1
|
D'Andrea F, Sartini S, Piano I, Franceschi M, Quattrini L, Guazzelli L, Ciccone L, Orlandini E, Gargini C, La Motta C, Nencetti S. Oxy-imino saccharidic derivatives as a new structural class of aldose reductase inhibitors endowed with anti-oxidant activity. J Enzyme Inhib Med Chem 2021; 35:1194-1205. [PMID: 32396745 PMCID: PMC7269086 DOI: 10.1080/14756366.2020.1763331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aldose reductase is a key enzyme in the development of long term diabetic complications and its inhibition represents a viable therapeutic solution for people affected by these pathologies. Therefore, the search for effective aldose reductase inhibitors is a timely and pressing challenge. Herein we describe the access to a novel class of oxyimino derivatives, obtained by reaction of a 1,5-dicarbonyl substrate with O-(arylmethyl)hydroxylamines. The synthesised compounds proved to be active against the target enzyme. The best performing inhibitor, compound (Z)-8, proved also to reduce both cell death and the apoptotic process when tested in an in vitro model of diabetic retinopathy made of photoreceptor-like 661w cell line exposed to high-glucose medium, counteracting oxidative stress triggered by hyperglycaemic conditions.
Collapse
Affiliation(s)
| | | | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | | | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Elisabetta Orlandini
- Department of Earth Sciences, University of Pisa, Pisa, Italy.,Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | | | | | | |
Collapse
|
2
|
Cuffaro D, Nuti E, D’Andrea F, Rossello A. Developments in Carbohydrate-Based Metzincin Inhibitors. Pharmaceuticals (Basel) 2020; 13:ph13110376. [PMID: 33182755 PMCID: PMC7696829 DOI: 10.3390/ph13110376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and A disintegrin and Metalloproteinase (ADAMs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. Upregulation of metzincin activity is a major feature in many serious pathologies such as cancer, inflammations, and infections. In the last decades, many classes of small molecules have been developed directed to inhibit these enzymes. The principal shortcomings that have hindered clinical development of metzincin inhibitors are low selectivity for the target enzyme, poor water solubility, and long-term toxicity. Over the last 15 years, a novel approach to improve solubility and bioavailability of metzincin inhibitors has been the synthesis of carbohydrate-based compounds. This strategy consists of linking a hydrophilic sugar moiety to an aromatic lipophilic scaffold. This review aims to describe the development of sugar-based and azasugar-based derivatives as metzincin inhibitors and their activity in several pathological models.
Collapse
|
3
|
Synthesis and investigation of polyhydroxylated pyrrolidine derivatives as novel chemotypes showing dual activity as glucosidase and aldose reductase inhibitors. Bioorg Chem 2019; 92:103298. [PMID: 31557624 DOI: 10.1016/j.bioorg.2019.103298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022]
Abstract
Diabetes is a multi-factorial disorder that should be treated with multi-effective compounds. Here we describe the access to polyhydroxylated pyrrolidines, belonging to the d-gluco and d-galacto series, through aminocyclization reactions of two differentially protected d-xylo-hexos-4-ulose derivatives. The prepared compounds proved to inhibit both alpha-glucosidase, responsible for the emergence of hyperglycemic spikes, and aldose reductase, accountable for the development of abnormalities in diabetic tissues. Accordingly, they show the dual inhibitory profile deemed as ideal for diabetes treatment. Significantly, compound 17b reduced the process of cell death and restored the physiological levels of oxidative stress when tested in the photoreceptor-like 661w cell line, thus proving to be effective in an in vitro model of diabetic retinopathy.
Collapse
|
4
|
Gragnani T, Cuffaro D, Fallarini S, Lombardi G, D'Andrea F, Guazzelli L. Selectively Charged and Zwitterionic Analogues of the Smallest Immunogenic Structure of Streptococcus Pneumoniae Type 14. Molecules 2019; 24:E3414. [PMID: 31546911 PMCID: PMC6767069 DOI: 10.3390/molecules24183414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 11/19/2022] Open
Abstract
Zwitterionic polysaccharides (ZPs) have been shown in recent years to display peculiar immunological properties, thus attracting the interest of the carbohydrate research community. To fully elucidate the mechanisms underlying these properties and exploit the potential of this kind of structures, in depth studies are still required. In this context, the preparation of two cationic, an anionic, as well as two zwitterionic tetrasaccharide analogues of the smallest immunogenic structure of Streptococcus pneumoniae type 14 (SP14) capsular polysaccharide are presented. By exploiting a block strategy, the negative charge has been installed on the non-reducing end of the lactose unit of the tetrasaccharide and the positive charge either on the non-reducing end of the lactosamine moiety or on an external linker. These structures have then been tested by competitive ELISA, showing that the structural variations we made do not modify the affinity of the neutral compound to binding to a specific antibody. However, lower efficacies than the natural SP14 compound were observed. The results obtained, although promising, point to the need to further elongate the polysaccharide structure, which is likely too short to cover the entire epitopes.
