1
|
Marjit AB, Samanta T, Karmakar A, Pramanik A, Ali MA, Begum NA. Unravelling the Metal Sensing Activity of a Biologically Relevant Fluorescent Crown Ether: A Unified Experimental and Theoretical Study. J Fluoresc 2023:10.1007/s10895-023-03543-2. [PMID: 38117434 DOI: 10.1007/s10895-023-03543-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
1,4-dihydropyridines (DHPs) are biologically active. 1,4-DHP analogs with appropriate substituents also show characteristic fluorescence activity. Here, for the first time, we report a simple and easy synthesis of a novel fluorescent 1,4- DHP derivative of dibenzo[18]-crown-6 (2), which showed promising sensing ability towards physiologically important metal ions. The covalent linking of 1,4-DHP analog with dibenzo[18]-crown-6 instigates its fluorescence activity in (2) and makes it biologically relevant. (2) shows a noteworthy enhancement of fluorescence intensity toward Fe3+ and Ba2+ in methanol medium. DFT studies revealed that metal binding by the crown ether-O atoms leads to structural rigidity, enhancing the fluorescence intensity. Interestingly, (2) shows utility in the quantitative detection of Fe3+ ions in the biological (human blood serum) and food samples.
Collapse
Grants
- ST/P/S&T/15G-20/2019 DSTBT, GoWB, India
- ST/P/S&T/15G-20/2019 DSTBT, GoWB, India
- ST/P/S&T/15G-20/2019 DSTBT, GoWB, India
- ST/P/S&T/15G-20/2019 DSTBT, GoWB, India
- ST/P/S&T/15G-20/2019 DSTBT, GoWB, India
- ST/P/S&T/15G-20/2019 DSTBT, GoWB, India
Collapse
Affiliation(s)
- Anath Bondhu Marjit
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati (Central University), Santiniketan- 731 235, West-Bengal, India
- Department of Chemistry, Ramakrishna Mission Residential College Narendrapur, Narendrapur, Kolkata, WB, 700103, India
| | - Trisha Samanta
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati (Central University), Santiniketan- 731 235, West-Bengal, India
| | - Abhijit Karmakar
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati (Central University), Santiniketan- 731 235, West-Bengal, India.
| | - Anup Pramanik
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, WB, 723104, India
| | - Md Ashif Ali
- Department of Chemistry, Ramakrishna Mission Residential College Narendrapur, Narendrapur, Kolkata, WB, 700103, India.
| | - Naznin Ara Begum
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati (Central University), Santiniketan- 731 235, West-Bengal, India.
| |
Collapse
|
2
|
Brandner L, Müller TJJ. Multicomponent synthesis of chromophores – The one-pot approach to functional π-systems. Front Chem 2023; 11:1124209. [PMID: 37007054 PMCID: PMC10065161 DOI: 10.3389/fchem.2023.1124209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 03/19/2023] Open
Abstract
Multicomponent reactions, conducted in a domino, sequential or consecutive fashion, have not only considerably enhanced synthetic efficiency as one-pot methodology, but they have also become an enabling tool for interdisciplinary research. The highly diversity-oriented nature of the synthetic concept allows accessing huge structural and functional space. Already some decades ago this has been recognized for life sciences, in particular, lead finding and exploration in pharma and agricultural chemistry. The quest for novel functional materials has also opened the field for diversity-oriented syntheses of functional π-systems, i.e. dyes for photonic and electronic applications based on their electronic properties. This review summarizes recent developments in MCR syntheses of functional chromophores highlighting syntheses following either the framework forming scaffold approach by establishing connectivity between chromophores or the chromogenic chromophore approach by de novo formation of chromophore of interest. Both approaches warrant rapid access to molecular functional π-systems, i.e. chromophores, fluorophores, and electrophores for various applications.
