1
|
Simone MI. Diastereoselective Synthesis of the Borylated d-Galactose Monosaccharide 3-Boronic-3-Deoxy-d-Galactose and Biological Evaluation in Glycosidase Inhibition and in Cancer for Boron Neutron Capture Therapy (BNCT). Molecules 2023; 28:molecules28114321. [PMID: 37298796 DOI: 10.3390/molecules28114321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
Drug leads with a high Fsp3 index are more likely to possess desirable properties for progression in the drug development pipeline. This paper describes the development of an efficient two-step protocol to completely diastereoselectively access a diethanolamine (DEA) boronate ester derivative of monosaccharide d-galactose from the starting material 1,2:5,6-di-O-isopropylidene-α-d-glucofuranose. This intermediate, in turn, is used to access 3-boronic-3deoxy-d-galactose for boron neutron capture therapy (BNCT) applications. The hydroboration/borane trapping protocol was robustly optimized with BH3.THF in 1,4-dioxane, followed by in-situ conversion of the inorganic borane intermediate to the organic boron product by the addition of DEA. This second step occurs instantaneously, with the immediate formation of a white precipitate. This protocol allows expedited and greener access to a new class of BNCT agents with an Fsp3 index = 1 and a desirable toxicity profile. Furthermore, presented is the first detailed NMR analysis of the borylated free monosaccharide target compound during the processes of mutarotation and borarotation.
Collapse
Affiliation(s)
- Michela I Simone
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia
- Newcastle CSIRO Energy Centre, 10 Murray Dwyer Circuit, Newcastle, NSW 2304, Australia
| |
Collapse
|
2
|
Campkin DM, Shimadate Y, Bartholomew B, Bernhardt PV, Nash RJ, Sakoff JA, Kato A, Simone MI. Borylated 2,3,4,5-Tetrachlorophthalimide and Their 2,3,4,5-Tetrachlorobenzamide Analogues: Synthesis, Their Glycosidase Inhibition and Anticancer Properties in View to Boron Neutron Capture Therapy. Molecules 2022; 27:3447. [PMID: 35684388 PMCID: PMC9182199 DOI: 10.3390/molecules27113447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Tetrachlorinated phthalimide analogues bearing a boron-pinacolate ester group were synthesised via two synthetic routes and evaluated in their glycosidase modulating and anticancer properties, with a view to use them in boron neutron capture therapy (BNCT), a promising radiation type for cancer, as this therapy does little damage to biological tissue. An unexpected decarbonylation/decarboxylation to five 2,3,4,5-tetrachlorobenzamides was observed and confirmed by X-ray crystallography studies, thus, giving access to a family of borylated 2,3,4,5-tetrachlorobenzamides. Biological evaluation showed the benzamide drugs to possess good to weak potencies (74.7-870 μM) in the inhibition of glycosidases, and to have good to moderate selectivity in the inhibition of a panel of 18 glycosidases. Furthermore, in the inhibition of selected glycosidases, there is a core subset of three animal glycosidases, which is always inhibited (rat intestinal maltase α-glucosidase, bovine liver β-glucosidase and β-galactosidase). This could indicate the involvement of the boron atom in the binding. These glycosidases are targeted for the management of diabetes, viral infections (via a broad-spectrum approach) and lysosomal storage disorders. Assays against cancer cell lines revealed potency in growth inhibition for three molecules, and selectivity for one of these molecules, with the growth of the normal cell line MCF10A not being affected by this compound. One of these molecules showed both potency and selectivity; thus, it is a candidate for further study in this area. This paper provides numerous novel aspects, including expedited access to borylated 2,3,4,5-tetrachlorophthalimides and to 2,3,4,5-tetrachlorobenzamides. The latter constitutes a novel family of glycosidase modulating drugs. Furthermore, a greener synthetic access to such structures is described.
