1
|
Gao P, Khong HY, Mao W, Chen X, Bao L, Wen X, Xu Y. Tunicates as Sources of High-Quality Nutrients and Bioactive Compounds for Food/Feed and Pharmaceutical Applications: A Review. Foods 2023; 12:3684. [PMID: 37835337 PMCID: PMC10572860 DOI: 10.3390/foods12193684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Tunicates are widely distributed worldwide and are recognized as abundant marine bioresources with many potential applications. In this review, state-of-the-art studies on chemical composition analyses of various tunicate species were summarized; these studies confirmed that tunicates contain nutrients similar to fish (such as abundant cellulose, protein, and ω-3 fatty acid (FA)-rich lipids), indicating their practical and feasible uses for food or animal feed exploration. However, the presence of certain toxic elements should be evaluated in terms of safety. Moreover, recent studies on bioactive substances extracted from tunicates (such as toxins, sphingomyelins, and tunichromes) were analyzed, and their biological properties were comprehensively reviewed, including antimicrobial, anticancer, antioxidant, antidiabetic, and anti-inflammatory activities. In addition, some insights and prospects for the future exploration of tunicates are provided which are expected to guide their further application in the food, animal feed, and pharmaceutical industries. This review is critical to providing a new pathway for converting the common pollution issues of hydroponic nutrients into valuable marine bioresources.
Collapse
Affiliation(s)
- Pingping Gao
- Faculty of Applied Sciences, Universiti Teknologi MARA, Sarawak Branch, Kota Samarahan 94300, Malaysia
| | - Heng Yen Khong
- Faculty of Applied Sciences, Universiti Teknologi MARA, Sarawak Branch, Kota Samarahan 94300, Malaysia
| | - Wenhui Mao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China (Y.X.)
| | - Xiaoyun Chen
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China (Y.X.)
| | - Lingxiang Bao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China (Y.X.)
| | - Xinru Wen
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China (Y.X.)
| | - Yan Xu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China (Y.X.)
| |
Collapse
|
2
|
Yang G, Xie H, Wang C, Zhang C, Yu L, Zhang L, Liu X, Xu R, Song Z, Liu R, Ueda M. Design, synthesis, and discovery of Eudistomin Y derivatives as lysosome-targeted antiproliferation agents. Eur J Med Chem 2023; 250:115193. [PMID: 36774698 DOI: 10.1016/j.ejmech.2023.115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Eudistomin Y is a novel class of β-carbolines of marine origin with potential antiproliferation activity against MDA-MB-231 cells (triple-negative breast carcinoma). However, the subcellular target or the detailed mechanism against cancer cell proliferation has not yet been identified. In this study, based on its special structure, a novel series of Eudistomin Y fluorescent derivatives were designed and synthesized by enhancing the electron-donor effect of N-9 to endow it with fluorescent properties through N-alkylation. The structure-activity relationships against the proliferation of cancer cells were also analyzed. A quarter of Eudistomin Y derivatives showed much higher potency against cancer cell proliferation than the original Eudistomin Y1. Fluorescent derivative H1k with robust antiproliferative activity could arrest MDA-MB-231 cells in the G2-M phase. The subcellular localization studies of the probes, including H1k, and Eudistomin Y1 were performed in MDA-MB-231 cells, and the co-localization and competitive inhibition assays revealed their lysosome-specific localization. Moreover, H1k could dose-dependently increase the autophagy signal and downregulate the expression of cyclin-dependent kinase (CDK1) and cyclin B1 which principally regulated the G2-M transition. Furthermore, the specific autophagy inhibitor 3-methyladenine significantly inhibited the H1k-triggered antiproliferation of cancer cells and the downregulation of CDK1 and cyclin B1. Overall, the lysosome is identified as the subcellular target of Eudistomin Y for the first time, and derivative H1k showed robust antiproliferative activity against MDA-MB-231 cells by decreasing Cyclin B1-CDK1 complex via a lysosome-dependent pathway.
