1
|
Abstract
The classic, solution-phase synthesis of glycosaminoglycan (GAG) oligosaccharides is hampered by the numerous, time-consuming chromatographic purifications required for the isolation of the glycosylation products after each coupling step between sugar building blocks. Here, we present a detailed experimental procedure for a glycosylation reaction involving a glycosyl acceptor unit that is equipped with a perfluorinated tag. The presence of this fluorous tail allows the quick purification of the desired glycosylation product by performing a simple fluorous solid-phase extraction (F-SPE). The described fluorous-tag-assisted glycosylation strategy greatly facilitates the assembly of building blocks, speeding up the preparation of biologically relevant GAG-like oligomers.
Collapse
Affiliation(s)
- José L de Paz
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Sevilla, Spain.
| | - Pedro M Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
2
|
Liu M, Qin X, Ye XS. Glycan Assembly Strategy: From Concept to Application. CHEM REC 2021; 21:3256-3277. [PMID: 34498347 DOI: 10.1002/tcr.202100183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/30/2021] [Indexed: 12/11/2022]
Abstract
Glycans have been hot topics in recent years due to their exhibition of numerous biological activities. However, the heterogeneity of their natural source and the complexity of their chemical synthesis impede the progress in their biological research. Thus, the development of glycan assembly strategies to acquire plenty of structurally well-defined glycans is an important issue in carbohydrate chemistry. In this review, the latest advances in glycan assembly strategies from concepts to their applications in carbohydrate synthesis, including chemical and enzymatic/chemo-enzymatic approaches, as well as solution-phase and solid-phase/tag-assisted synthesis, are summarized. Furthermore, the automated glycan assembly techniques are also outlined.
Collapse
Affiliation(s)
- Mingli Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xianjin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
3
|
Yeh CJ, Zulueta MML, Li YK, Hung SC. Synthesis of hyaluronic acid oligosaccharides with a GlcNAc-GlcA repeating pattern and their binding affinity with CD44. Org Biomol Chem 2020; 18:5370-5387. [PMID: 32638804 DOI: 10.1039/d0ob01048k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyaluronic acid (HA) is a ubiquitous glycosaminoglycan in the extracellular matrix and a ligand of CD44, a transmembrane glycoprotein that is important in cell migration. Crystal and NMR studies found a hexasaccharide of the pattern (GlcA-GlcNAc)3 as the shortest HA that could bind to CD44, but molecular dynamics simulations indicated that a tetrasaccharide of the pattern (GlcNAc-GlcA)2 is the key structure interacting with CD44. Access to oligomers with such a repeat pattern is crucial in binding studies with CD44. Here we developed a synthetic procedure to afford the HA oligosaccharides with the GlcNAc-GlcA repeating unit and measured the binding interaction between these sugars and human CD44 by isothermal titration calorimetry (ITC). During the chemical synthesis, we successfully generated the β-glycosidic bond in the absence of neighbouring group participation and overcome the issues in the oxidation step. In addition, ammonia-free dissolving metal reduction for debenzylation and azido reduction has been applied in carbohydrate synthesis for the first time. ITC analysis revealed that the HA tetrasaccharide (GlcNAc-GlcA)2 could indeed interact and bind to the human CD44.
Collapse
Affiliation(s)
- Che-Jui Yeh
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan. and Department of Applied Chemistry, National Chiao Tung University, 1001, Ta-Hsueh Road, Hsinchu 300, Taiwan.
| | - Medel Manuel L Zulueta
- Institute of Chemistry, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Yaw-Kuen Li
- Department of Applied Chemistry, National Chiao Tung University, 1001, Ta-Hsueh Road, Hsinchu 300, Taiwan.
