1
|
Majhi A, Sahaji S, Misra AK. Synthesis of the pentasaccharide repeating unit with a conjugation-ready linker corresponding to the O-antigenic polysaccharide of Acinetobacter junii strain 65. Carbohydr Res 2024; 545:109295. [PMID: 39461032 DOI: 10.1016/j.carres.2024.109295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
A straightforward synthesis of the pentasaccharide with a readily available linker arm corresponding to the O-antigenic polysaccharide of Acinetobacter junii strain 65 has been achieved in good yield. The synthesis has been carried out using thioglycosides as glycosyl donor in the presence of a combination of N-iodosuccinimide (NIS) and trifluoromethanesulfonic acid (TfOH) as thiophilic activator. The yields of the glycosylation steps were very good with satisfactory stereochemistry at the glycosidic linkages. The pentasaccharide derivative has also been obtained using a one-pot iterative glycosylation strategy.
Collapse
Affiliation(s)
- Aniket Majhi
- Bose Institute, Department of Chemical Sciences, Block EN-80, Sector-V, Salt Lake, Kolkata, 700091, India
| | - Samim Sahaji
- Bose Institute, Department of Chemical Sciences, Block EN-80, Sector-V, Salt Lake, Kolkata, 700091, India
| | - Anup Kumar Misra
- Bose Institute, Department of Chemical Sciences, Block EN-80, Sector-V, Salt Lake, Kolkata, 700091, India.
| |
Collapse
|
2
|
Meng T, James B, Haymore J, Wang R, Gubler S, Taylor SA, Finn MG, Teyton L, Deng S, Savage PB. Synthesis of propargyl glycosides of Streptococcus pneumoniae serotypes 6A and 6B for glycoconjugate vaccines. Tetrahedron 2024; 165:134186. [PMID: 39280115 PMCID: PMC11391900 DOI: 10.1016/j.tet.2024.134186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
We developed a method for making immune responses to bacterial glycans T cell-dependent, which involves attachment of short, synthetic glycans to a virus-like nanoparticle (VLP). This strategy enhances immune responses to glycans by facilitating cognate T cell help of B cells, leading to antibody class switching and affinity maturation yielding high-affinity, anti-glycan antibodies. This method requires synthesis of bacterial glycans as propargyl glycosides for covalent attachment to VLPs, and the resulting short linker between the VLP and glycan is important for optimal T cell receptor recognition. In this work, glycans that are part of the capsular polysaccharides (CPS) produced by Streptococcus pneumoniae serotypes Sp6A and Sp6B were synthesized as disaccharides and trisaccharides. The optimal glycan epitope for antibody binding to the CPS from these serotypes is unknown, and differing "frames" of disaccharides and trisaccharides were prepared to elucidate the optimal antigen for antibody binding.
Collapse
Affiliation(s)
- Tianyao Meng
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Brady James
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Jared Haymore
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Rui Wang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Shawn Gubler
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Seth A Taylor
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Luc Teyton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Shenglou Deng
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| |
Collapse
|
3
|
Kohout CV, Del Bino L, Petrosilli L, D'Orazio G, Romano MR, Codée JDC, Adamo R, Lay L. Semisynthetic Glycoconjugates as Potential Vaccine Candidates Against Haemophilus influenzae Type a. Chemistry 2024; 30:e202401695. [PMID: 38889267 DOI: 10.1002/chem.202401695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Glycoconjugate vaccines are based on chemical conjugation of pathogen-associated carbohydrates with immunogenic carrier proteins and are considered a very cost-effective way to prevent infections. Most of the licensed glycoconjugate vaccines are composed of saccharide antigens extracted from bacterial sources. However, synthetic oligosaccharide antigens have become a promising alternative to natural polysaccharides with the advantage of being well-defined structures providing homogeneous conjugates. Haemophilus influenzae (Hi) is responsible for a number of severe diseases. In recent years, an increasing rate of invasive infections caused by Hi serotype a (Hia) raised some concern, because no vaccine targeting Hia is currently available. The capsular polysaccharide (CPS) of Hia is constituted by phosphodiester-linked 4-β-d-glucose-(1→4)-d-ribitol-5-(PO4→) repeating units and is the antigen for protein-conjugated polysaccharide vaccines. To investigate the antigenic potential of the CPS from Hia, we synthesized related saccharide fragments containing up to five repeating units. Following the synthetic optimization of the needed disaccharide building blocks, they were assembled using the phosphoramidite approach for the installation of the phosphodiester linkages. The resulting CPS-based Hia oligomers were conjugated to CRM197 carrier protein and evaluated in vivo for their immunogenic potential, showing that all glycoconjugates were capable of raising antibodies recognizing Hia synthetic fragments.
Collapse
Affiliation(s)
- Claudia V Kohout
- Department of Chemistry, Università degli Studi di Milano, Milano, Italy
| | | | - Laura Petrosilli
- Department of Chemistry, Università degli Studi di Milano, Milano, Italy
| | - Giuseppe D'Orazio
- Department of Chemistry, Università degli Studi di Milano, Milano, Italy
| | | | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | | | - Luigi Lay
- Department of Chemistry, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
4
|
Mamirgova ZZ, Zinin AI, Chizhov AO, Kononov LO. Synthesis of sialyl halides with various acyl protective groups. Carbohydr Res 2024; 536:109033. [PMID: 38295530 DOI: 10.1016/j.carres.2024.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Glycosyl halides are historically one of the first glycosyl donors used in glycosylation reactions, and interest in glycosylation reactions involving this class of glycosyl donors is currently increasing. New methods for their activation have been proposed and effective syntheses of oligosaccharides with their participation have been developed. At the same time, the possibilities of using these approaches to the synthesis of sialosides are restricted by the limited diversity of known sialyl halides (previously, mainly sialyl chlorides, less often sialyl bromides and sialyl fluorides, with acetyl (Ac) groups at the oxygen atoms and AcNH, Ac2N and N3 groups at C-5 were used). This work describes the synthesis of six new N-acetyl- and N-trifluoroacetyl-sialyl chlorides and bromides with O-chloroacetyl and O-trifluoroacetyl protective groups. Preparation of N,O-trifluoroacetyl protected derivatives was made possible due to development of the synthesis of sialic acid methyl ester pentaol with N-trifluoroacetyl group.
Collapse
Affiliation(s)
- Zarina Z Mamirgova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Russian Federation
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Russian Federation
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Russian Federation.
| |
Collapse
|
5
|
Kumar N, Yadav M, Kashyap S. Reagent-controlled chemo/stereoselective glycosylation of ʟ-fucal to access rare deoxysugars. Carbohydr Res 2024; 535:108992. [PMID: 38091695 DOI: 10.1016/j.carres.2023.108992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/14/2024]
Abstract
2,6-Dideoxy sugars constitute an important class of anticancer antibiotics natural products and serve as essential medicinal tools for carbohydrate-based drug discovery and vaccine development. In particular, 2-deoxy ʟ-fucose or ʟ-oliose is a rare sugar and vital structural motif of several potent antifungal and immunosuppressive bioactive molecules. Herein, we devised a reagent-controlled stereo and chemoselective activation of ʟ-fucal, enabling the distinctive glycosylation pathways to access the rare ʟ-oliose and 2,3-unsaturated ʟ-fucoside. The milder oxo-philic Bi(OTf)3 catalyst induced the direct 1,2-addition predominantly, whereas B(C6F5)3 promoted the allylic Ferrier-rearrangement of the enol-ether moiety in ʟ-fucal glycal donor, distinguishing the competitive mechanisms. The reagent-tunable modular approach is highly advantageous, employing greener catalysts and atom-economical transformations, expensive ligand/additive-free, and probed for a diverse range of substrates comprising monosaccharides, amino-acids, bioactive natural products, and drug scaffolds embedded with susceptible or labile functionalities.
