1
|
Murelli RP, Berkowitz AJ, Zuschlag DW. Carbocycloaddition Strategies for Troponoid Synthesis. Tetrahedron 2023; 130:133175. [PMID: 36777111 PMCID: PMC9910567 DOI: 10.1016/j.tet.2022.133175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Tropone is the prototypical aromatic 7-membered ring, and can be found in virtually any undergraduate textbook as a key example of non-benzenoid aromaticity. Aside from this important historical role, tropone is also of high interest as a uniquely reactive synthon in complex chemical synthesis as well as a valuable chemotype in drug design. More recently, there has been growing interest in the utility of tropones for catalysis and material science. Thus, synthetic strategies capable of synthesizing functional tropones are key to fully exploiting the potential of this aromatic ring system. Cycloaddition reactions are particularly powerful methods for constructing carbocycles, and these strategies in turn have proven to be powerful for generating troponoids. The following review article provides an overview of strategies for troponoids wherein the 7-membered carbocycle is generated through a cycloaddition reaction. Representative examples of each strategy are also provided.
Collapse
Affiliation(s)
- Ryan P Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States
| | - Alex J Berkowitz
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States
| | - Daniel W Zuschlag
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States
| |
Collapse
|
2
|
Baas J, Bieringer S, Frias C, Frias J, Soehnchen C, Urmann C, Ritter S, Riepl H, Prokop A. Dihydroxyquingdainone Induces Apoptosis in Leukaemia and Lymphoma Cells via the Mitochondrial Pathway in a Bcl-2- and Caspase-3-Dependent Manner and Overcomes Resistance to Cytostatic Drugs In Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155038. [PMID: 35956988 PMCID: PMC9370279 DOI: 10.3390/molecules27155038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Isatis tinctoria and its indigo dyes have already provided highly active anti-leukaemic lead compounds, with the focus mainly being on indirubin, whereas indigo itself is inactive. There are many more indigoids to find in this plant extract, for example, quingdainone, an indigoid derived from tryptanthrin. We present here a new synthesis of hitherto neglected substituted quingdainones, which is very necessary due to their poor solubility behaviour, and a structure-dependent anti-leukaemic activity study of a number of compounds. Substituted α-phenylaminoacrylic acid was synthesised by hydrogen sulfide extrusion from an analogue mercaptoacetic acid, available from the condensation of rhodanin and a substituted tryptanthrin. It is shown that just improving water solubility does not increase anti-leukaemic activity, since a quingdainone carboxylic acid is inactive compared to dihydroxyquingdainone. The most effective compound, dihydroxyquingdainone with an AC50 of 7.5 µmole, is further characterised, revealing its ability to overcome multidrug resistance in leukaemia cells (Nalm-6/BeKa) with p-glycoprotein expression.
Collapse
Affiliation(s)
- Jennifer Baas
- Department of Pediatric Hematology/Oncology, Helios Clinic Schwerin, Wismarsche Straße 393-397, 19055 Schwerin, Germany
- Department of Pediatric Hematology/Oncology, Municipal Clinics of Cologne, Children’s Hospital of the City Cologne, Amsterdamer Straße 59, 50735 Cologne, Germany
| | - Sebastian Bieringer
- Organic-Analytical Chemistry, Weihenstephan-Triesdorf University of Applied Sciences, 94315 Straubing, Germany
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, 94315 Straubing, Germany
| | - Corazon Frias
- Department of Pediatric Hematology/Oncology, Helios Clinic Schwerin, Wismarsche Straße 393-397, 19055 Schwerin, Germany
- Department of Pediatric Hematology/Oncology, Municipal Clinics of Cologne, Children’s Hospital of the City Cologne, Amsterdamer Straße 59, 50735 Cologne, Germany
| | - Jerico Frias
- Department of Pediatric Hematology/Oncology, Helios Clinic Schwerin, Wismarsche Straße 393-397, 19055 Schwerin, Germany
- Department of Pediatric Hematology/Oncology, Municipal Clinics of Cologne, Children’s Hospital of the City Cologne, Amsterdamer Straße 59, 50735 Cologne, Germany
| | - Carolina Soehnchen
- Medical School Hamburg (MSH), University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457 Hamburg, Germany
| | - Corinna Urmann
- Organic-Analytical Chemistry, Weihenstephan-Triesdorf University of Applied Sciences, 94315 Straubing, Germany
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, 94315 Straubing, Germany
| | - Steffi Ritter
- Organic-Analytical Chemistry, Weihenstephan-Triesdorf University of Applied Sciences, 94315 Straubing, Germany
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, 94315 Straubing, Germany
| | - Herbert Riepl
- Organic-Analytical Chemistry, Weihenstephan-Triesdorf University of Applied Sciences, 94315 Straubing, Germany
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, 94315 Straubing, Germany
- Correspondence: (H.R.); (A.P.)