Collapse
Affiliation(s)
- Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China.
| | - Hao Xie
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Conghui Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Chen Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Liping Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Luyu Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Xin Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Ruoxuan Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Rongxia Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Minoru Ueda
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan; Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
3
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
4
|
Dinesh V, Nagarajan R. (NH 4) 2S 2O 8-Mediated Metal-Free Decarboxylative Formylation/Acylation of α-Oxo/Ketoacids and Its Application to the Synthesis of Indole Alkaloids. J Org Chem 2022; 87:10359-10365. [PMID: 35820161 DOI: 10.1021/acs.joc.2c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A metal-free method for the formylation/acylation of indoles and β-carbolines with (NH4)2S2O8 via direct decarboxylative cross-coupling of α-oxo/ketoacids in moderate to good yields is described. The reaction occurs between ambient temperature and 40 °C under mild reaction conditions with commercially available starting materials. This methodology can be expanded to some biologically active indole alkaloids like pityriacitrins, eudistomins Y1 and Y3, and marinacarbolines A-D.
Collapse
Affiliation(s)
- Votarikari Dinesh
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Rajagopal Nagarajan
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
5
|
Concerning the preparation of 6-bromotryptamine. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Mondal A, Chowdhury C. Palladium-Catalyzed Synthesis of 1-Vinyltetrahydro-β-carbolines and Aza-spiroindolenines: Access to the Syntheses of 1-Vinyl-β-carbolines and Eudistomins Y1 and Y2. J Org Chem 2021; 86:3810-3825. [PMID: 33591208 DOI: 10.1021/acs.joc.0c02651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A general synthesis of 1-vinyltetrahydro-β-carbolines (THBCs) has been achieved via palladium(0)-catalyzed cyclocondensation between allenyltryptamines and aryl iodides. Aza-spiroindolenines could also be accessed from the N-unsubstituted indole substrates by simply tweaking the reaction conditions. DDQ-mediated oxidation of THBCs easily afforded β-carbolines, which could be synthetically transformed into 1-aroyl-β-carbolines of pharmacological interest. Formal total syntheses of eudistomins Y1 and Y2 have also been achieved.
Collapse
Affiliation(s)
- Amrita Mondal
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Chinmay Chowdhury
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
7
|
Chalotra N, Ahmed A, Rizvi MA, Hussain Z, Ahmed QN, Shah BA. Photoredox Generated Vinyl Radicals: Synthesis of Bisindoles and β-Carbolines. J Org Chem 2018; 83:14443-14456. [DOI: 10.1021/acs.joc.8b02193] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Neha Chalotra
- AcSIR and Natural Product Microbes, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Ajaz Ahmed
- AcSIR and Natural Product Microbes, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | | | - Zakir Hussain
- Department of Chemistry, University of Kashmir, Srinagar 190006, India
| | - Qazi Naveed Ahmed
- AcSIR and Natural Product Microbes, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Bhahwal Ali Shah
- AcSIR and Natural Product Microbes, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| |
Collapse
|
8
|
Dai J, Dan W, Schneider U, Wang J. β-Carboline alkaloid monomers and dimers: Occurrence, structural diversity, and biological activities. Eur J Med Chem 2018; 157:622-656. [DOI: 10.1016/j.ejmech.2018.08.027] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/26/2018] [Accepted: 08/10/2018] [Indexed: 01/21/2023]
|
9
|
Zheng B, Qu HY, Meng TZ, Lu X, Zheng J, He YG, Fan QQ, Shi XX. Novel total syntheses of oxoaporphine alkaloids enabled by mild Cu-catalyzed tandem oxidation/aromatization of 1-Bn-DHIQs. RSC Adv 2018; 8:28997-29007. [PMID: 35548004 PMCID: PMC9084380 DOI: 10.1039/c8ra05338c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/06/2018] [Indexed: 12/25/2022] Open
Abstract
Novel total syntheses of oxoaporphine alkaloids such as liriodenine, dicentrinone, cassameridine, lysicamine, oxoglaucine and O-methylmoschatoline were developed. The key step of these total syntheses is Cu-catalyzed conversion of 1-benzyl-3,4-dihydro-isoquinolines (1-Bn-DHIQs) to 1-benzoyl-isoquinolines (1-Bz-IQs) via tandem oxidation/aromatization. This novel Cu-catalyzed conversion has been studied in detail, and was successfully used for constructing the 1-Bz-IQ core.