Collapse
Affiliation(s)
- David M. Campkin
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia;
- Priority Research Centre for Drug Development, University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Yuna Shimadate
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.S.); (A.K.)
| | - Barbara Bartholomew
- Phytoquest Ltd., Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK; (B.B.); (R.J.N.)
| | - Paul V. Bernhardt
- School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia;
| | - Robert J. Nash
- Phytoquest Ltd., Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK; (B.B.); (R.J.N.)
| | - Jennette A. Sakoff
- Priority Research Centre for Drug Development, University of Newcastle, Callaghan, NSW 2308, Australia;
- Calvary Mater Newcastle Hospital, Edith Street, Waratah, NSW 2298, Australia
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.S.); (A.K.)
| | - Michela I. Simone
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia;
- Priority Research Centre for Drug Development, University of Newcastle, Callaghan, NSW 2308, Australia;
| |
Collapse
|
3
|
Simone MI, Wood A, Campkin D, Kiefel MJ, Houston TA. Recent results from non-basic glycosidase inhibitors: How structural diversity can inform general strategies for improving inhibition potency. Eur J Med Chem 2022; 235:114282. [DOI: 10.1016/j.ejmech.2022.114282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 01/01/2023]
|
4
|
Maram L, Tanaka F. Switching Electrophile Intermediates to Nucleophiles: Michael and Oxa-Diels-Alder Reactions to Afford Polyoxy-Functionalized Piperidine Derivatives with Tetrasubstituted Carbon. Org Lett 2020; 22:2751-2755. [PMID: 32193936 DOI: 10.1021/acs.orglett.0c00735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Michael, Michael-annulation, and oxa-Diels-Alder reactions of carbohydrate derivatives that afford polyoxy-functionalized piperidine derivatives bearing tetrasubstituted carbon at the 3-position of the piperidine ring are reported. Iminium ions generated from carbohydrate derivatives with amines were converted to enamines in situ, which acted as nucleophiles. As a result, substituents were introduced at the 3-position or both 2- and 3-positions of the piperidines bearing polyoxy groups. This strategy will be useful in drug discovery efforts.
Collapse
Affiliation(s)
- Lingaiah Maram
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
5
|
Dehoux-Baudoin C, Génisson Y. C
-Branched Imino Sugars: Synthesis and Biological Relevance. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900605] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cécile Dehoux-Baudoin
- SPCMIB, UMR5068 CNRS; Université Paul Sabatier-Toulouse 3; 118 route de Narbonne 31062 Toulouse cedex 09 France
| | - Yves Génisson
- SPCMIB, UMR5068 CNRS; Université Paul Sabatier-Toulouse 3; 118 route de Narbonne 31062 Toulouse cedex 09 France
| |
Collapse
|
6
|
Wood A, Prichard KL, Clarke Z, Houston TA, Fleet GWJ, Simone MI. Synthetic Pathways to 3,4,5-Trihydroxypiperidines from the Chiral Pool. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800943] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Adam Wood
- Discipline of Chemistry; University of Newcastle; 2308 Callaghan NSW Australia
- Priority Research Centre for Chemical Biology & Clinical Pharmacology; University of Newcastle; 2308 Callaghan NSW Australia
| | - Kate L. Prichard
- Discipline of Chemistry; University of Newcastle; 2308 Callaghan NSW Australia
- Priority Research Centre for Chemical Biology & Clinical Pharmacology; University of Newcastle; 2308 Callaghan NSW Australia
| | - Zane Clarke
- Discipline of Chemistry; University of Newcastle; 2308 Callaghan NSW Australia
- Priority Research Centre for Chemical Biology & Clinical Pharmacology; University of Newcastle; 2308 Callaghan NSW Australia
- Department of Chemistry; Juniata College; PA16652-2196 Huntingdon Pennsylvania USA
| | - Todd A. Houston
- Institute for Glycomics; Griffith University (Gold Coast); 4215 Southport QLD Australia
| | | | - Michela I. Simone
- Discipline of Chemistry; University of Newcastle; 2308 Callaghan NSW Australia
- Priority Research Centre for Chemical Biology & Clinical Pharmacology; University of Newcastle; 2308 Callaghan NSW Australia
| |
Collapse
|
7
|
Clarke Z, Barnes E, Prichard KL, Mares LJ, Clegg JK, McCluskey A, Houston TA, Simone MI. The crystal structures of 3- O-benzyl-1,2- O-iso-propyl-idene-5- O-methane-sulfonyl-6- O-tri-phenyl-methyl-α-d-gluco-furan-ose and its azide displacement product. Acta Crystallogr E Crystallogr Commun 2018; 74:862-867. [PMID: 29951246 PMCID: PMC6002814 DOI: 10.1107/s205698901800765x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/23/2018] [Indexed: 11/23/2022]