Collapse
Affiliation(s)
- Tiziana Gragnani
- Dipartimento di Farmacia, University of Pisa, Via Bonanno 6/33, 56126 Pisa, Italy.
| | - Doretta Cuffaro
- Dipartimento di Farmacia, University of Pisa, Via Bonanno 6/33, 56126 Pisa, Italy.
| | - Silvia Fallarini
- Dipartimento di Scienze del Farmaco, University of Piemonte Orientale Amedeo Avogadro, Largo Donegani 2, 28100 Novara, Italy.
| | - Grazia Lombardi
- Dipartimento di Scienze del Farmaco, University of Piemonte Orientale Amedeo Avogadro, Largo Donegani 2, 28100 Novara, Italy.
| | - Felicia D'Andrea
- Dipartimento di Farmacia, University of Pisa, Via Bonanno 6/33, 56126 Pisa, Italy.
| | - Lorenzo Guazzelli
- Dipartimento di Farmacia, University of Pisa, Via Bonanno 6/33, 56126 Pisa, Italy.
| |
Collapse
|
5
|
Cuffaro D, Landi M, D'Andrea F, Guazzelli L. Preparation of 1,6-di-deoxy-d-galacto and 1,6-di-deoxy-l-altro nojirimycin derivatives by aminocyclization of a 1,5-dicarbonyl derivative. Carbohydr Res 2019; 482:107744. [PMID: 31306898 DOI: 10.1016/j.carres.2019.107744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/29/2022]
Abstract
Iminosugars are known glycosidase inhibitors which are the subject of drug development efforts against several diseases. The access to structurally-related families of iminosugars is of primary importance for running structure-activity relationship studies. In this work, the double reductive amination (aminocyclization) reaction of a dicarbonyl derivative of the l-arabino series, in turn obtained from lactose, is reported. Different ratios of 1,6-di-deoxy-d-galacto and 1,6-di-deoxy-l-altro nojirimycin derivatives were obtained depending on the amine employed in this transformation which provided an insight into the effects of their structure on the outcome of the reaction. Of particular interest were the results obtained when two enantiomeric amino acids (d-Phe-OMe and l-Phe-OMe) were used, which resulted in the inversion of the reaction stereoselectivity.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6/33, 56126, Pisa, Italy
| | - Martina Landi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6/33, 56126, Pisa, Italy
| | - Felicia D'Andrea
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6/33, 56126, Pisa, Italy.
| | - Lorenzo Guazzelli
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6/33, 56126, Pisa, Italy.
| |
Collapse
|
6
|
Catelani G, D'Andrea F, Guazzelli L, Griselli A, Testi N, Chiacchio MA, Legnani L, Toma L. Synthesis and conformational analysis of a simplified inositol-model of the Streptococcus pneumoniae 19F capsular polysaccharide repeating unit. Carbohydr Res 2017; 443-444:29-36. [PMID: 28324771 DOI: 10.1016/j.carres.2017.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 12/27/2022]
Abstract
Carbohydrate mimics have been studied for a long time as useful sugar substitutes, both in the investigation of biological events and in the treatment of sugar-related diseases. Here we report further evaluation of the capabilities of inositols as carbohydrate substitutes. The conformational features of an inositol-model of a simplified repeating unit corresponding to the capsular polysaccharide of Streptococcus pneumoniae 19F has been evaluated by computational analysis, and compared to the native repeating unit. The inositol mimic was synthesized, and its experimental spectroscopic data allowed for verification of the theoretical results.
Collapse
Affiliation(s)
- Giorgio Catelani
- Università di Pisa, Dipartimento di Farmacia, Via Bonanno 33, 56126 Pisa, Italy
| | - Felicia D'Andrea
- Università di Pisa, Dipartimento di Farmacia, Via Bonanno 33, 56126 Pisa, Italy
| | - Lorenzo Guazzelli
- Università di Pisa, Dipartimento di Farmacia, Via Bonanno 33, 56126 Pisa, Italy.
| | - Alessio Griselli
- Università di Pisa, Dipartimento di Farmacia, Via Bonanno 33, 56126 Pisa, Italy
| | - Nicola Testi
- Università di Pisa, Dipartimento di Farmacia, Via Bonanno 33, 56126 Pisa, Italy
| | - Maria Assunta Chiacchio
- Università di Catania, Dipartimento di Scienze del Farmaco, V.le A. Doria 6, 95125 Catania, Italy; Università di Pavia, Dipartimento di Chimica, Via Taramelli 12, 27100 Pavia, Italy
| | - Laura Legnani
- Università di Catania, Dipartimento di Scienze del Farmaco, V.le A. Doria 6, 95125 Catania, Italy; Università di Pavia, Dipartimento di Chimica, Via Taramelli 12, 27100 Pavia, Italy
| | - Lucio Toma
- Università di Pavia, Dipartimento di Chimica, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
7
|
Gao DM, Kobayashi T, Adachi S. Production of keto-disaccharides from aldo-disaccharides in subcritical aqueous ethanol. Biosci Biotechnol Biochem 2016; 80:998-1005. [DOI: 10.1080/09168451.2015.1127135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Isomerization of disaccharides (maltose, isomaltose, cellobiose, lactose, melibiose, palatinose, sucrose, and trehalose) was investigated in subcritical aqueous ethanol. A marked increase in the isomerization of aldo-disaccharides to keto-disaccharides was noted and their hydrolytic reactions were suppressed with increasing ethanol concentration. Under any study condition, the maximum yield of keto-disaccharides produced from aldo-disaccharides linked by β-glycosidic bond was higher than that produced from aldo-disaccharides linked by α-glycosidic bond. Palatinose, a keto-disaccharide, mainly underwent decomposition rather than isomerization in subcritical water and subcritical aqueous ethanol. No isomerization was noted for the non-reducing disaccharides trehalose and sucrose. The rate constant of maltose to maltulose isomerization almost doubled by changing solvent from subcritical water to 80 wt% aqueous ethanol at 220 °C. Increased maltose monohydrate concentration in feed decreased the conversion of maltose and the maximum yield of maltulose, but increased the productivity of maltulose. The maximum productivity of maltulose was ca. 41 g/(h kg-solution).
Collapse
Affiliation(s)
- Da-Ming Gao
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Kobayashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shuji Adachi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|