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan.
| |
Collapse
|
4
|
Le Mai Hoang K, Pardo-Vargas A, Zhu Y, Yu Y, Loria M, Delbianco M, Seeberger PH. Traceless Photolabile Linker Expedites the Chemical Synthesis of Complex Oligosaccharides by Automated Glycan Assembly. J Am Chem Soc 2019; 141:9079-9086. [PMID: 31091089 PMCID: PMC6750752 DOI: 10.1021/jacs.9b03769] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Automated glycan
assembly (AGA) aims at accelerating access to
synthetic oligosaccharides to meet the demand for defined glycans
as tools for molecular glycobiology. The linkers used to connect the
growing glycan chain to the solid support play a pivotal role in the
synthesis strategy as they determine all chemical conditions used
during the synthesis and the form of the glycan obtained at the end
of it. Here, we describe a traceless photolabile linker used to prepare
carbohydrates with a free reducing end. Modification of the o-nitrobenzyl scaffold of the linker is key to high yields
and compatibility with the AGA workflow. The assembly of an asymmetrical
biantennary N-glycan from oligosaccharide fragments
prepared by AGA and linear as well as branched β-oligoglucans
is described to illustrate the power of the method. These substrates
will serve as standards and biomarkers to examine the unique specificity
of glycosyl hydrolases.
Collapse
Affiliation(s)
- Kim Le Mai Hoang
- Department of Biomolecular Systems , Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Alonso Pardo-Vargas
- Department of Biomolecular Systems , Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| | - Yuntao Zhu
- Department of Biomolecular Systems , Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Yang Yu
- Department of Biomolecular Systems , Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| | - Mirco Loria
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| | - Martina Delbianco
- Department of Biomolecular Systems , Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems , Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| |
Collapse
|
5
|
Pardo-Vargas A, Delbianco M, Seeberger PH. Automated glycan assembly as an enabling technology. Curr Opin Chem Biol 2018; 46:48-55. [DOI: 10.1016/j.cbpa.2018.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 12/16/2022]
|
6
|
Panza M, Pistorio SG, Stine KJ, Demchenko AV. Automated Chemical Oligosaccharide Synthesis: Novel Approach to Traditional Challenges. Chem Rev 2018; 118:8105-8150. [PMID: 29953217 PMCID: PMC6522228 DOI: 10.1021/acs.chemrev.8b00051] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Advances in carbohydrate chemistry have certainly made common oligosaccharides much more accessible. However, many current methods still rely heavily upon specialized knowledge of carbohydrate chemistry. The application of automated technologies to chemical and life science applications such as genomics and proteomics represents a vibrant field. These automated technologies also present opportunities for their application to organic synthesis, including that of the synthesis of oligosaccharides. However, application of automated methods to the synthesis of carbohydrates is an underdeveloped area as compared to other classes of biomolecules. The overarching goal of this review article is to present the advances that have been made at the interface of carbohydrate chemistry and automated technology.
Collapse
Affiliation(s)
- Matteo Panza
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Salvatore G. Pistorio
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Keith J. Stine
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
7
|
Kinnaert C, Daugaard M, Nami F, Clausen MH. Chemical Synthesis of Oligosaccharides Related to the Cell Walls of Plants and Algae. Chem Rev 2017; 117:11337-11405. [DOI: 10.1021/acs.chemrev.7b00162] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Christine Kinnaert
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| | - Mathilde Daugaard
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| | - Faranak Nami
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| | - Mads H. Clausen
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
8
|
Mende M, Nieger M, Bräse S. Chemical Synthesis of Modified Hyaluronic Acid Disaccharides. Chemistry 2017; 23:12283-12296. [PMID: 28423199 DOI: 10.1002/chem.201701238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Indexed: 02/04/2023]
Abstract
Herein we report a chemical synthesis towards new modified hyaluronic acid oligomers by using only commercially available d-glucose and d-glucosamine hydrochloride. The various protected hyaluronic acid disaccharides were synthesized bearing new functional groups at C-6 of the β-d-glucuronic acid moiety with a view to structure-related biological activity tests. The orthogonal protecting group pattern allows ready access to the corresponding higher oligomers. Also, 1 H NMR studies of the new derivatives demonstrated the effect of the various functional groups on the intramolecular electronic environment.