Collapse
Affiliation(s)
- Nitin Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNITJ), Jaipur, 302017, India
| | - Monika Yadav
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNITJ), Jaipur, 302017, India
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNITJ), Jaipur, 302017, India.
| |
Collapse
|
6
|
Tognetti F, Biagini M, Denis M, Berti F, Maione D, Stranges D. Evolution of Vaccines Formulation to Tackle the Challenge of Anti-Microbial Resistant Pathogens. Int J Mol Sci 2023; 24:12054. [PMID: 37569427 PMCID: PMC10418901 DOI: 10.3390/ijms241512054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The increasing diffusion of antimicrobial resistance (AMR) across more and more bacterial species emphasizes the urgency of identifying innovative treatment strategies to counter its diffusion. Pathogen infection prevention is among the most effective strategies to prevent the spread of both disease and AMR. Since their discovery, vaccines have been the strongest prophylactic weapon against infectious diseases, with a multitude of different antigen types and formulative strategies developed over more than a century to protect populations from different pathogens. In this review, we review the main characteristics of vaccine formulations in use and under development against AMR pathogens, focusing on the importance of administering multiple antigens where possible, and the challenges associated with their development and production. The most relevant antigen classes and adjuvant systems are described, highlighting their mechanisms of action and presenting examples of their use in clinical trials against AMR. We also present an overview of the analytical and formulative strategies for multivalent vaccines, in which we discuss the complexities associated with mixing multiple components in a single formulation. This review emphasizes the importance of combining existing knowledge with advanced technologies within a Quality by Design development framework to efficiently develop vaccines against AMR pathogens.
Collapse
Affiliation(s)
- Francesco Tognetti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Bharali MM, Santra A. Total Synthesis of 6-Deoxy-l-talose Containing a Pentasaccharide Repeating Unit of Acinetobacter baumannii K11 Capsular Polysaccharides. J Org Chem 2023; 88:8770-8780. [PMID: 37340701 DOI: 10.1021/acs.joc.3c00615] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Herein, we report a concise synthetic approach for the first total synthesis of a pentasaccharide repeating unit of Acinetobacter baumannii K11 capsular polysaccharides containing a rare sugar 6-deoxy-l-talose. The pentasaccharide was synthesized in a convergent manner using a [3 + 2] block glycosylation strategy. During this synthetic strive, we used a 2,2,2-trichloroethoxycarbonyl (Troc)-protected monosaccharide unit to achieve a high yield during the glycosylation to synthesize a trisaccharide, and chemoselective deprotection of the Troc group from the trisaccharide was carried out under a mild, pH-neutral condition, keeping the O-glycosidic bond, azido, and acid/base sensitive group intact. A thiotolylglycoside disaccharide donor containing 6-deoxy-l-talose was synthesized for the first time by the armed-disarmed glycosylation method between two thiotolylglycosides.
Collapse
Affiliation(s)
- Mrinmoy Manash Bharali
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhishek Santra
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Dehnavi M, Haghighat S, Yazdi MH, Mahdavi M. Glucomannan as a polysaccharide adjuvant improved immune responses against Staphylococcus aureus: Potency and efficacy studies. Microb Pathog 2023; 176:106007. [PMID: 36709850 DOI: 10.1016/j.micpath.2023.106007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
Staphylococcus aureus is a gram-positive bacterium, representing one of the most important nosocomial pathogens. The treatment of infections, caused by S. aureus, has become increasingly intricate due to the emergence of highly resistant strains. Therefore, it is obvious that an effective prevention strategy against this bacterium could significantly decrease such infections. In the present study, the protective efficacy and immunological properties of recombinant autolysin, formulated in Montanide ISA266 and Alum adjuvants with Glucomannan as a polysaccharide, were assessed in the systemic mouse model of infection. Mice were immunized with the purified recombinant protein in various formulations in different groups and, subsequently, mice were challenged with 5 × 108 CFU of bacteria for the evaluation of their survival and bacterial clearances in the internal organs. ELISA was performed to determine the type of induced immunity, cytokine secretion (IFN-γ, IL-4, IL-2, and IL-17), and isotyping (IgG1 and IgG2a). In addition, we measured the opsonophagocytic activities of the antibodies. Results showed that immunization with r-autolysin + Alum + Glucomannan and r-autolysin + MontanideISA266+Glucomannan formulations significantly increased total IgG and isotypes (IgG1 and IgG2a), as compared with other vaccinated and control groups. Furthermore, the formulation of r-autolysin in Alum and MontanideISA266 adjuvants with Glucomannan enhanced IFN-γ, IL-4, and IL-17 cytokine secretion as well as protectivity, following experimental challenge. We concluded that Glucomannan has the potential to induce immune responses and would be used as an adjuvant factor in vaccine formulation.
Collapse
Affiliation(s)
- Meghdad Dehnavi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad Hossein Yazdi
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Rohokale R, Guo Z. Development in the Concept of Bacterial Polysaccharide Repeating Unit-Based Antibacterial Conjugate Vaccines. ACS Infect Dis 2023; 9:178-212. [PMID: 36706246 PMCID: PMC9930202 DOI: 10.1021/acsinfecdis.2c00559] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of cells is coated with a dense layer of glycans, known as the cell glycocalyx. The complex glycans in the glycocalyx are involved in various biological events, such as bacterial pathogenesis, protection of bacteria from environmental stresses, etc. Polysaccharides on the bacterial cell surface are highly conserved and accessible molecules, and thus they are excellent immunological targets. Consequently, bacterial polysaccharides and their repeating units have been extensively studied as antigens for the development of antibacterial vaccines. This Review surveys the recent developments in the synthetic and immunological investigations of bacterial polysaccharide repeating unit-based conjugate vaccines against several human pathogenic bacteria. The major challenges associated with the development of functional carbohydrate-based antibacterial conjugate vaccines are also considered.
Collapse
Affiliation(s)
- Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| |
Collapse
|
10
|
Lan X, Cai C, Wang J, Zhang Q, Feng Y, Chai Y. Tf2O/TfOH Catalytic Glycosylation Using o-(p-Methoxyphenylethynyl)benzyl Glycosides as Donors and Its Application in Synthesis of Oligosaccharides. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Kumar M, Kumar N, Gurawa A, Kashyap S. Protecting group enabled stereocontrolled approach for rare-sugars talose/gulose via dual-ruthenium catalysis. Carbohydr Res 2023; 523:108705. [PMID: 36370626 DOI: 10.1016/j.carres.2022.108705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 01/28/2023]
Abstract
We herein report a convenient and highly stereocontrolled approach for rare and vital ᴅ-talo and ᴅ-gulo sugars directly from economical ᴅ-galactal through dual ruthenium-catalysis. The stereo-divergent strategy involves Ru(III)Cl3-catalyzed Ferrier glycosylation of ᴅ-galactal to give 2,3-unsaturated ᴅ-galactopyranoside, further selective functionalization of C-4 and C-6 position with diverse protecting groups and dihydroxylation with Ru(VIII)O4 generated in situ providing access to talo/gulo isomers. The α-anomeric stereoselectivity and syn-diastereoselectivity in glycosylation-dihydroxylation steps have been predominantly achieved by judicious selection of stereoelectronically diverse protecting groups. The synthetic utility of the dual-ruthenium catalysis was demonstrated for efficiently assembling the ᴅ-talose and/or ᴅ-gulose sugars in natural products and bioactive scaffolds.