Collapse
|
3
|
Fabrication of stable solid fluorescent starch materials based on Hantzsch reaction. Carbohydr Polym 2023; 314:120811. [PMID: 37173035 DOI: 10.1016/j.carbpol.2023.120811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
In this paper, a series of fluorescent starches were prepared simply and effectively by Hantzsch multi-component reaction (MRC). These materials showed bright fluorescence emission. Notably, due to the existence of polysaccharide skeleton, starch molecules can effectively inhibit the common aggregation induced quenching effect caused by the aggregation of conjugated molecules in traditional organic fluorescent materials. Meanwhile, the stability of this material is so excellent that the fluorescence emission of the dried starch derivatives would not destroy after boiling at a high temperature in some common solvents, and even brighter fluorescence can be stimulated in alkaline solution. In addition to fluorescence, starch was also endowed with hydrophobic property by one-pot method connecting long alkyl chains. Compared with native starch, the contact angle of fluorescent hydrophobic starch increased from 29° to 134°. Furthermore, the fluorescent starch can be prepared into film, gel and coating by different processing methods. The preparation of these Hantzsch fluorescent starch materials provide a new way for the functional modification of starch materials and has great application potential in detecting, anti-counterfeiting, security printing and other related fields.
Collapse
|
4
|
Aleksić J, Stojanović M, Bošković J, Baranac-Stojanović M. Solid-state silica gel-catalyzed synthesis of fluorescent polysubstituted 1,4- and 1,2-dihydropyridines. Org Biomol Chem 2023; 21:1187-1205. [PMID: 36648494 DOI: 10.1039/d2ob02119f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We present the green, highly atom-economical, solid-state silica gel-catalyzed synthesis of polysubstituted 1,4- and 1,2-dihydropyridines (DHPs) from commercially available materials, amines and ethyl propiolate. The DHP skeleton was assembled by heating the reactants and silica gel in a closed vessel. Aliphatic amines provided 1,4-isomers as the main or only DHP products, but the reactions of aromatic amines yielded a mixture of 1,4- and 1,2-isomers. To the best of our knowledge, this is the first example of the formation of a 1,2-DHP structure by the reaction of an amine with propiolic ester. Addition of 1 mass percent of H2SO4 to silica gel shifted the product distribution to 1,4-DHP as the main or the only isomer obtained. Experimental and theoretical analyses led to the identification of two key intermediates en route to DHPs and the explanation of the observed regioisomeric ratios. 1,2-DHPs show blue-cyan fluorescence in MeOH with the quantum yield Φ = 0.10-0.22 relative to quinine sulfate Φ = 0.58 and 1,4-DHPs show blue-violet fluorescence with Φ = 0.09-0.81.
Collapse
Affiliation(s)
- Jovana Aleksić
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy - Center for Chemistry, Njegoševa 12, P.O.Box 473, 11000 Belgrade, Serbia.
| | - Milovan Stojanović
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy - Center for Chemistry, Njegoševa 12, P.O.Box 473, 11000 Belgrade, Serbia.
| | - Jakša Bošković
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, P.O.Box 158, 11000 Belgrade, Serbia.
| | - Marija Baranac-Stojanović
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, P.O.Box 158, 11000 Belgrade, Serbia.
| |
Collapse
|
5
|
Suenkel B, Valente S, Zwergel C, Weiss S, Di Bello E, Fioravanti R, Aventaggiato M, Amorim JA, Garg N, Kumar S, Lombard DB, Hu T, Singh PK, Tafani M, Palmeira CM, Sinclair D, Mai A, Steegborn C. Potent and Specific Activators for Mitochondrial Sirtuins Sirt3 and Sirt5. J Med Chem 2022; 65:14015-14031. [PMID: 36228194 PMCID: PMC9653166 DOI: 10.1021/acs.jmedchem.2c01215] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sirtuins are NAD+-dependent protein deacylases involved in metabolic regulation and aging-related diseases. Specific activators for seven human Sirtuin isoforms would be important chemical tools and potential therapeutic drugs. Activators have been described for Sirt1 and act via a unique N-terminal domain of this isoform. For most other Sirtuin isoforms, including mitochondrial Sirt3-5, no potent and specific activators have yet been identified. We here describe the identification and characterization of 1,4-dihydropyridine-based compounds that either act as pan Sirtuin activators or specifically stimulate Sirt3 or Sirt5. The activators bind to the Sirtuin catalytic cores independent of NAD+ and acylated peptides and stimulate turnover of peptide and protein substrates. The compounds also activate Sirt3 or Sirt5 in cellular systems regulating, e.g., apoptosis and electron transport chain. Our results provide a scaffold for potent Sirtuin activation and derivatives specific for Sirt3 and Sirt5 as an excellent basis for further drug development.