Collapse
Affiliation(s)
- Bo Zheng
- Shanghai Key Laboratory of Chemical Biology and Department of Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Hui-Ya Qu
- Shanghai Key Laboratory of Chemical Biology and Department of Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Tian-Zhuo Meng
- Shanghai Key Laboratory of Chemical Biology and Department of Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Xia Lu
- Shanghai Key Laboratory of Chemical Biology and Department of Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Jie Zheng
- Shanghai Key Laboratory of Chemical Biology and Department of Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Yun-Gang He
- Shanghai Key Laboratory of Chemical Biology and Department of Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Qi-Qi Fan
- Shanghai Key Laboratory of Chemical Biology and Department of Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Xiao-Xin Shi
- Shanghai Key Laboratory of Chemical Biology and Department of Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| |
Collapse
|
10
|
Meng TZ, Zheng J, Trieu TH, Zheng B, Wu JJ, Zhang Y, Shi XX. CuBr 2-Catalyzed Mild Oxidation of 3,4-Dihydro-β-Carbolines and Application in Total Synthesis of 6-Hydroxymetatacarboline D. ACS OMEGA 2018; 3:544-553. [PMID: 31457912 PMCID: PMC6641302 DOI: 10.1021/acsomega.7b01908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 12/26/2017] [Indexed: 06/10/2023]
Abstract
A green chemical method for the conversion of 3,4-dihydro-β-carbolines to β-carbolines has been developed using air as the oxidant. With 15 mol % CuBr2 as the catalyst, 3,4-dihydro-β-carbolines could be efficiently oxidized to β-carbolines in dimethyl sulfoxide at room temperature in the presence of 1,8-diazabicyclo[5,4,0]undec-7-ene (or Et3N). By applying this method, the first total synthesis of 6-hydroxymetatacarboline D was performed through 12 steps in 22% overall yield starting from l-5-hydroxy-tryptophan.
Collapse
Affiliation(s)
- Tian-Zhuo Meng
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Jie Zheng
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Tien Ha Trieu
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Bo Zheng
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Jia-Jia Wu
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Yi Zhang
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Xiao-Xin Shi
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| |
Collapse
|
11
|
Xiang JC, Wang ZX, Cheng Y, Ma JT, Wang M, Tang BC, Wu YD, Wu AX. A C-H Oxidation/Two-Fold Cyclization Approach to Imidazopyridoindole Scaffold under Mild Oxidizing Conditions. J Org Chem 2017; 82:13671-13677. [PMID: 29171272 DOI: 10.1021/acs.joc.7b02448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An expeditious one-step synthesis of the imidazopyridoindole scaffold was achieved through the C-H oxidation/two-fold cyclization reaction of methyl ketone and tryptamine derivatives. Mild oxidizing conditions were employed to realize the efficient oxidation of C(sp3)-H bonds, while suppressing overoxidation of the intermediate and ensuring the cross-trapping of two in situ generated acylimine intermediates.
Collapse
Affiliation(s)
- Jia-Chen Xiang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Hubei, Wuhan 430079, P. R. China
| | - Zi-Xuan Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Hubei, Wuhan 430079, P. R. China
| | - Yan Cheng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Hubei, Wuhan 430079, P. R. China
| | - Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Hubei, Wuhan 430079, P. R. China
| | - Miao Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Hubei, Wuhan 430079, P. R. China
| | - Bo-Cheng Tang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Hubei, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Hubei, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Hubei, Wuhan 430079, P. R. China
| |
Collapse
|
12
|
Palanisamy SK, Rajendran NM, Marino A. Natural Products Diversity of Marine Ascidians (Tunicates; Ascidiacea) and Successful Drugs in Clinical Development. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:1-111. [PMID: 28097641 PMCID: PMC5315671 DOI: 10.1007/s13659-016-0115-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
This present study reviewed the chemical diversity of marine ascidians and their pharmacological applications, challenges and recent developments in marine drug discovery reported during 1994-2014, highlighting the structural activity of compounds produced by these specimens. Till date only 5% of living ascidian species were studied from <3000 species, this study represented from family didemnidae (32%), polyclinidae (22%), styelidae and polycitoridae (11-12%) exhibiting the highest number of promising MNPs. Close to 580 compound structures are here discussed in terms of their occurrence, structural type and reported biological activity. Anti-cancer drugs are the main area of interest in the screening of MNPs from ascidians (64%), followed by anti-malarial (6%) and remaining others. FDA approved ascidian compounds mechanism of action along with other compounds status of clinical trials (phase 1 to phase 3) are discussed here in. This review highlights recent developments in the area of natural products chemistry and biotechnological approaches are emphasized.