Collapse
Affiliation(s)
- Manoj Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur, 302017, India
| | - Nitin Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur, 302017, India
| | - Aakanksha Gurawa
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur, 302017, India
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur, 302017, India.
| |
Collapse
|
12
|
Wang N, Kong Y, Li J, Hu Y, Li X, Jiang S, Dong C. Synthesis and application of phosphorylated saccharides in researching carbohydrate-based drugs. Bioorg Med Chem 2022; 68:116806. [PMID: 35696797 DOI: 10.1016/j.bmc.2022.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022]
Abstract
Phosphorylated saccharides are valuable targets in glycochemistry and glycobiology, which play an important role in various physiological and pathological processes. The current research on phosphorylated saccharides primarily focuses on small molecule inhibitors, glycoconjugate vaccines and novel anti-tumour targeted drug carrier materials. It can maximise the pharmacological effects and reduce the toxicity risk caused by nonspecific off-target reactions of drug molecules. However, the number and types of natural phosphorylated saccharides are limited, and the complexity and heterogeneity of their structures after extraction and separation seriously restrict their applications in pharmaceutical development. The increasing demands for the research on these molecules have extensively promoted the development of carbohydrate synthesis. Numerous innovative synthetic methodologies have been reported regarding the continuous expansion of the potential building blocks, catalysts, and phosphorylation reagents. This review summarizes the latest methods for enzymatic and chemical synthesis of phosphorylated saccharides, emphasizing their breakthroughs in yield, reactivity, regioselectivity, and application scope. Additionally, the anti-bacterial, anti-tumour, immunoregulatory and other biological activities of some phosphorylated saccharides and their applications were also reviewed. Their structure-activity relationship and mechanism of action were discussed and the key phosphorylation characteristics, sites and extents responsible for observed biological activities were emphasised. This paper will provide a reference for the application of phosphorylated saccharide in the research of carbohydrate-based drugs in the future.
Collapse
Affiliation(s)
- Ning Wang
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Yuanfang Kong
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Jieming Li
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Yulong Hu
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Xiaofei Li
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Shiqing Jiang
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Chunhong Dong
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China.
| |
Collapse
|
13
|
Zhou XY, Li LX, Zhang Z, Duan SC, Huang YW, Luo YY, Mu XD, Chen ZW, Qin Y, Hu J, Yin J, Yang JS. Chemical Synthesis and Antigenic Evaluation of Inner Core Oligosaccharides from Acinetobacter baumannii Lipopolysaccharide. Angew Chem Int Ed Engl 2022; 61:e202204420. [PMID: 35543248 DOI: 10.1002/anie.202204420] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 02/05/2023]
Abstract
Acinetobacter baumannii is currently posing a serious threat to global health. Lipopolysaccharide (LPS) is a potent virulence factor of pathogenic Gram-negative bacteria. To explore the antigenic properties of A. baumannii LPS, four Kdo-containing inner core glycans from A. baumannii strain ATCC 17904 were synthesized. A flexible and divergent method based on the use of the orthogonally substituted α-Kdo-(2→5)-Kdo disaccharides was developed. Selective removal of different protecting groups in these key precursors and elongation of sugar chain via α-stereocontrolled coupling with 5,7-O-di-tert-butylsilylene or 5-O-benzoyl protected Kdo thioglycosides and 2-azido-2-deoxyglucosyl thioglycoside allowed efficient assembly of the target molecules. Glycan microarray analysis of sera from infected patients revealed that the 4,5-branched Kdo trimer was a potential antigenic epitope, which is attractive for further immunological research to develop carbohydrate vaccines against A. baumannii.
Collapse
Affiliation(s)
- Xian-Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ling-Xin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Zhen Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shi-Chao Duan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying-Wen Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi-Yang Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao-Dong Mu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhi-Wei Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jin-Song Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
14
|
Zhou X, Li L, Zhang Z, Duan S, Huang Y, Luo Y, Mu X, Chen Z, Qin Y, Hu J, Yin J, Yang J. Chemical Synthesis and Antigenic Evaluation of Inner Core Oligosaccharides from
Acinetobacter baumannii
Lipopolysaccharide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xian‐Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Ling‐Xin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Wuxi School of Medicine Jiangnan University Wuxi 214122 China
| | - Zhen Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Shi‐Chao Duan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Ying‐Wen Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Yi‐Yang Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiao‐Dong Mu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Zhi‐Wei Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Wuxi School of Medicine Jiangnan University Wuxi 214122 China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Wuxi School of Medicine Jiangnan University Wuxi 214122 China
| | - Jin‐Song Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| |
Collapse
|
15
|
Li X, Wu J, Tang W. General Strategy for the Synthesis of Rare Sugars via Ru(II)-Catalyzed and Boron-Mediated Selective Epimerization of 1,2- trans-Diols to 1,2- cis-Diols. J Am Chem Soc 2022; 144:3727-3736. [PMID: 35168319 DOI: 10.1021/jacs.1c13399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human glycans are primarily composed of nine common sugar building blocks. On the other hand, several hundred monosaccharides have been discovered in bacteria and most of them are not readily available. The ability to access these rare sugars and the corresponding glycoconjugates can facilitate the studies of various fundamentally important biological processes in bacteria, including interactions between microbiota and the human host. Many rare sugars also exist in a variety of natural products and pharmaceutical reagents with significant biological activities. Although several methods have been developed for the synthesis of rare monosaccharides, most of them involve lengthy steps. Herein, we report an efficient and general strategy that can provide access to rare sugars from commercially available common monosaccharides via a one-step Ru(II)-catalyzed and boron-mediated selective epimerization of 1,2-trans-diols to 1,2-cis-diols. The formation of boronate esters drives the equilibrium toward 1,2-cis-diol products, which can be immediately used for further selective functionalization and glycosylation. The utility of this strategy was demonstrated by the efficient construction of glycoside skeletons in natural products or bioactive compounds.
Collapse
Affiliation(s)
- Xiaolei Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jicheng Wu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Petitpoisson L, Pichette A, Alsarraf J. Towards better syntheses of partially methylated carbohydrates? Org Chem Front 2022. [DOI: 10.1039/d2qo00893a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We give an overview of the reported synthetic strategies towards partially methylated glycosides and discuss how better protocols could stem from catalytic site-selective transformations of carbohydrates and cleaner methylation reagents.
Collapse
Affiliation(s)
- Lucas Petitpoisson
- Centre de recherche sur la boréalie (CREB), Laboratoire d'analyse et de séparation des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi G7H 2B1, Québec, Canada
| | - André Pichette
- Centre de recherche sur la boréalie (CREB), Laboratoire d'analyse et de séparation des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi G7H 2B1, Québec, Canada
| | - Jérôme Alsarraf
- Centre de recherche sur la boréalie (CREB), Laboratoire d'analyse et de séparation des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi G7H 2B1, Québec, Canada
| |
Collapse
|
17
|
Basu N, Ghosh R. Recent chemical syntheses of bacteria related oligosaccharides using modern expeditious approaches. Carbohydr Res 2021; 507:108295. [PMID: 34271477 DOI: 10.1016/j.carres.2021.108295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022]
Abstract
Apart from some essential and crucial roles in life processes carbohydrates also are involved in a few detrimental courses of action related to human health, like infections by pathogenic microbes, cancer metastasis, transplanted tissue rejection, etc. Regarding management of pathogenesis by microbes, keeping in mind of multi drug-resistant bacteria and epidemic or endemic incidents, preventive measure by vaccination is the best pathway as also recommended by the WHO; by vaccination, eradication of bacterial diseases is also possible. Although some valid vaccines based on attenuated bacterial cells or isolated pure polysaccharide-antigens or the corresponding conjugates thereof are available in the market for prevention of several bacterial diseases, but these are not devoid of some disadvantages also. In order to develop improved conjugate T-cell dependent vaccines oligosaccharides related to bacterial antigens are synthesized and converted to the corresponding carrier protein conjugates. Marketed Cuban Quimi-Hib is such a vaccine being used since 2004 to resist Haemophilus influenza b infections. During nearly the past two decades research is going on worldwide for improved synthesis of bacteria related oligosaccharides or polysaccharides towards development of such semisynthetic or synthetic glycoconjugate vaccines. The present dissertation is an endeavour to encompass the recent syntheses of several pathogenic bacterial oligosaccharides or polysaccharides, made during the past ten-eleven years with special reference to modern expeditious syntheses.