Collapse
Affiliation(s)
- Benjamin Suenkel
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, and Pasteur Institute, Cenci-Bolognetti Foundation, 00185 Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, and Pasteur Institute, Cenci-Bolognetti Foundation, 00185 Rome, Italy
| | - Sandra Weiss
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Elisabetta Di Bello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, and Pasteur Institute, Cenci-Bolognetti Foundation, 00185 Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, and Pasteur Institute, Cenci-Bolognetti Foundation, 00185 Rome, Italy
| | - Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - João A. Amorim
- Department of Life Sciences, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Genetics Department, Blavatnik Institute, Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA 02115, USA
| | - Neha Garg
- Genetics Department, Blavatnik Institute, Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA 02115, USA
| | - Surinder Kumar
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - David B. Lombard
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109-2800, USA
- Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - Tuo Hu
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Pankaj K. Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Carlos M. Palmeira
- Department of Life Sciences, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - David Sinclair
- Genetics Department, Blavatnik Institute, Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA 02115, USA
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, and Pasteur Institute, Cenci-Bolognetti Foundation, 00185 Rome, Italy
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
6
|
A P, Makam P. 1,4-Dihydropyridine: synthetic advances, medicinal and insecticidal properties. RSC Adv 2022; 12:29253-29290. [PMID: 36320730 PMCID: PMC9555063 DOI: 10.1039/d2ra04589c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022] Open
Abstract
1,4-Dihydropyridine (1,4-DHP) is one of the foremost notable organic scaffolds with diverse pharmaceutical applications. This study will highlight recent accomplishments in the construction of 1,4-DHP with structural and functional modifications using multi-component one-pot and green synthetic methodologies. The various intrinsic therapeutic applications, ranging from calcium channel blocker, anti-oxidative, anticancer, anti-inflammatory, anti-microbial, anti-hypertensive, anti-diabetic, anticoagulants, anti-cholinesterase, neuro-protective, and other miscellaneous activities, have been summarized with a focus on their structure-activity relationship (SAR) investigations. In addition, the insecticidal properties have been collated and discussed. Researchers in the fields of medicinal chemistry and drug development will find the summarized conclusions of this study incredibly informative, instructional, and valuable.
Collapse
Affiliation(s)
- Parthiban A
- Centre for Excellence on GMP Extraction Facility, National Institute of Pharmaceutical Education and Research, (NIPER) Guwahati Assam India 781101
| | - Parameshwar Makam
- Department of Chemistry, School of Applied and Life Sciences, Uttaranchal University Arcadia Grant, P. O. Chandanwari, Premnagar Dehradun Uttarakhand India 248007
- Dr Param Laboratories Phase-1, IDA, B. N. Reddy Nagar, Cherlapally Hyderabad Telangana 500051 India
| |
Collapse
|
7
|
Mao L, Tian N, Wei C, Wang H, Yan H. Synthesis and Biological Activity of 3,9-Diazatetraasteranes as Novel EGFR Tyrosine Kinase Inhibitors. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222030124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Wagh SB, Maslivetc VA, La Clair JJ, Kornienko A. Lessons in Organic Fluorescent Probe Discovery. Chembiochem 2021; 22:3109-3139. [PMID: 34062039 PMCID: PMC8595615 DOI: 10.1002/cbic.202100171] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/22/2021] [Indexed: 02/03/2023]
Abstract
Fluorescent probes have gained profound use in biotechnology, drug discovery, medical diagnostics, molecular and cell biology. The development of methods for the translation of fluorophores into fluorescent probes continues to be a robust field for medicinal chemists and chemical biologists, alike. Access to new experimental designs has enabled molecular diversification and led to the identification of new approaches to probe discovery. This review provides a synopsis of the recent lessons in modern fluorescent probe discovery.