Abstract
The effect of different leaving groups on the substitution versus elimination outcomes with C-5 d-glucose derivatives was investigated. The stereochemical configurations of 3-O-benzyl-1,2-O-iso-propyl-idene-5-O-methane-sulfonyl-6-O-tri-phenyl-methyl-α-d-gluco-furan-ose, C36H38O8S (3) [systematic name: 1-[(3aR,5R,6S,6aR)-6-benz-yloxy-2,2-di-methyl-tetra-hydro-furo[2,3-d][1,3]dioxol-5-yl)-2-(trit-yloxy)ethyl methane-sulfonate], a stable inter-mediate, and 5-azido-3-O-benzyl-5-de-oxy-1,2-O-iso-propyl-idene-6-O-tri-phenyl-methyl-β-l-ido-furan-ose, C35H35N3O5 (4) [systematic name: (3aR,5S,6S,6aR)-5-[1-azido-2-(trit-yloxy)eth-yl]-6-benz-yloxy-2,2-di-methyl-tetra-hydro-furo[2,3-d][1,3]dioxole], a substitution product, were examined and the inversion of configuration for the azido group on C-5 in 4 was confirmed. The absolute structures of the mol-ecules in the crystals of both compounds were confirmed by resonant scattering. In the crystal of 3, neighbouring mol-ecules are linked by C-H⋯O hydrogen bonds, forming chains along the b-axis direction. The chains are linked by C-H⋯π inter-actions, forming layers parallel to the ab plane. In the crystal of 4, mol-ecules are also linked by C-H⋯O hydrogen bonds, forming this time helices along the a-axis direction. The helices are linked by a number of C-H⋯π inter-actions, forming a supra-molecular framework.
Collapse
Affiliation(s)
- Zane Clarke
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia
- Juniata College, Department of Chemistry, 1700 Moore Street, Huntingdon, Pennsylvania, PA16652-2196, USA
| | - Evan Barnes
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Chemical Biology & Clinical Pharmacology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kate L. Prichard
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Chemical Biology & Clinical Pharmacology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Laura J. Mares
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jack K. Clegg
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane St Lucia, QLD 4072, Australia
| | - Adam McCluskey
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Todd A. Houston
- Institute for Glycomics and The School of Environment and Science, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Michela I. Simone
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Chemical Biology & Clinical Pharmacology, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
8
|
Prichard K, Campkin D, O'Brien N, Kato A, Fleet GWJ, Simone MI. Biological activities of 3,4,5-trihydroxypiperidines and their N
- and O
-derivatives. Chem Biol Drug Des 2018; 92:1171-1197. [DOI: 10.1111/cbdd.13182] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kate Prichard
- Discipline of Chemistry; University of Newcastle; Callaghan NSW Australia
- Priority Research Centre for Chemical Biology and Clinical Pharmacology; University of Newcastle; Callaghan NSW Australia
| | - David Campkin
- Discipline of Chemistry; University of Newcastle; Callaghan NSW Australia
- Priority Research Centre for Chemical Biology and Clinical Pharmacology; University of Newcastle; Callaghan NSW Australia
| | - Nicholas O'Brien
- Discipline of Chemistry; University of Newcastle; Callaghan NSW Australia
- Priority Research Centre for Chemical Biology and Clinical Pharmacology; University of Newcastle; Callaghan NSW Australia
| | - Atsushi Kato
- Department of Hospital Pharmacy; University of Toyama; Toyama Japan
| | | | - Michela I. Simone
- Discipline of Chemistry; University of Newcastle; Callaghan NSW Australia
- Priority Research Centre for Chemical Biology and Clinical Pharmacology; University of Newcastle; Callaghan NSW Australia
| |
Collapse
|
9
|
Liu Z, Yoshihara A, Jenkinson SF, Wormald MR, Estévez RJ, Fleet GWJ, Izumori K. Triacetonide of Glucoheptonic Acid in the Scalable Syntheses of d-Gulose, 6-Deoxy-d-gulose, l-Glucose, 6-Deoxy-l-glucose, and Related Sugars. Org Lett 2016; 18:4112-5. [PMID: 27487167 DOI: 10.1021/acs.orglett.6b02041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ease of separation of petrol-soluble acetonides derived from the triacetonide of methyl glucoheptonate allows scalable syntheses of rare sugars containing the l-gluco or d-gulo structural motif with any oxidation level at the C6 or C1 position of the hexose, usually without chromatography: meso-d-glycero-d-guloheptitol available in two steps is an ideal entry point for the study of the biotechnological production of heptoses.