Collapse
Affiliation(s)
- Nabamita Basu
- Department of Chemistry, Nabagram Hiralal Paul College, Konnagar, Hoogly, West Bengal, 712246, India
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, 700 032, India.
| |
Collapse
|
18
|
Sato K, Hagio T, Sano M, Muramoto K, Yaoita A, Noro M, Hara RI, Wada T. Solid-Phase Stereocontrolled Synthesis of Oligomeric P-Modified Glycosyl Phosphate Derivatives Using the Oxazaphospholidine Method. ACS OMEGA 2021; 6:20026-20041. [PMID: 34368588 PMCID: PMC8340430 DOI: 10.1021/acsomega.1c03058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/13/2021] [Indexed: 05/09/2023]
Abstract
Glycosyl phosphate repeating units can be found in the glycoconjugates of some bacteria and protozoa parasites. These structures and their P-modified analogs are attractive synthetic targets as antimicrobial, antiparasitic, and vaccine agents. However, P-modified glycosyl phosphates exist in different diastereomeric forms due to the chiral phosphorus atoms, whose configuration would highly affect their physiochemical and biochemical properties. In this study, a stereocontrolled method was developed for the synthesis of P-modified glycosyl phosphate repeating units derived from the lipophosphoglycan of Leishmania using the oxazaphospholidine approach. The solid-phase synthesis facilitated the elongation and purification of the glycosyl phosphate derivatives, while two P-modified glycosyl phosphates (boranophosphate and phosphorothioate) were successfully synthesized with up to three repeating units.
Collapse
Affiliation(s)
- Kazuki Sato
- Department
of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tomoya Hagio
- Department
of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Michi Sano
- Department
of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kazumasa Muramoto
- Department
of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Aya Yaoita
- Department
of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Mihoko Noro
- Department
of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Building, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Rintaro Iwata Hara
- Department
of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Department
of Neurology and Neurological Science, Graduate School of Medicinal
and Dental Sciences, Tokyo Medical and Dental
University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takeshi Wada
- Department
of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
19
|
Abstract
Carbohydrates are the most abundant and one of the most important biomacromolecules in Nature. Except for energy-related compounds, carbohydrates can be roughly divided into two categories: Carbohydrates as matter and carbohydrates as information. As matter, carbohydrates are abundantly present in the extracellular matrix of animals and cell walls of various plants, bacteria, fungi, etc., serving as scaffolds. Some commonly found polysaccharides are featured as biocompatible materials with controllable rigidity and functionality, forming polymeric biomaterials which are widely used in drug delivery, tissue engineering, etc. As information, carbohydrates are usually referred to the glycans from glycoproteins, glycolipids, and proteoglycans, which bind to proteins or other carbohydrates, thereby meditating the cell-cell and cell-matrix interactions. These glycans could be simplified as synthetic glycopolymers, glycolipids, and glycoproteins, which could be afforded through polymerization, multistep synthesis, or a semisynthetic strategy. The information role of carbohydrates can be demonstrated not only as targeting reagents but also as immune antigens and adjuvants. The latter are also included in this review as they are always in a macromolecular formulation. In this review, we intend to provide a relatively comprehensive summary of carbohydrate-based macromolecular biomaterials since 2010 while emphasizing the fundamental understanding to guide the rational design of biomaterials. Carbohydrate-based macromolecules on the basis of their resources and chemical structures will be discussed, including naturally occurring polysaccharides, naturally derived synthetic polysaccharides, glycopolymers/glycodendrimers, supramolecular glycopolymers, and synthetic glycolipids/glycoproteins. Multiscale structure-function relationships in several major application areas, including delivery systems, tissue engineering, and immunology, will be detailed. We hope this review will provide valuable information for the development of carbohydrate-based macromolecular biomaterials and build a bridge between the carbohydrates as matter and the carbohydrates as information to promote new biomaterial design in the near future.
Collapse
Affiliation(s)
- Lu Su
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Yingle Feng
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Department of Materials meet Life, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Xuyang Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
20
|
Anderluh M, Berti F, Bzducha-Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic-Cincovic M, Marradi M, Ozil M, Polito L, Reina JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS J 2021; 289:4251-4303. [PMID: 33934527 PMCID: PMC9542079 DOI: 10.1111/febs.15909] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as "tumor-associated carbohydrate antigens". Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy.
Collapse
Affiliation(s)
- Marko Anderluh
- Faculty of Pharmacy, Faculty of Pharmacy, Chair of Pharmaceutical Chemistry, University of Ljubljana, Slovenia
| | | | - Anna Bzducha-Wróbel
- Department of Biotechnology and Food Microbiology, Warsaw University of Life Sciences-SGGW, Warszawa, Poland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands.,Institute of Biomolecular Chemistry (ICB), Italian National Research Council (CNR), Pozzuoli, Italy
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Katarzyna Durlik
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Xhenti Ferhati
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Wieslaw Kaca
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Milena Marinovic-Cincovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Musa Ozil
- Faculty of Arts and Sciences, Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Laura Polito
- National Research Council, CNR-SCITEC, Milan, Italy
| | - Josè Juan Reina
- Departamento de Química Orgánica, Universidad de Málaga-IBIMA, Spain.,Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain
| | - Celso A Reis
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Portugal
| | - Robert Sackstein
- Department of Translational Medicine, Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Napoli, Italy
| | - Urban Švajger
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
21
|
Seeberger PH. Discovery of Semi- and Fully-Synthetic Carbohydrate Vaccines Against Bacterial Infections Using a Medicinal Chemistry Approach. Chem Rev 2021; 121:3598-3626. [PMID: 33794090 PMCID: PMC8154330 DOI: 10.1021/acs.chemrev.0c01210] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/13/2022]
Abstract
The glycocalyx, a thick layer of carbohydrates, surrounds the cell wall of most bacterial and parasitic pathogens. Recognition of these unique glycans by the human immune system results in destruction of the invaders. To elicit a protective immune response, polysaccharides either isolated from the bacterial cell surface or conjugated with a carrier protein, for T-cell help, are administered. Conjugate vaccines based on isolated carbohydrates currently protect millions of people against Streptococcus pneumoniae, Haemophilus influenzae type b, and Neisseria meningitides infections. Active pharmaceutical ingredients (APIs) are increasingly discovered by medicinal chemistry and synthetic in origin, rather than isolated from natural sources. Converting vaccines from biologicals to pharmaceuticals requires a fundamental understanding of how the human immune system recognizes carbohydrates and could now be realized. To illustrate the chemistry-based approach to vaccine discovery, I summarize efforts focusing on synthetic glycan-based medicinal chemistry to understand the mammalian antiglycan immune response and define glycan epitopes for novel synthetic glycoconjugate vaccines against Streptococcus pneumoniae, Clostridium difficile, Klebsiella pneumoniae, and other bacteria. The chemical tools described here help us gain fundamental insights into how the human system recognizes carbohydrates and drive the discovery of carbohydrate vaccines.
