh JI, Shivachev B, Rapireddy S, Crawford MJ, Gil RR, Du S, Madrid M, Ly DH. Crystal structure of chiral gammaPNA with complementary DNA strand: insights into the stability and specificity of recognition and conformational preorganization. J Am Chem Soc 2010; 132:10717-27. [PMID: 20681704 DOI: 10.1021/ja907225d] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have determined the structure of a PNA-DNA duplex to 1.7 A resolution by multiple-wavelength anomalous diffraction phasing method on a zinc derivative. This structure represents the first high-resolution 3D view of a hybrid duplex containing a contiguous chiral PNA strand with complete gamma-backbone modification ("gammaPNA"). Unlike the achiral counterpart, which adopts a random-fold, this particular gammaPNA is already preorganized into a right-handed helix as a single strand. The new structure illustrates the unique characteristics of this modified PNA, possessing conformational flexibility while maintaining sufficient structural integrity to ultimately adopt the preferred P-helical conformation upon hybridization with DNA. The unusual structural adaptability found in the gammaPNA strand is crucial for enabling the accommodation of backbone modifications while constraining conformational states. In conjunction with NMR analysis characterizing the structures and substructures of the individual building blocks, these results provide unprecedented insights into how this new class of chiral gammaPNA is preorganized and stabilized, before and after hybridization with a cDNA strand. Such knowledge is crucial for the future design and development of PNA for applications in biology, biotechnology, and medicine.
Collapse
Affiliation(s)
- Joanne I Yeh
- Department of Structural Biology, University of Pittsburgh Medical School 1036 BST3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Gokhale SS, Kumar VA. Amino/guanidino-functionalized N-(pyrrolidin-2-ethyl)glycine-based pet-PNA: design, synthesis and binding with DNA/RNA. Org Biomol Chem 2010; 8:3742-50. [PMID: 20539879 DOI: 10.1039/c004005c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The N-(pyrrolidin-2-ethyl) glycine-based PNA (pet-PNA) backbone, with 4-amino or 4-guanidino-functionalized pyrrolidine ring, confers constrained conformational flexibility on aegPNA. The oligomers bind to the target DNA and RNA sequences with increased sequence specificity and antiparallel versus parallel orientation selectivity. The easy post-synthetic guanidination gives very good access to the positively charged PNA oligomers.
Collapse
Affiliation(s)
- Sachin S Gokhale
- Division of Organic Chemistry, National Chemical Laboratory, Pune 411008, India
| | | |
Collapse
|