| | - Aram Prokop
- Department of Pediatric Hematology/Oncology, Helios Clinic Schwerin, Wismarsche Straße 393-397, 19055 Schwerin, Germany
- Department of Pediatric Hematology/Oncology, Municipal Clinics of Cologne, Children’s Hospital of the City Cologne, Amsterdamer Straße 59, 50735 Cologne, Germany
- Medical School Hamburg (MSH), University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457 Hamburg, Germany
- Correspondence: (H.R.); (A.P.)
| |
Collapse
|
3
|
Gracheva IA, Shchegravina ES, Schmalz HG, Beletskaya IP, Fedorov AY. Colchicine Alkaloids and Synthetic Analogues: Current Progress and Perspectives. J Med Chem 2020; 63:10618-10651. [PMID: 32432867 DOI: 10.1021/acs.jmedchem.0c00222] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colchicine, the main alkaloid of Colchicum autumnale, is one of the most famous natural molecules. Although colchicine belongs to the oldest drugs (in use since 1500 BC), its pharmacological potential as a lead structure is not yet fully exploited. This review is devoted to the synthesis and structure-activity relationships (SAR) of colchicine alkaloids and their analogues with modified A, B, and C rings, as well as hybrid compounds derived from colchicinoids including prodrugs, conjugates, and delivery systems. The systematization of a vast amount of information presented to date will create a paradigm for future studies of colchicinoids for neoplastic and various other diseases.
Collapse
Affiliation(s)
- Iuliia A Gracheva
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | - Ekaterina S Shchegravina
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | | | - Irina P Beletskaya
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119992, Russian Federation
| | - Alexey Yu Fedorov
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| |
Collapse
|
4
|
Bukhvalova SY, Maleev AA, Gracheva YA, Voitovich YV, Ignatov SK, Svirshchevskaya EV, Fedorov AY. Gold-catalyzed cyclization in the synthesis of antimitotic 2,3-dihydrobenzo[b]oxepine derivatives of colchicine. Russ Chem Bull 2020. [DOI: 10.1007/s11172-019-2689-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Ziegler DS, Wei B, Knochel P. Improving the Halogen–Magnesium Exchange by using New Turbo‐Grignard Reagents. Chemistry 2018; 25:2695-2703. [DOI: 10.1002/chem.201803904] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Dorothée S. Ziegler
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5-13, Haus F 81377 München Germany
| | - Baosheng Wei
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5-13, Haus F 81377 München Germany
| | - Paul Knochel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5-13, Haus F 81377 München Germany
| |
Collapse
|
7
|
Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Modern Organic Synthesis with α-Diazocarbonyl Compounds. Chem Rev 2015; 115:9981-10080. [PMID: 26284754 DOI: 10.1021/acs.chemrev.5b00121] [Citation(s) in RCA: 1113] [Impact Index Per Article: 123.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Hugues Miel
- Almac Discovery Ltd. , David Keir Building, Stranmillis Road, Belfast BT9 5AG, United Kingdom
| | | | | | | | - M Anthony McKervey
- Almac Sciences Ltd. , Almac House, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, United Kingdom
| |
Collapse
|
8
|
Li-Yuan Bao R, Zhao R, Shi L. Progress and developments in the turbo Grignard reagent i-PrMgCl·LiCl: a ten-year journey. Chem Commun (Camb) 2015; 51:6884-900. [DOI: 10.1039/c4cc10194d] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The structural and kinetic perspectives of i-PrMgCl·LiCl help to rationalize the trends of its unique reactivity and selectivity.
Collapse
Affiliation(s)
- Robert Li-Yuan Bao
- Institute of Organic Chemistry
- The Academy of Fundamental and Interdisciplinary Science
- Harbin Institute of Technology
- Harbin 150080
- P. R. China
| | - Rong Zhao
- Institute of Organic Chemistry
- The Academy of Fundamental and Interdisciplinary Science
- Harbin Institute of Technology
- Harbin 150080
- P. R. China
| | - Lei Shi
- Institute of Organic Chemistry
- The Academy of Fundamental and Interdisciplinary Science
- Harbin Institute of Technology
- Harbin 150080
- P. R. China
| |
Collapse
|
9
|
Ylijoki KEO, Stryker JM. [5 + 2] Cycloaddition Reactions in Organic and Natural Product Synthesis. Chem Rev 2012; 113:2244-66. [PMID: 23153111 DOI: 10.1021/cr300087g] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kai E. O. Ylijoki
- Department of Chemistry, University
of Alberta, Edmonton,
Alberta T6G 2G2, Canada
| | - Jeffrey M. Stryker
- Department of Chemistry, University
of Alberta, Edmonton,
Alberta T6G 2G2, Canada
| |
Collapse
|