Collapse
|
22
|
Khatun F, Dai CC, Rivera-Hernandez T, Hussein WM, Khalil ZG, Capon RJ, Toth I, Stephenson RJ. Immunogenicity Assessment of Cell Wall Carbohydrates of Group A Streptococcus via Self-Adjuvanted Glyco-lipopeptides. ACS Infect Dis 2021; 7:390-405. [PMID: 33533246 DOI: 10.1021/acsinfecdis.0c00722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Identifying the immunogenic moieties and their precise structure of carbohydrates plays an important role for developing effective carbohydrate-based subunit vaccines. This study assessed the structure-immunogenicity relationship of carbohydrate moieties of a single repeating unit of group A carbohydrate (GAC) present on the cell wall of group A Streptococcus (GAS) using a rationally designed self-adjuvanted lipid-core peptide, instead of a carrier protein. Immunological evaluation of fully synthetic glyco-lipopeptides (particle size: 300-500 nm) revealed that construct consisting of higher rhamnose moieties (trirhamnosyl-lipopeptide) was able to induce enhanced immunogenic activity in mice, and GlcNAc moiety was not found to be an essential component of immunogenic GAC mimicked epitope. Trirhamnosyl-lipopeptide also showed 75-97% opsonic activity against four different clinical isolates of GAS and was comparable to a subunit peptide vaccine (J8-lipopeptide) which illustrated 65-96% opsonic activity.
Collapse
Affiliation(s)
- Farjana Khatun
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Charles C. Dai
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Tania Rivera-Hernandez
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
23
|
Mohammed ASA, Naveed M, Jost N. Polysaccharides; Classification, Chemical Properties, and Future Perspective Applications in Fields of Pharmacology and Biological Medicine (A Review of Current Applications and Upcoming Potentialities). JOURNAL OF POLYMERS AND THE ENVIRONMENT 2021; 29:2359-2371. [PMID: 33526994 PMCID: PMC7838237 DOI: 10.1007/s10924-021-02052-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 05/06/2023]
Abstract
Polysaccharides are essential macromolecules which almost exist in all living forms, and have important biological functions, they are getting more attention because they exhibit a wide range of biological and pharmacological activities, such as anti-tumour, immunomodulatory, antimicrobial, antioxidant, anticoagulant, antidiabetic, antiviral, and hypoglycemia activities, making them one of the most promising candidates in biomedical and pharmaceutical fields. Polysaccharides can be obtained from many different sources, such as plants, microorganisms, algae, and animals. Due to their physicochemical properties, they are susceptible to physical and chemical modifications leading to enhanced properties, which is the basic concept for their diverse applications in biomedical and pharmaceutical fields. In this review, we will give insight into the most recent updated applications of polysaccharides and their potentialities as alternatives for traditional and conventional therapies. Challenges and limitations for polysaccharides in pharmaceutical utilities are discussed as well.
Collapse
Affiliation(s)
- Aiman Saleh A. Mohammed
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, 6720 Hungary
- Department of Pharmacology, Faculty of Pharmacy, University of Aden, Aden, Yemen
| | - Muhammad Naveed
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, 6720 Hungary
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, 6720 Hungary
- ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, 6720 Hungary
| |
Collapse
|
24
|
Yang G, Mei G, Shen P, Hong H, Wu Z. Rapid assembly of phosphate-bridged tetra-mannose by ionic liquid-supported oligosaccharide synthesis. Carbohydr Res 2020; 500:108209. [PMID: 33250189 DOI: 10.1016/j.carres.2020.108209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022]
Abstract
An efficient ionic liquid-supported oligosaccharide synthesis (ILSOS) strategy was described for the synthesis of linear oligo-phosphomannan. A new cleavable benzyl carbamate-type IL supporter containing 5-aminopentanyl linker was designed as an acceptor IL tag to facilitate this synthesis. The chain elongation on IL tag was achieved by H-phosphonate chemistry, including condensation with α-mannosyl H-phosphonate, in situ oxidation reaction and subsequent deprotection. After four cycles, linear α-(1 → 6)-tetra-mannan phosphate was obtained with a total yield of 52.7% within 45 h. The IL tagged product exhibited a tunable solubility in polar and non-polar solvent systems that facilitate a chromatography-free purification in the assembly process. The IL tag could be easily removed after hydrogenolysis treatment after the final step, to afford an amine terminated linker at the reducing end of phosphoglycan for further conjugation with a carrier protein. This methodology offered an efficient and chromatography-free approach for the synthesis of phosphoglycan.
Collapse
Affiliation(s)
- Guangyi Yang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Guodong Mei
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Peng Shen
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| |
Collapse
|
25
|
Balijepalli AS, Grinstaff MW. Poly-Amido-Saccharides (PASs): Functional Synthetic Carbohydrate Polymers Inspired by Nature. Acc Chem Res 2020; 53:2167-2179. [PMID: 32892620 DOI: 10.1021/acs.accounts.0c00263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Carbohydrates are ubiquitous in nature, playing vital roles in all organisms ranging from metabolism to intercellular signaling. Polysaccharides, repeating units of small molecule carbohydrates, are hydrophilic, densely functionalized, stereoregular, and rigid macromolecules, and these characteristics are simultaneously advantageous in biomedical applications while presenting major hurdles for synthetic methodology and development of structure property relationships. While naturally obtained polysaccharides are widely utilized in the biochemical and medical literature, their poor physicochemical definition and the potential for contaminated samples hinders the clinical translation of this work. To address the need for new methods to synthesize carbohydrate polymers, we reported a novel class of biomaterials (Poly-Amido-Saccharides; PAS) in 2012. PASs share many properties with natural polysaccharides, such as hydrophilicity, dense hydroxyl functionality, stereoregularity, and a rigid backbone. PASs are connected by an α-1,2-amide linkage, instead of an ether linkage, that confers resistance to enzymatic and hydrolytic degradation and leads to a unique helical conformation. Importantly, our synthetic methodology affords control over molecular weight distribution resulting in pure, well-defined polymers. This Account provides an overview of the development of PAS, from the factors that initially motivated our research to current efforts to translate functional PAS to biomedical applications. We detail the synthesis of glucose- and galactose-based PAS and their biophysical properties including conformation analysis, lectin interactions, cell internalization, and water solubility. Additionally, we describe postpolymerization modification strategies to afford PASs that act as protein stabilizers. We also highlight our recent efforts toward a mechanistic understanding of monomer synthesis via [2 + 2] cycloaddition reactions in order to develop novel monomers with different stereochemistry and amine or alkyl functionality, thereby accessing functional carbohydrate polymers. Throughout our work, we apply computational and theoretical analysis to explain how properties at the monomer level (e.g., stereochemistry, functionality) significantly impact polymer properties, helical conformation, and bioactivities. Collectively, the results from the theoretical, synthetic, and applied aspects of this research advance us toward our goal of utilizing PASs in key biomedical applications as alternatives to natural polysaccharides. The importance of carbohydrates in nature and the versatility of their functions continue to inspire our investigation of new monomers, polymers, and copolymers, leveraging the advantageous properties of PAS to develop potential therapies.
Collapse
Affiliation(s)
- Anant S. Balijepalli
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Mark W. Grinstaff
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Medicine, Boston University, 72 East Concord Street, Boston, Massachusetts 02118, United States
| |
Collapse
|
26
|
Shit P, Misra AK. Straightforward synthesis of the pentasaccharide repeating unit of the cell wall O-antigen of Escherichia coli O43 strain. Glycoconj J 2020; 37:647-656. [PMID: 32601769 DOI: 10.1007/s10719-020-09933-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/23/2020] [Accepted: 06/18/2020] [Indexed: 11/28/2022]
Abstract
A concise synthetic strategy has been developed for the synthesis of the pentasaccharide repeating unit of the cell wall O-antigen of Escherichia coli O43 strain involving stereoselective β-D-mannosylation and α-L-fucosylation using corresponding trichloroacetimidate intermediates and perchloric acid supported over silica (HClO4-SiO2) as glycosylation promoter. The yield and stereoselectivity of the glycosylations were very good.