Collapse
Affiliation(s)
- Sachin B Wagh
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| | - Vladimir A Maslivetc
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| | - James J La Clair
- Xenobe Research Institute, P. O. Box 3052, San Diego, CA, 92163-1062, USA
| | - Alexander Kornienko
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| |
Collapse
|
9
|
Li P, Wang S, Tian N, Yan H, Wang J, Song X. Studies on chemoselective synthesis of 1,4- and 1,2-dihydropyridine derivatives by a Hantzsch-like reaction: a combined experimental and DFT study. Org Biomol Chem 2021; 19:3882-3892. [PMID: 33949438 DOI: 10.1039/d0ob02289f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the experimental process of preparing diethyl 3,5-dicarboxylate-1,4-dihydropyridine (1,4-DHP) by a Hantzsch-like reaction, it was found that a by-product named diethyl 3,5-dicarboxylate-1,2-dihydropyridine (1,2-DHP) was produced in the reaction. To discuss this phenomenon, the effects of the reaction conditions on the yield ratio of 1,4-DHP and 1,2-DHP were studied by using aromatic amines, aromatic aldehydes and ethyl propiolate as raw materials. The mechanisms for the formation of 1,4-DHP and 1,2-DHP were proposed based on the isolated intermediate named diethyl 4-((phenylamino)methylene)pent-2-enedioate generated by the Michael addition of aniline and ethyl propiolate. The transition state structures were optimized and the reaction energy barriers of intermediates in the speculated mechanisms were calculated by DFT calculations at the M062X/def2TZVP//B3LYP-D3/def-SVP level. It was found that the reaction energy barriers and dominant configurations of intermediates IM2 and IM3' are the determinants for the chemoselectivity. Together, these results demonstrate a high chemoselectivity in the synthesis of 1,4-DHPs and 1,2-DHPs by a Hantzsch-like reaction and that 1,4-DHPs and 1,2-DHPs can be easily obtained under different conditions.
Collapse
Affiliation(s)
- Peng Li
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Shijie Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Nana Tian
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Hong Yan
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Juan Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xiuqing Song
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
10
|
Preeti, Singh KN. Metal-free multicomponent reactions: a benign access to monocyclic six-membered N-heterocycles. Org Biomol Chem 2021; 19:2622-2657. [PMID: 33683272 DOI: 10.1039/d1ob00145k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The advent of multicomponent reactions in the synthesis of heterocycles and their ever burgeoning applications in drug development, materials chemistry, and catalysis, have attracted a great deal of current scientific interest. In particular, the metal-free multicomponent synthesis of six membered N-heterocycles has undergone intensive research over the last two decades offering an environmentally benevolent means contrary to traditional metal catalysed reactions. To the best of our knowledge, there exists no exclusive review on the metal-free multicomponent synthesis of six membered N-heterocyles, and hence the present report highlights the progress on metal-free multicomponent reactions with their advantages and mechanistic insights to access monocyclic six-membered N-heterocycles including pyridine, pyrimidine, pyrazine, triazine and their hydrogenated derivatives. The literature is covered since 2000, and the contents offer not only striking methods for divergent synthesis of six-membered N-heterocycles but also put forward some new insights into the exploration of metal-free multicomponent chemistry.
Collapse
Affiliation(s)
- Preeti
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|
11
|
Di Carmine G, Ragno D, Brandolese A, Bortolini O, Pecorari D, Sabuzi F, Mazzanti A, Massi A. Enantioselective Desymmetrization of 1,4-Dihydropyridines by Oxidative NHC Catalysis. Chemistry 2019; 25:7469-7474. [PMID: 30947379 DOI: 10.1002/chem.201901243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 12/21/2022]
Abstract
The unprecedented desymmetrization of prochiral dialdehydes catalyzed by N-heterocyclic carbenes under oxidative conditions was applied to the highly enantioselective synthesis of 1,4-dihydropyridines (DHPs) starting from 3,5-dicarbaldehyde substrates. Synthetic elaboration of the resulting 5-formyl-1,4-DHP-3-carboxylates allowed for access to the class of pharmaceutically relevant 1,4-DHP-3,5-dicarboxylates (Hantzsch esters). DFT calculations suggested that the enantioselectivity of the process is determined by the transition state involving the oxidation of the Breslow intermediate by the external quinone oxidant.