Collapse
Affiliation(s)
- Satheesh Kumar Palanisamy
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166, Messina, Italy.
| | - N M Rajendran
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166, Messina, Italy
| |
Collapse
|
13
|
Olsen EK, Hansen E, W K Moodie L, Isaksson J, Sepčić K, Cergolj M, Svenson J, Andersen JH. Marine AChE inhibitors isolated from Geodia barretti: natural compounds and their synthetic analogs. Org Biomol Chem 2016; 14:1629-40. [PMID: 26695619 DOI: 10.1039/c5ob02416a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Barettin, 8,9-dihydrobarettin, bromoconicamin and a novel brominated marine indole were isolated from the boreal sponge Geodia barretti collected off the Norwegian coast. The compounds were evaluated as inhibitors of electric eel acetylcholinesterase. Barettin and 8,9-dihydrobarettin displayed significant inhibition of the enzyme, with inhibition constants (Ki) of 29 and 19 μM respectively towards acetylcholinesterase via a reversible noncompetitive mechanism. These activities are comparable to those of several other natural acetylcholinesterase inhibitors of marine origin. Bromoconicamin was less potent against acetylcholinesterase, and the novel compound was inactive. Based on the inhibitory activity, a library of 22 simplified synthetic analogs was designed and prepared to probe the role of the brominated indole, common to all the isolated compounds. From the structure-activity investigation it was shown that the brominated indole motif is not sufficient to generate a high acetylcholinesterase inhibitory activity, even when combined with natural cationic ligands for the acetylcholinesterase active site. The four natural compounds were also analysed for their butyrylcholinesterase inhibitory activity in addition and shown to display comparable activities. The study illustrates how both barettin and 8,9-dihydrobarettin display additional bioactivities which may help to explain their biological role in the producing organism. The findings also provide new insights into the structure-activity relationship of both natural and synthetic acetylcholinesterase inhibitors.
Collapse
Affiliation(s)
- Elisabeth K Olsen
- MabCent-SFI, UiT The Arctic University of Norway, Breivika, N-9037, Tromsø, Norway
| | - Espen Hansen
- Marbio, UiT The Arctic University of Norway, Breivika, N-9037, Tromsø, Norway.
| | - Lindon W K Moodie
- Department of Chemistry, University of Umeå, SE-901 87, Umeå, Sweden
| | - Johan Isaksson
- Department of Chemistry, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Marija Cergolj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia and Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Johan Svenson
- Department of Chemistry, Materials and Surfaces SP Technical Research Institute of Sweden, Box 857, SE-501 15 Borås, Sweden.
| | - Jeanette H Andersen
- Marbio, UiT The Arctic University of Norway, Breivika, N-9037, Tromsø, Norway.
| |
Collapse
|
14
|
|
15
|
Abstract
This review covers the literature published in 2013 for marine natural products (MNPs), with 982 citations (644 for the period January to December 2013) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1163 for 2013), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
16
|
Mohy El Dine T, Erb W, Berhault Y, Rouden J, Blanchet J. Catalytic chemical amide synthesis at room temperature: one more step toward peptide synthesis. J Org Chem 2015; 80:4532-44. [PMID: 25849872 DOI: 10.1021/acs.joc.5b00378] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient method has been developed for direct amide bond synthesis between carboxylic acids and amines via (2-(thiophen-2-ylmethyl)phenyl)boronic acid as a highly active bench-stable catalyst. This catalyst was found to be very effective at room temperature for a large range of substrates with slightly higher temperatures required for challenging ones. This methodology can be applied to aliphatic, α-hydroxyl, aromatic, and heteroaromatic acids as well as primary, secondary, heterocyclic, and even functionalized amines. Notably, N-Boc-protected amino acids were successfully coupled in good yields with very little racemization. An example of catalytic dipeptide synthesis is reported.