Collapse
Affiliation(s)
- Marco Mende
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, P. O. Box 55, 00014, Helsinki, Finland
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
9
|
Geert Volbeda A, Reintjens NRM, Overkleeft HS, van der Marel GA, Codée JDC. The Cyanopivaloyl Ester: A Protecting Group in the Assembly of Oligorhamnans. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600956] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anne Geert Volbeda
- BioOrganic Synthesis, Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Niels R. M. Reintjens
- BioOrganic Synthesis, Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Herman S. Overkleeft
- BioOrganic Synthesis, Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gijsbert A. van der Marel
- BioOrganic Synthesis, Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jeroen D. C. Codée
- BioOrganic Synthesis, Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
10
|
Mende M, Bednarek C, Wawryszyn M, Sauter P, Biskup MB, Schepers U, Bräse S. Chemical Synthesis of Glycosaminoglycans. Chem Rev 2016; 116:8193-255. [DOI: 10.1021/acs.chemrev.6b00010] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marco Mende
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Christin Bednarek
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Mirella Wawryszyn
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Paul Sauter
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Moritz B. Biskup
- Division
2—Informatics, Economics and Society, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Ute Schepers
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
11
|
|
12
|
Reuter R, Ward TR. Profluorescent substrates for the screening of olefin metathesis catalysts. Beilstein J Org Chem 2015; 11:1886-92. [PMID: 26664607 PMCID: PMC4660973 DOI: 10.3762/bjoc.11.203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/15/2015] [Indexed: 01/07/2023] Open
Abstract
Herein we report on a 96-well plate assay based on the fluorescence resulting from the ring-closing metathesis of two profluorophoric substrates. To demonstrate the validity of the approach, four commercially available ruthenium-metathesis catalysts were evaluated in six different solvents. The results from the fluorescent assay agree well with HPLC conversions, validating the usefulness of the approach.
Collapse
Affiliation(s)
- Raphael Reuter
- Department of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| |
Collapse
|
13
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2013. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Arndt HD, Rizzo S, Nöcker C, Wakchaure VN, Milroy LG, Bieker V, Calderon A, Tran TTN, Brand S, Dehmelt L, Waldmann H. Divergent solid-phase synthesis of natural product-inspired bipartite cyclodepsipeptides: total synthesis of seragamide A. Chemistry 2015; 21:5311-6. [PMID: 25694199 DOI: 10.1002/chem.201500368] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 11/06/2022]
Abstract
Macrocyclic natural products (NPs) and analogues thereof often show high affinity, selectivity, and metabolic stability, and methods for the synthesis of NP-like macrocycle collections are of major current interest. We report an efficient solid-phase/cyclorelease method for the synthesis of a collection of macrocyclic depsipeptides with bipartite peptide/polyketide structure inspired by the very potent F-actin stabilizing depsipeptides of the jasplakinolide/geodiamolide class. The method includes the assembly of an acyclic precursor chain on a polymeric carrier, terminated by olefins that constitute complementary fragments of the polyketide section and cyclization by means of a relay-ring-closing metathesis (RRCM). The method was validated in the first total synthesis of the actin-stabilizing cyclodepsipeptide seragamide A and the synthesis of a collection of structurally diverse bipartite depsipeptides.
Collapse
Affiliation(s)
- Hans-Dieter Arndt
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund (Germany), Fax: (+49) 3641948212; Friedrich-Schiller-Universität, Institute of Organic and Macromolecular Chemistry, Humboldtstrasse 10, 07743 Jena (Germany).
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Macchione G, de Paz JL, Nieto PM. Synthesis of hyaluronic acid oligosaccharides and exploration of a fluorous-assisted approach. Carbohydr Res 2014; 394:17-25. [DOI: 10.1016/j.carres.2014.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 11/30/2022]
|
16
|
Bennett CS. Principles of modern solid-phase oligosaccharide synthesis. Org Biomol Chem 2014; 12:1686-98. [DOI: 10.1039/c3ob42343c] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|