Collapse
Affiliation(s)
- Graziano Di Carmine
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, I-44121, Ferrara, Italy
| | - Daniele Ragno
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, I-44121, Ferrara, Italy
| | - Arianna Brandolese
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, I-44121, Ferrara, Italy
| | - Olga Bortolini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, I-44121, Ferrara, Italy
| | - Daniel Pecorari
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, V. Risorgimento 4, I-40136, Bologna, Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Roma Tor Vergata, V. Ricerca Scientifica, I-00131, Roma, Italy
| | - Andrea Mazzanti
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, V. Risorgimento 4, I-40136, Bologna, Italy
| | - Alessandro Massi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, I-44121, Ferrara, Italy
| |
Collapse
|
12
|
Fan Q, Li P, Yan H. Photophysical properties of 2,6-unsubstituented 1,4-dihydropyridines: Experimental and theoretical studies. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Alvim HGO, Correa JR, Assumpção JAF, da Silva WA, Rodrigues MO, de Macedo JL, Fioramonte M, Gozzo FC, Gatto CC, Neto BAD. Heteropolyacid-Containing Ionic Liquid-Catalyzed Multicomponent Synthesis of Bridgehead Nitrogen Heterocycles: Mechanisms and Mitochondrial Staining. J Org Chem 2018; 83:4044-4053. [DOI: 10.1021/acs.joc.8b00472] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | | | | | | | - Julio L. de Macedo
- Laboratory of Catalysis, Institute of Chemistry, University of Brasília (IQ-UnB), Brasilia 70910-900, Brazil
| | - Mariana Fioramonte
- Institute of Chemistry, Universidade Estadual de Campinas (Unicamp), 13083970, Campinas, SP, Brazil
| | - Fabio C. Gozzo
- Institute of Chemistry, Universidade Estadual de Campinas (Unicamp), 13083970, Campinas, SP, Brazil
| | | | | |
Collapse
|
14
|
Jamsheena V, Mishra RK, Veena KS, Sini S, Jayamurthy P, Lankalapalli RS. New 1,2-Dihydropyridine-Based Fluorophores and Their Applications as Fluorescent Probes. ACS OMEGA 2018; 3:856-862. [PMID: 30023792 PMCID: PMC6045324 DOI: 10.1021/acsomega.7b01835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/08/2018] [Indexed: 06/08/2023]
Abstract
New 1,2-dihydropyridine (1,2-DHP)-based fluorophores 1a-1h were designed and synthesized by a one-pot four-component condensation reaction using dienaminodioate, aldehydes, and an in situ-generated hydrazone mediated by trifluoroacetic acid. The photophysical properties of 1,2-DHPs were studied in detail, and a few of them exhibited selective mitochondrial staining ability in HeLa cell lines (cervical cancer cells). A detailed photophysical investigation led to the design of 1,2-DHP 1h as an optimal fluorophore suitable for its potential application as a small molecule probe in the aqueous medium. Also, 1,2-DHP 1h exhibited sixfold enhanced emission intensity than its phosphorylated analogue 1h' in the long wavelength region (λem ≈ 600 nm), which makes 1,2-DHP 1h' meet the requirement as a bioprobe for protein tyrosine phosphatases, shown in L6 muscle cell lysate.