Collapse
Affiliation(s)
- Zilei Liu
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Oxford OX1 3TA, U.K.,Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , Oxford OX1 3QU, U.K
| | - Akihide Yoshihara
- International Institute of Rare Sugar Research and Education, Kagawa University , Miki, Kagawa 761-0795, Japan
| | - Sarah F Jenkinson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Oxford OX1 3TA, U.K
| | - Mark R Wormald
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , Oxford OX1 3QU, U.K
| | - Ramón J Estévez
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, Universidade de Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Oxford OX1 3TA, U.K
| | - Ken Izumori
- International Institute of Rare Sugar Research and Education, Kagawa University , Miki, Kagawa 761-0795, Japan
| |
Collapse
|
10
|
Rowicki T, Malinowski M, Gryszel M, Czerwińska K, Madura I, Mironiuk-Puchalska E, Koszytkowska-Stawińska M, Sas W. Unprotected Xylose-Derived Nitrone in Stereodivergent Synthesis of 4-Hydroxypiperidine Enantiomers: Weak Lewis Acid Induced Alteration of Stereochemistry in 1,3-Dipolar Cycloaddition. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Petakamsetty R, Jain VK, Majhi PK, Ramapanicker R. Divergent synthesis of various iminocyclitols from d-ribose. Org Biomol Chem 2015; 13:8512-23. [DOI: 10.1039/c5ob01042j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A very efficient route to the diastereoselective synthesis of polyhydroxy pyrrolidines, piperidines and azepanes from an aldehyde derivative of ribose is reported.
Collapse
Affiliation(s)
- Ramu Petakamsetty
- Department of Chemistry and Center for Environmental Science and Engineering
- Indian Institute of Technology Kanpur
- Kanpur
- India
| | - Vipin Kumar Jain
- Department of Chemistry and Center for Environmental Science and Engineering
- Indian Institute of Technology Kanpur
- Kanpur
- India
| | - Pankaj Kumar Majhi
- Department of Chemistry and Center for Environmental Science and Engineering
- Indian Institute of Technology Kanpur
- Kanpur
- India
| | - Ramesh Ramapanicker
- Department of Chemistry and Center for Environmental Science and Engineering
- Indian Institute of Technology Kanpur
- Kanpur
- India
| |
Collapse
|
12
|
DFT study of the rearrangement of 5-oxymethyl-1,3-oxathiolane-2-imine to thiiran-2-ylmethyl carbamate. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Mallick A, Vankar YD. Synthesis and Glycosidase Inhibition Study of 2-C-Hydroxymethyl- and 6-C-Hydroxymethyl-Branched Piperidines fromD-Glucose Using Ene-Yne Metathesis as a Key Step. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Santana AG, Paz NR, Francisco CG, Suárez E, González CC. Synthesis of Branched Iminosugars through a Hypervalent Iodine(III)-Mediated Radical-Polar Crossover Reaction. J Org Chem 2013; 78:7527-43. [DOI: 10.1021/jo401041s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Andrés G. Santana
- Instituto de Productos Naturales y Agrobiología del CSIC, Avenida Astrofísico Francisco Sánchez 3, 38206 La
Laguna, Tenerife, Spain
| | - Nieves R. Paz
- Instituto de Productos Naturales y Agrobiología del CSIC, Avenida Astrofísico Francisco Sánchez 3, 38206 La
Laguna, Tenerife, Spain
| | - Cosme G. Francisco
- Instituto de Productos Naturales y Agrobiología del CSIC, Avenida Astrofísico Francisco Sánchez 3, 38206 La
Laguna, Tenerife, Spain
| | - Ernesto Suárez
- Instituto de Productos Naturales y Agrobiología del CSIC, Avenida Astrofísico Francisco Sánchez 3, 38206 La
Laguna, Tenerife, Spain
| | - Concepción C. González
- Instituto de Productos Naturales y Agrobiología del CSIC, Avenida Astrofísico Francisco Sánchez 3, 38206 La
Laguna, Tenerife, Spain
| |
Collapse
|
15
|
Reed JH, Turner P, Kato A, Houston TA, Simone MI. 1-O-Benzyl-2,3-O-iso-propyl-idene-6-O-tosyl-α-l-sorbo-furan-ose. Acta Crystallogr Sect E Struct Rep Online 2013; 69:o1069-70. [PMID: 24046637 PMCID: PMC3772494 DOI: 10.1107/s1600536813015638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/05/2013] [Indexed: 11/17/2022]
Abstract
IN THE TITLE COMPOUND (SYSTEMATIC NAME {(3aS,5S,6R,6aS)-3a-[(benz-yloxy)meth-yl]-6-hy-droxy-2,2-di-methyl-tetra-hydro-furo[2,3-d][1,3]dioxol-5-yl}methyl 4-methyl-benzene-sulfonate), C23H28O8S, the absolute structure and relative stereochemistry of the four chiral centres have been established by X-ray crystallography, with the absolute configuration inferred from the use of l-sorbose as the starting material. The central furan-ose ring adopts a slightly twisted envelope conformation (with the C atom bearing the methyl-benzene-sulfonate substituent as the flap) from which three substituents depart pseudo-axially (-CH2-O-benzyl, -OH and one acetonide O atom) and two substituents pseudo-equatorially (-CH2-O-tosyl and second acetonide O atom). The dioxalane ring is in a flattened envelope conformation with the fused CH C atom as the flap. In the crystal, mol-ecules pack in columns along [010] linked by O-H⋯O hydrogen bonds involving the furan-ose hy-droxy group and furan-ose ether O atom.