Collapse
Affiliation(s)
- Pradip Shit
- Division of Molecular Medicine, Bose Institute, P-1/12, C.I.T. Scheme VII M, Kolkata, 700054, India
| | - Anup Kumar Misra
- Division of Molecular Medicine, Bose Institute, P-1/12, C.I.T. Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
27
|
Khatun F, Toth I, Stephenson RJ. Immunology of carbohydrate-based vaccines. Adv Drug Deliv Rev 2020; 165-166:117-126. [PMID: 32320714 DOI: 10.1016/j.addr.2020.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 11/29/2022]
Abstract
Carbohydrates are considered as promising targets for vaccine development against infectious diseases where cell surface glycan's on many infectious agents are attributed to playing an important role in pathogenesis. Understanding the relationship between carbohydrates and immune components at a molecular level is crucial for the development of well-defined vaccines. Recently, carbohydrate immunology research has been accelerated by the development of new technologies that contribute to the design of optimum antigens, synthesis of antigens and the studies of antigen-antibody interactions, and as a result, several promising carbohydrate-based vaccine candidates have been prepared in recent years. This article briefly presents the mechanistic pathways of polysaccharide, glycoconjugate, glycolipid and zwitterionic vaccines and the interplay between carbohydrate antigen and immune response.
Collapse
Affiliation(s)
- Farjana Khatun
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; East West University, Dhaka, 1212, Bangladesh
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Institute for Molecular Biosciences, The University of Queensland, Woolloongabba, QLD 4072, Australia.
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
28
|
Pitirollo O, Micoli F, Necchi F, Mancini F, Carducci M, Adamo R, Evangelisti C, Morelli L, Polito L, Lay L. Gold nanoparticles morphology does not affect the multivalent presentation and antibody recognition of Group A Streptococcus synthetic oligorhamnans. Bioorg Chem 2020; 99:103815. [PMID: 32289587 DOI: 10.1016/j.bioorg.2020.103815] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/06/2020] [Accepted: 04/01/2020] [Indexed: 12/29/2022]
Abstract
The development of novel delivery systems capable of enhancing the antibody binding affinity and immunoactivity of short length saccharide antigens is at the forefront of modern medicine. In this regard, gold nanoparticles (AuNPs) raised great interest as promising nano-vaccine platform, as they do not interfere with the desired immune response and their surface can be easily functionalized, enabling the antigen multivalent presentation. In addition, the nanoparticles morphology can have a great impact on their biological properties. Gram-positive Group A Streptococcus (GAS) is a bacterium responsible for many infections and represents a priority healthcare concern, but a universal vaccine is still unavailable. Since all the GAS strains have a cell wall characterized by a common polyrhamnose backbone, this can be employed as alternative antigen to develop an anti-GAS vaccine. Herein, we present the synthesis of two oligorhamnoside fragments and their corresponding oligorhamnoside-AuNPs, designed with two different morphologies. By competitive ELISA we assessed that both symmetric and anisotropic oligorhamnan nanoparticles inhibit the binding of specific polyclonal serum much better than the unconjugated oligosaccharides.
Collapse
Affiliation(s)
- Olimpia Pitirollo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Via C. Golgi 19, 20133 Milan, Italy; GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - Francesca Necchi
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - Francesca Mancini
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - Martina Carducci
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | | | - Claudio Evangelisti
- National Council of the Research, CNR-ICCOM, Via G. Moruzzi 1, 20124 Pisa, Italy
| | - Laura Morelli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Saldini 50, 20133 Milan, Italy
| | - Laura Polito
- National Council of the Research, CNR-SCITEC, Via G. Fantoli 16/15, 20138 Milan, Italy.
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Via C. Golgi 19, 20133 Milan, Italy.
| |
Collapse
|
29
|
Mettu R, Chen CY, Wu CY. Synthetic carbohydrate-based vaccines: challenges and opportunities. J Biomed Sci 2020; 27:9. [PMID: 31900143 PMCID: PMC6941340 DOI: 10.1186/s12929-019-0591-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/18/2019] [Indexed: 01/05/2023] Open
Abstract
Glycoconjugate vaccines based on bacterial capsular polysaccharides (CPS) have been extremely successful in preventing bacterial infections. The glycan antigens for the preparation of CPS based glycoconjugate vaccines are mainly obtained from bacterial fermentation, the quality and length of glycans are always inconsistent. Such kind of situation make the CMC of glycoconjugate vaccines are difficult to well control. Thanks to the advantage of synthetic methods for carbohydrates syntheses. The well controlled glycan antigens are more easily to obtain, and them are conjugated to carrier protein to from the so-call homogeneous fully synthetic glycoconjugate vaccines. Several fully glycoconjugate vaccines are in different phases of clinical trial for bacteria or cancers. The review will introduce the recent development of fully synthetic glycoconjugate vaccine.
Collapse
Affiliation(s)
- Ravinder Mettu
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan
| | - Chiang-Yun Chen
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan.,Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan.
| |
Collapse
|
30
|
Behera A, Rai D, Kulkarni SS. Total Syntheses of Conjugation-Ready Trisaccharide Repeating Units of Pseudomonas aeruginosa O11 and Staphylococcus aureus Type 5 Capsular Polysaccharide for Vaccine Development. J Am Chem Soc 2019; 142:456-467. [DOI: 10.1021/jacs.9b11309] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Archanamayee Behera
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Diksha Rai
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
31
|
Design and synthesis of trivalent Tn glycoconjugate polymers by nitroxide-mediated polymerization. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Chatterjee D, Nayak S, Paul A, Yadav S. Syntheses of Orthogonally Protected
d‐
Galactosamine,
d
‐Allosamine and
d
‐Gulosamine Thioglycoside Building Blocks with
N
‐phthalimido Groups. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Debnath Chatterjee
- Department of ChemistryIndian Institute of Technology (ISM) Dhanbad 826004, Jharkhand India
| | - Sourav Nayak
- Department of ChemistryIndian Institute of Technology (ISM) Dhanbad 826004, Jharkhand India
| | - Abhijit Paul
- Department of ChemistryIndian Institute of Technology (ISM) Dhanbad 826004, Jharkhand India
| | - Somnath Yadav
- Department of ChemistryIndian Institute of Technology (ISM) Dhanbad 826004, Jharkhand India
| |
Collapse
|
33
|
Zhu JS, Stiers KM, Soleimani E, Groves BR, Beamer LJ, Jakeman DL. Inhibitory Evaluation of αPMM/PGM from Pseudomonas aeruginosa: Chemical Synthesis, Enzyme Kinetics, and Protein Crystallographic Study. J Org Chem 2019; 84:9627-9636. [DOI: 10.1021/acs.joc.9b01305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jian-She Zhu
- College of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyle M. Stiers
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| | - Ebrahim Soleimani
- College of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Chemistry, Razi University, Kermanshah 67149-67346, Iran
| | - Brandon R. Groves
- College of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Lesa J. Beamer
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| | - David L. Jakeman
- College of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
34
|
Gucchait A, Ghosh A, Misra AK. Convergent synthesis of the pentasaccharide repeating unit of the biofilms produced by Klebsiella pneumoniae. Beilstein J Org Chem 2019; 15:431-436. [PMID: 30873227 PMCID: PMC6404407 DOI: 10.3762/bjoc.15.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/26/2019] [Indexed: 11/23/2022] Open
Abstract
A pentasaccharide repeating unit containing α-linked D-glucuronic acid, β-linked D-mannose, corresponding to the repeating unit of biofilms produced by Klebsiella pneumoniae, has been synthesized using a stereoselective [2 + 3] convergent glycosylation strategy. The β-D-mannosidic moiety has been synthesized using a D-mannose-derived thioglycoside by a two-step activation process. Late stage TEMPO-mediated oxidation of the pentasaccharide derivative using phase-transfer reaction conditions furnished the target compound in satisfactory yield.