Collapse
Affiliation(s)
- Vellekkatt Jamsheena
- Chemical Sciences
and Technology Division, Academy of Scientific
and Innovative Research (AcSIR), and Agro-Processing and Technology
Division, Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science
and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Rakesh K. Mishra
- Chemical Sciences
and Technology Division, Academy of Scientific
and Innovative Research (AcSIR), and Agro-Processing and Technology
Division, Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science
and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Kollery S. Veena
- Chemical Sciences
and Technology Division, Academy of Scientific
and Innovative Research (AcSIR), and Agro-Processing and Technology
Division, Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science
and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Suresh Sini
- Chemical Sciences
and Technology Division, Academy of Scientific
and Innovative Research (AcSIR), and Agro-Processing and Technology
Division, Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science
and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Purushothaman Jayamurthy
- Chemical Sciences
and Technology Division, Academy of Scientific
and Innovative Research (AcSIR), and Agro-Processing and Technology
Division, Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science
and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Ravi S. Lankalapalli
- Chemical Sciences
and Technology Division, Academy of Scientific
and Innovative Research (AcSIR), and Agro-Processing and Technology
Division, Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science
and Technology, Thiruvananthapuram 695019, Kerala, India
| |
Collapse
|
15
|
Sun W, Ma Z, Yan H. Biological evaluation of 4-aryl-1,4-dihydropyridines as VEGFR-2 kinase inhibitors. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363216120574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Zhang XB, Hu ZY, Zhou GE, Wang S. Theoretical Insights into the Synthesis of 2,3-Dihydropyridines from Unsaturated Oximes by Rh III-Catalyzed C-H Activation - A DFT Study. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xiang-Biao Zhang
- School of Chemical Engineering; Anhui University of Science and Technology; 232001 Huainan People's Republic of China
| | - Zhen-Yuan Hu
- School of Chemical Engineering; Anhui University of Science and Technology; 232001 Huainan People's Republic of China
| | - Gui-E Zhou
- School of Chemical Engineering; Anhui University of Science and Technology; 232001 Huainan People's Republic of China
| | - Song Wang
- Institute of Theoretical Chemistry; Jilin University; 130023 Changchun People's Republic of China
| |
Collapse
|
17
|
Kallitsakis M, Loukopoulos E, Abdul-Sada A, Tizzard GJ, Coles SJ, Kostakis GE, Lykakis IN. A Copper-Benzotriazole-Based Coordination Polymer Catalyzes the Efficient One-Pot Synthesis of (N′-Substituted)-hydrazo-4-aryl-1,4-dihydropyridines from Azines. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201601072] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Michael Kallitsakis
- Department of Chemistry; Aristotle University of Thessaloniki; Thessaloniki 54124 Greece
| | - Edward Loukopoulos
- Department of Chemistry, School of Life Sciences; University of Sussex; Brighton BN1 9QJ U.K
| | - Alaa Abdul-Sada
- Department of Chemistry, School of Life Sciences; University of Sussex; Brighton BN1 9QJ U.K
| | - Graham J. Tizzard
- UK National Crystallography Service, Chemistry; University of Southampton; SO1 71BJ U.K
| | - Simon J. Coles
- UK National Crystallography Service, Chemistry; University of Southampton; SO1 71BJ U.K
| | - George E. Kostakis
- Department of Chemistry, School of Life Sciences; University of Sussex; Brighton BN1 9QJ U.K
| | - Ioannis N. Lykakis
- Department of Chemistry; Aristotle University of Thessaloniki; Thessaloniki 54124 Greece
| |
Collapse
|
18
|
Li S, Yang Q, Wang J. Copper(II) triflate-catalyzed highly efficient synthesis of N-substituted 1,4-dihydropyridine derivatives via three-component cyclizations of alkynes, amines, and α,β-unsaturated aldehydes. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.08.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Lai S, Ren X, Zhao J, Tang Z, Li G. Simple Brønsted acid catalyzed C–H functionalization: efficient access to poly-substituted pyridines. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.05.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Valente S, Mellini P, Spallotta F, Carafa V, Nebbioso A, Polletta L, Carnevale I, Saladini S, Trisciuoglio D, Gabellini C, Tardugno M, Zwergel C, Cencioni C, Atlante S, Moniot S, Steegborn C, Budriesi R, Tafani M, Del Bufalo D, Altucci L, Gaetano C, Mai A. 1,4-Dihydropyridines Active on the SIRT1/AMPK Pathway Ameliorate Skin Repair and Mitochondrial Function and Exhibit Inhibition of Proliferation in Cancer Cells. J Med Chem 2016; 59:1471-91. [DOI: 10.1021/acs.jmedchem.5b01117] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sergio Valente
- Department
of Drug Chemistry and Technologies, Sapienza University of Rome, P.