Collapse
Affiliation(s)
- Tharwat Mohy El Dine
- Laboratoire de Chimie Moléculaire et Thio-organique, ENSICAEN, Université de Caen Basse-Normandie, CNRS, 6 Boulevard du Maréchal Juin, 14050 Caen, France
| | - William Erb
- Laboratoire de Chimie Moléculaire et Thio-organique, ENSICAEN, Université de Caen Basse-Normandie, CNRS, 6 Boulevard du Maréchal Juin, 14050 Caen, France
| | - Yohann Berhault
- Laboratoire de Chimie Moléculaire et Thio-organique, ENSICAEN, Université de Caen Basse-Normandie, CNRS, 6 Boulevard du Maréchal Juin, 14050 Caen, France
| | - Jacques Rouden
- Laboratoire de Chimie Moléculaire et Thio-organique, ENSICAEN, Université de Caen Basse-Normandie, CNRS, 6 Boulevard du Maréchal Juin, 14050 Caen, France
| | - Jérôme Blanchet
- Laboratoire de Chimie Moléculaire et Thio-organique, ENSICAEN, Université de Caen Basse-Normandie, CNRS, 6 Boulevard du Maréchal Juin, 14050 Caen, France
| |
Collapse
|
17
|
Ishikura M, Abe T, Choshi T, Hibino S. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat Prod Rep 2015; 32:1389-471. [DOI: 10.1039/c5np00032g] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review summarizes the isolation, structure determination, total syntheses and biological activities of simple indole alkaloids and those with a nonrearranged monoterpenoid unit, with literature coverage from 2012 to 2013.
Collapse
Affiliation(s)
- Minoru Ishikura
- School of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-Tobetsu
- Japan
| | - Takumi Abe
- School of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-Tobetsu
- Japan
| | - Tominari Choshi
- Graduate School of Pharmacy & Pharmaceutical Sciences
- Faculty of Pharmacy & Pharmaceutical Sciences
- Fukuyama University
- Fukuyama
- Japan
| | - Satoshi Hibino
- Graduate School of Pharmacy & Pharmaceutical Sciences
- Faculty of Pharmacy & Pharmaceutical Sciences
- Fukuyama University
- Fukuyama
- Japan
| |
Collapse
|
18
|
Lancianesi S, Palmieri A, Petrini M. Synthetic Approaches to 3-(2-Nitroalkyl) Indoles and Their Use to Access Tryptamines and Related Bioactive Compounds. Chem Rev 2014; 114:7108-49. [DOI: 10.1021/cr400676v] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Stefano Lancianesi
- School
of Science and Technology,
Chemistry Division, Università di Camerino, via S. Agostino,
1, I-62032 Camerino, Italy
| | - Alessandro Palmieri
- School
of Science and Technology,
Chemistry Division, Università di Camerino, via S. Agostino,
1, I-62032 Camerino, Italy
| | - Marino Petrini
- School
of Science and Technology,
Chemistry Division, Università di Camerino, via S. Agostino,
1, I-62032 Camerino, Italy
| |
Collapse
|
19
|
Meruva SB, Raghunadh A, Kamaraju RR, Kumar UKS, Dubey PK. An oxidative amidation and heterocyclization approach for the synthesis of β-carbolines and dihydroeudistomin Y. Beilstein J Org Chem 2014; 10:471-80. [PMID: 24605167 PMCID: PMC3943975 DOI: 10.3762/bjoc.10.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/29/2014] [Indexed: 11/23/2022] Open
Abstract
A novel synthetic methodology has been developed for the synthesis of dihydro-β-carboline derivatives employing oxidative amidation–Bischler–Napieralski reaction conditions using tryptamine and 2,2-dibromo-1-phenylethanone as key starting materials. A number of dihydro-β-carboline derivatives have been synthesized in moderate to good yields using this methodology. Attempts were made towards the conversion of these dihydro-β-carbolines to naturally occurring eudistomin alkaloids.
Collapse
Affiliation(s)
- Suresh Babu Meruva
- Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy's Laboratories Ltd., Miyapur, Hyderabad - 500049, India ; Department of Chemistry, College of Engineering, JNTUH, Kukatpally, Hyderabad - 500085, India
| | - Akula Raghunadh
- Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy's Laboratories Ltd., Miyapur, Hyderabad - 500049, India
| | - Raghavendra Rao Kamaraju
- Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy's Laboratories Ltd., Miyapur, Hyderabad - 500049, India
| | - U K Syam Kumar
- Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy's Laboratories Ltd., Miyapur, Hyderabad - 500049, India
| | - P K Dubey
- Department of Chemistry, College of Engineering, JNTUH, Kukatpally, Hyderabad - 500085, India
| |
Collapse
|
20
|
Battini N, Padala AK, Mupparapu N, Vishwakarma RA, Ahmed QN. Unexplored reactivity of 2-oxoaldehydes towards Pictet–Spengler conditions: concise approach to β-carboline based marine natural products. RSC Adv 2014. [DOI: 10.1039/c4ra01387e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|