Collapse
Affiliation(s)
- Arin Gucchait
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII M, Kolkata 700054, India
| | - Angana Ghosh
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII M, Kolkata 700054, India
| | - Anup Kumar Misra
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII M, Kolkata 700054, India
| |
Collapse
|
35
|
Micoli F, Costantino P, Adamo R. Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiol Rev 2018; 42:388-423. [PMID: 29547971 PMCID: PMC5995208 DOI: 10.1093/femsre/fuy011] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cell surface carbohydrates have been proven optimal targets for vaccine development. Conjugation of polysaccharides to a carrier protein triggers a T-cell-dependent immune response to the glycan moiety. Licensed glycoconjugate vaccines are produced by chemical conjugation of capsular polysaccharides to prevent meningitis caused by meningococcus, pneumococcus and Haemophilus influenzae type b. However, other classes of carbohydrates (O-antigens, exopolysaccharides, wall/teichoic acids) represent attractive targets for developing vaccines. Recent analysis from WHO/CHO underpins alarming concern toward antibiotic-resistant bacteria, such as the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and additional pathogens such as Clostridium difficile and Group A Streptococcus. Fungal infections are also becoming increasingly invasive for immunocompromised patients or hospitalized individuals. Other emergencies could derive from bacteria which spread during environmental calamities (Vibrio cholerae) or with potential as bioterrorism weapons (Burkholderia pseudomallei and mallei, Francisella tularensis). Vaccination could aid reducing the use of broad-spectrum antibiotics and provide protection by herd immunity also to individuals who are not vaccinated. This review analyzes structural and functional differences of the polysaccharides exposed on the surface of emerging pathogenic bacteria, combined with medical need and technological feasibility of corresponding glycoconjugate vaccines.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena
| | | | | |
Collapse
|
36
|
Lee J, Kang S, Kim J, Moon D, Rhee YH. A Convergent Synthetic Strategy towards Oligosaccharides containing 2,3,6-Trideoxypyranoglycosides. Angew Chem Int Ed Engl 2018; 58:628-631. [DOI: 10.1002/anie.201812222] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/15/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Juyeol Lee
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| | - Soyeong Kang
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| | - Jungjoon Kim
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| | - Dohyun Moon
- Department of Beamline; Pohang Accelerator Laboratory; Pohang 37673 Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| |
Collapse
|
37
|
Lee J, Kang S, Kim J, Moon D, Rhee YH. A Convergent Synthetic Strategy towards Oligosaccharides containing 2,3,6-Trideoxypyranoglycosides. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Juyeol Lee
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| | - Soyeong Kang
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| | - Jungjoon Kim
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| | - Dohyun Moon
- Department of Beamline; Pohang Accelerator Laboratory; Pohang 37673 Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); Pohang 37673 Republic of Korea
| |
Collapse
|
38
|
Emmadi M, Kulkarni SS. Synthesis of Rare Deoxy Amino Sugar Building Blocks Enabled the Total Synthesis of a Polysaccharide Repeating Unit Analogue from the LPS of Psychrobacter cryohalolentis K5T. J Org Chem 2018; 83:14323-14337. [DOI: 10.1021/acs.joc.8b02037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Madhu Emmadi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
39
|
A novel enzymatic method for the synthesis of methyl 6-O-acetyl-α-d-glucopyranoside using a fermented solid containing lipases produced by Burkholderia contaminans LTEB11. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Behera A, Kulkarni SS. Chemical Synthesis of Rare, Deoxy-Amino Sugars Containing Bacterial Glycoconjugates as Potential Vaccine Candidates. Molecules 2018; 23:molecules23081997. [PMID: 30103434 PMCID: PMC6222762 DOI: 10.3390/molecules23081997] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/04/2018] [Accepted: 08/08/2018] [Indexed: 12/30/2022] Open
Abstract
Bacteria often contain rare deoxy amino sugars which are absent in the host cells. This structural difference can be harnessed for the development of vaccines. Over the last fifteen years, remarkable progress has been made toward the development of novel and efficient protocols for obtaining the rare sugar building blocks and their stereoselective assembly to construct conjugation ready bacterial glycans. In this review, we discuss the total synthesis of a variety of rare sugar containing bacterial glycoconjugates which are potential vaccine candidates.
Collapse
Affiliation(s)
- Archanamayee Behera
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
41
|
Colombo C, Pitirollo O, Lay L. Recent Advances in the Synthesis of Glycoconjugates for Vaccine Development. Molecules 2018; 23:molecules23071712. [PMID: 30011851 PMCID: PMC6099631 DOI: 10.3390/molecules23071712] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
During the last decade there has been a growing interest in glycoimmunology, a relatively new research field dealing with the specific interactions of carbohydrates with the immune system. Pathogens’ cell surfaces are covered by a thick layer of oligo- and polysaccharides that are crucial virulence factors, as they mediate receptors binding on host cells for initial adhesion and organism invasion. Since in most cases these saccharide structures are uniquely exposed on the pathogen surface, they represent attractive targets for vaccine design. Polysaccharides isolated from cell walls of microorganisms and chemically conjugated to immunogenic proteins have been used as antigens for vaccine development for a range of infectious diseases. However, several challenges are associated with carbohydrate antigens purified from natural sources, such as their difficult characterization and heterogeneous composition. Consequently, glycoconjugates with chemically well-defined structures, that are able to confer highly reproducible biological properties and a better safety profile, are at the forefront of vaccine development. Following on from our previous review on the subject, in the present account we specifically focus on the most recent advances in the synthesis and preliminary immunological evaluation of next generation glycoconjugate vaccines designed to target bacterial and fungal infections that have been reported in the literature since 2011.
Collapse
Affiliation(s)
- Cinzia Colombo
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Olimpia Pitirollo
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Luigi Lay
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
42
|
Baumann A, Marchner S, Daum M, Hoffmann-Röder A. Synthesis of Fluorinated Leishmania
Cap Trisaccharides for Diagnostic Tool and Vaccine Development. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800384] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Andreas Baumann
- Center For Integrated Protein Science Munich (CIPSM) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| | - Stefan Marchner
- Center For Integrated Protein Science Munich (CIPSM) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| | - Markus Daum
- Center For Integrated Protein Science Munich (CIPSM) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| | - Anja Hoffmann-Röder
- Center For Integrated Protein Science Munich (CIPSM) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| |
Collapse
|
43
|
Pifferi C, Berthet N, Renaudet O. Cyclopeptide scaffolds in carbohydrate-based synthetic vaccines. Biomater Sci 2018; 5:953-965. [PMID: 28275765 DOI: 10.1039/c7bm00072c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cyclopeptides have been recently used successfully as carriers for the multivalent presentation of carbohydrate and peptide antigens in immunotherapy. Beside their synthetic versatility, these scaffolds are indeed interesting due to their stability against enzyme degradation and low immunogenicity. This mini-review highlights the recent advances in the utilization of cyclopeptides to prepare fully synthetic vaccines prototypes against cancers and pathogens.
Collapse
Affiliation(s)
- Carlo Pifferi
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Nathalie Berthet
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Olivier Renaudet
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France. and Institut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France
| |
Collapse
|
44
|
Pathogen-Derived Carbohydrate Recognition in Molluscs Immune Defense. Int J Mol Sci 2018; 19:ijms19030721. [PMID: 29510476 PMCID: PMC5877582 DOI: 10.3390/ijms19030721] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Self-nonself discrimination is a common theme for all of the organisms in different evolutionary branches, which is also the most fundamental step for host immune protection. Plenty of pattern recognition receptors (PRRs) with great diversity have been identified from different organisms to recognize various pathogen-associated molecular patterns (PAMPs) in the last two decades, depicting a complicated scene of host-pathogen interaction. However, the detailed mechanism of the complicate PAMPs–PRRs interactions at the contacting interface between pathogens and hosts is still not well understood. All of the cells are coated by glycosylation complex and thick carbohydrates layer. The different polysaccharides in extracellular matrix of pathogen-host are important for nonself recognition of most organisms. Coincidentally, massive expansion of PRRs, majority of which contain recognition domains of Ig, leucine-rich repeat (LRR), C-type lectin (CTL), C1q and scavenger receptor (SR), have been annotated and identified in invertebrates by screening the available genomic sequence. The phylum Mollusca is one of the largest groups in the animal kingdom with abundant biodiversity providing plenty of solutions about pathogen recognition and immune protection, which might offer a suitable model to figure out the common rules of immune recognition mechanism. The present review summarizes the diverse PRRs and common elements of various PAMPs, especially focusing on the structural and functional characteristics of canonical carbohydrate recognition proteins and some novel proteins functioning in molluscan immune defense system, with the objective to provide new ideas about the immune recognition mechanisms.