le A. Moro 5, 00185 Rome, Italy
| | - Paolo Mellini
- Department
of Drug Chemistry and Technologies, Sapienza University of Rome, P.
le A. Moro 5, 00185 Rome, Italy
| | - Francesco Spallotta
- Division
of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Vincenzo Carafa
- Department
of Biochemistry, Biophysics and General Pathology, Second University of Naples, Vico L. De Crecchio 7, 80138 Naples, Italy
| | - Angela Nebbioso
- Department
of Biochemistry, Biophysics and General Pathology, Second University of Naples, Vico L. De Crecchio 7, 80138 Naples, Italy
| | - Lucia Polletta
- Department
of Experimental Medicine, Sapienza University of Rome, Viale Regina
Elena 324, 00161 Rome, Italy
| | - Ilaria Carnevale
- Department
of Experimental Medicine, Sapienza University of Rome, Viale Regina
Elena 324, 00161 Rome, Italy
| | - Serena Saladini
- Department
of Experimental Medicine, Sapienza University of Rome, Viale Regina
Elena 324, 00161 Rome, Italy
| | - Daniela Trisciuoglio
- Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy
| | - Chiara Gabellini
- Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy
| | - Maria Tardugno
- Department
of Drug Chemistry and Technologies, Sapienza University of Rome, P.
le A. Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department
of Drug Chemistry and Technologies, Sapienza University of Rome, P.
le A. Moro 5, 00185 Rome, Italy
| | - Chiara Cencioni
- Division
of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Sandra Atlante
- Division
of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Sébastien Moniot
- Department
of Biochemistry, University of Bayreuth; 95447 Bayreuth, Germany
| | - Clemens Steegborn
- Department
of Biochemistry, University of Bayreuth; 95447 Bayreuth, Germany
| | - Roberta Budriesi
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Zamboni
33, 40126 Bologna, Italy
| | - Marco Tafani
- Department
of Experimental Medicine, Sapienza University of Rome, Viale Regina
Elena 324, 00161 Rome, Italy
| | - Donatella Del Bufalo
- Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy
| | - Lucia Altucci
- Department
of Biochemistry, Biophysics and General Pathology, Second University of Naples, Vico L. De Crecchio 7, 80138 Naples, Italy
- Institute of Genetics and Biophysics, IGB, Adriano Buzzati Traverso, Via P. Castellino 111, 80131 Naples, Italy
| | - Carlo Gaetano
- Division
of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza University of Rome, P.
le A. Moro 5, 00185 Rome, Italy
- Pasteur
Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
21
|
Asahara H, Hamada M, Nakaike Y, Nishiwaki N. Construction of 3,5-dinitrated 1,4-dihydropyridines modifiable at 1,4-positions by a reaction of β-formyl-β-nitroenamines with aldehydes. RSC Adv 2015. [DOI: 10.1039/c5ra19439c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel and efficient method for the synthesis of 4-substituted 3,5-dinitro-1,4-dihydropyridines by a reaction of β-formyl-β-nitroenamines with aldehydes was developed.
Collapse
Affiliation(s)
- Haruyasu Asahara
- School of Environmental Science and Engineering
- Kochi University of Technology
- Kami
- Japan
- Research Center for Material Science and Engineering
| | - Mai Hamada
- School of Environmental Science and Engineering
- Kochi University of Technology
- Kami
- Japan
| | - Yumi Nakaike
- School of Environmental Science and Engineering
- Kochi University of Technology
- Kami
- Japan
| | - Nagatoshi Nishiwaki
- School of Environmental Science and Engineering
- Kochi University of Technology
- Kami
- Japan
- Research Center for Material Science and Engineering
| |
Collapse
|