Collapse
Affiliation(s)
- John H. Reed
- School of Chemistry (F11), University of Sydney, NSW 2006, Australia
| | - Peter Turner
- Crystal Structure Analysis Facility, School of Chemistry (F11), University of Sydney, NSW 2006, Australia
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630, Sugitani, Toyama 930-0194, Japan
| | - Todd A. Houston
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland 4222, Australia
| | - Michela I. Simone
- School of Chemistry (F11), University of Sydney, NSW 2006, Australia
| |
Collapse
|
16
|
Jenkinson SF, Best D, Saville AW, Mui J, Martínez RF, Nakagawa S, Kunimatsu T, Alonzi DS, Butters TD, Norez C, Becq F, Blériot Y, Wilson FX, Weymouth-Wilson AC, Kato A, Fleet GWJ. C-branched iminosugars: α-glucosidase inhibition by enantiomers of isoDMDP, isoDGDP, and isoDAB-L-isoDMDP compared to miglitol and miglustat. J Org Chem 2013; 78:7380-97. [PMID: 23688199 DOI: 10.1021/jo4005487] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Ho crossed aldol condensation provides access to a series of carbon branched iminosugars as exemplified by the synthesis of enantiomeric pairs of isoDMDP, isoDGDP, and isoDAB, allowing comparison of their biological activities with three linear isomeric natural products DMDP, DGDP, and DAB and their enantiomers. L-IsoDMDP [(2S,3S,4R)-2,4-bis(hydroxymethyl)pyrrolidine-3,4-diol], prepared in 11 steps in an overall yield of 45% from d-lyxonolactone, is a potent specific competitive inhibitor of gut disaccharidases [K(i) 0.081 μM for rat intestinal maltase] and is more effective in the suppression of hyperglycaemia in a maltose loading test than miglitol, a drug presently used in the treatment of late onset diabetes. The partial rescue of the defective F508del-CFTR function in CF-KM4 cells by L-isoDMDP is compared with miglustat and isoLAB in an approach to the treatment of cystic fibrosis.
Collapse
Affiliation(s)
- Sarah F Jenkinson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lumbroso A, Beaudet I, Toupet L, Le Grognec E, Quintard JP. Stereodivergent Synthesis of Iminosugars from Stannylated Derivatives of (S)-Vinylglycinol. Org Lett 2012; 15:160-3. [DOI: 10.1021/ol303213r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Alexandre Lumbroso
- Université de Nantes, CNRS, CEISAM, UMR 6230, Faculté des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 France, and Institut de Physique de Rennes, CNRS, UMR 6251−Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Isabelle Beaudet
- Université de Nantes, CNRS, CEISAM, UMR 6230, Faculté des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 France, and Institut de Physique de Rennes, CNRS, UMR 6251−Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Loïc Toupet
- Université de Nantes, CNRS, CEISAM, UMR 6230, Faculté des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 France, and Institut de Physique de Rennes, CNRS, UMR 6251−Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Erwan Le Grognec
- Université de Nantes, CNRS, CEISAM, UMR 6230, Faculté des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 France, and Institut de Physique de Rennes, CNRS, UMR 6251−Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Jean-Paul Quintard
- Université de Nantes, CNRS, CEISAM, UMR 6230, Faculté des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 France, and Institut de Physique de Rennes, CNRS, UMR 6251−Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
| |
Collapse
|