Collapse
|
45
|
Qin C, Schumann B, Zou X, Pereira CL, Tian G, Hu J, Seeberger PH, Yin J. Total Synthesis of a Densely Functionalized Plesiomonas shigelloides Serotype 51 Aminoglycoside Trisaccharide Antigen. J Am Chem Soc 2018; 140:3120-3127. [PMID: 29377682 DOI: 10.1021/jacs.8b00148] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plesiomonas shigelloides, a pathogen responsible for frequent outbreaks of severe travelers' diarrhea, causes grave extraintestinal infections. Sepsis and meningitis due to P. shigelloides are associated with a high mortality rate as antibiotic resistance increases and vaccines are not available. Carbohydrate antigens expressed by pathogens are often structurally unique and are targets for developing vaccines and diagnostics. Here, we report a total synthesis of the highly functionalized trisaccharide repeating unit 2 from P. shigelloides serotype 51 from three monosaccharides. A judicious choice of building blocks and reaction conditions allowed for the four amino groups adorning the sugar rings to be installed with two N-acetyl (Ac) groups, rare acetamidino (Am), and d-3-hydroxybutyryl (Hb) groups. The strategy for the differentiation of amino groups in trisaccharide 2 will serve well for the syntheses of other complex glycans.
Collapse
Affiliation(s)
- Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, Jiangsu Province 214122, P.R. China.,Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Benjamin Schumann
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, Jiangsu Province 214122, P.R. China.,Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Claney L Pereira
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, Jiangsu Province 214122, P.R. China.,Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, Jiangsu Province 214122, P.R. China
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, Jiangsu Province 214122, P.R. China
| |
Collapse
|
46
|
Zhang GL, Ye XS. Synthetic Glycans and Glycomimetics: A Promising Alternative to Natural Polysaccharides. Chemistry 2018; 24:6696-6704. [PMID: 29282776 DOI: 10.1002/chem.201705469] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Indexed: 11/06/2022]
Abstract
A large quantity of polysaccharide-derived conjugate vaccines have been developed to combat various pathogenic infections. Another prominent polysaccharide, heparin, is listed as an essential drug by the World Health Organization (WHO) to treat thrombus. One of their common problems is that they all derive from natural polysaccharides. Specifically, capsular polysaccharides are mainly obtained from bacterial fermentation and unfractionated heparin is extracted from animal tissues such as porcine mucosa. The quality of natural polysaccharides is inconsistent and traces of contamination would cause a disaster. By contrast, the use of chemical or chemoenzymatic methods could provide structurally homogeneous and quality-controlled glycans. To date, large numbers of polysaccharide fragments and their analogues have been synthesized and evaluated. Some of them even showed comparable activities to their corresponding natural polysaccharides. Here, the latest advances in these synthetic glycan analogues ranging from carbohydrate-based vaccines, heparin-related therapeutics and glycomimetics of polysaccharides are summarized.
Collapse
Affiliation(s)
- Gao-Lan Zhang
- State Key Laboratory of National and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 10091, P. R. China
| | - Xin-Shan Ye
- State Key Laboratory of National and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 10091, P. R. China
| |
Collapse
|
47
|
Sukhova EV, Yashunsky DV, Kurbatova EA, Tsvetkov YE, Nifantiev NE. Synthesis of a pseudotetrasaccharide corresponding to a repeating unit of the Streptococcus pneumoniae type 6B capsular polysaccharide*. J Carbohydr Chem 2018. [DOI: 10.1080/07328303.2017.1420797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Elena V. Sukhova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, Russia
| | - Dmitry V. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, Russia
| | - Ekaterina A. Kurbatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Mal. Kazennyi per. 5a, Moscow, Russia
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, Russia
| |
Collapse
|
48
|
Zhang GL, Wei MM, Song C, Ma YF, Zheng XJ, Xiong DC, Ye XS. Chemical synthesis and biological evaluation of penta- to octa- saccharide fragments of Vi polysaccharide fromSalmonella typhi. Org Chem Front 2018. [DOI: 10.1039/c8qo00471d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The penta- to octa-saccharide fragments of Vi polysaccharide were synthesized efficiently, and the hexasaccharide might be the minimum epitope of Vi antigen based on ELISA analysis.
Collapse
Affiliation(s)
- Gao-Lan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Meng-Man Wei
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Chengcheng Song
- School of Life Sciences
- Northeast Normal University
- Changchun 130024
- China
| | - Yu-Feng Ma
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| |
Collapse
|
49
|
Song W, Cai J, Zou X, Wang X, Hu J, Yin J. Applications of controlled inversion strategies in carbohydrate synthesis. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.09.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Baek JY, Geissner A, Rathwell DCK, Meierhofer D, Pereira CL, Seeberger PH. A modular synthetic route to size-defined immunogenic Haemophilus influenzae b antigens is key to the identification of an octasaccharide lead vaccine candidate. Chem Sci 2017; 9:1279-1288. [PMID: 29675174 PMCID: PMC5887106 DOI: 10.1039/c7sc04521b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/05/2017] [Indexed: 01/03/2023] Open
Abstract
A Haemophilus influenzae b vaccine lead antigen was identified by the immunological evaluation of chemically precisely defined capsular polysaccharide repeating unit oligosaccharides.
The first glycoconjugate vaccine using isolated glycans was licensed to protect children from Haemophilus influenzae serotype b (Hib) infections. Subsequently, the first semisynthetic glycoconjugate vaccine using a mixture of antigens derived by polymerization targeted the same pathogen. Still, a detailed understanding concerning the correlation between oligosaccharide chain length and the immune response towards the polyribosyl-ribitol-phosphate (PRP) capsular polysaccharide that surrounds Hib remains elusive. The design of semisynthetic and synthetic Hib vaccines critically depends on the identification of the minimally protective epitope. Here, we demonstrate that an octasaccharide antigen containing four repeating disaccharide units resembles PRP polysaccharide in terms of immunogenicity and recognition by anti-Hib antibodies. Key to this discovery was the development of a modular synthesis that enabled access to oligosaccharides up to decamers. Glycan arrays containing the synthetic oligosaccharides were used to analyze anti-PRP sera for antibodies. Conjugates of the synthetic antigens and the carrier protein CRM197, which is used in licensed vaccines, were employed in immunization studies in rabbits.
Collapse
Affiliation(s)
- J Y Baek
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany . ;
| | - A Geissner
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany . ; .,Freie Universität Berlin , Department of Chemistry and Biochemistry , 14195 Berlin , Germany
| | - D C K Rathwell
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany . ; .,Freie Universität Berlin , Department of Chemistry and Biochemistry , 14195 Berlin , Germany
| | - D Meierhofer
- Max-Planck Institute for Molecular Genetics (MPIMG) , 14195 Berlin , Germany
| | - C L Pereira
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany . ;
| | - P H Seeberger
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany . ; .,Freie Universität Berlin , Department of Chemistry and Biochemistry , 14195 Berlin , Germany
| |
Collapse
|