1
|
Emadi R, Bahrami Nekoo A, Molaverdi F, Khorsandi Z, Sheibani R, Sadeghi-Aliabadi H. Applications of palladium-catalyzed C-N cross-coupling reactions in pharmaceutical compounds. RSC Adv 2023; 13:18715-18733. [PMID: 37346956 PMCID: PMC10280806 DOI: 10.1039/d2ra07412e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
C-N cross-coupling bond formation reactions have become valuable approaches to synthesizing anilines and their derivatives, known as important chemical compounds. Recent developments in this field have focused on versatile catalysts, simple operation methods, and green reaction conditions. This review article presents an overview of C-N cross-coupling reactions in pharmaceutical compound synthesis reports. Selected examples of N-arylation reactions of various nitrogen-based compounds and aryl halides are defined for preparing pharmaceutical molecules.
Collapse
Affiliation(s)
- Reza Emadi
- Department of Biochemistry, Institute of Biochemistry & Biophysics (IBB), University of Tehran Tehran Iran
| | - Abbas Bahrami Nekoo
- Nanoalvand Pharmaceutical Company, Department of Quality Control, Unit of Raw Materials Simindasht Alborz Iran
| | - Fatemeh Molaverdi
- Department of Organic Chemistry, School of Chemistry, College of Science, Tehran University Tehran Islamic Republic of Iran
| | - Zahra Khorsandi
- Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus University St., Nahiyeh san'ati Mahshahr Khouzestan Iran
| | - Hojjat Sadeghi-Aliabadi
- Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran
| |
Collapse
|
2
|
Li J, Wang X, Wang Z, Shi Y. A Cu-Promoted C-N Coupling of Boron Esters and Diaziridinone: An Approach to Aryl Ureas. Org Lett 2021; 23:8958-8962. [PMID: 34756047 DOI: 10.1021/acs.orglett.1c03468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel Cu-promoted C-N coupling between boron esters and di-tert-butyldiaziridinone is described. A wide variety of aryl ureas can be readily obtained under mild conditions with up to a 92% yield.
Collapse
Affiliation(s)
- Jing Li
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Xiaoyu Wang
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Zhanwei Wang
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Yian Shi
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| |
Collapse
|
3
|
Niedbała P, Majdecki M, Dąbrowa K, Jurczak J. Selective Carboxylate Recognition Using Urea-Functionalized Unclosed Cryptands: Mild Synthesis and Complexation Studies. J Org Chem 2020; 85:5058-5064. [PMID: 32142280 PMCID: PMC7497646 DOI: 10.1021/acs.joc.9b03082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
![]()
Herein we present
the synthesis and evaluation of anion-binding
properties of 12 new receptors from the unclosed cryptand family.
Their core is built on the stable 26-membered tetraamidic macrocyclic
scaffold, whereas various alkyl and aryl urea substituents were introduced
after a yield-limiting macrocyclization step (65–98%). The
receptors strongly bind anions, in particular carboxylates, even in
a highly competitive solvent mixture (DMSO-d6 + H2O 95:5 v/v).
Collapse
Affiliation(s)
- Patryk Niedbała
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Maciej Majdecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Kajetan Dąbrowa
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Janusz Jurczak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
4
|
Tiwari L, Kumar V, Kumar B, Mahajan D. A practically simple, catalyst free and scalable synthesis of N-substituted ureas in water. RSC Adv 2018; 8:21585-21595. [PMID: 35539945 PMCID: PMC9080941 DOI: 10.1039/c8ra03761b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/03/2018] [Indexed: 11/21/2022] Open
Abstract
A practically simple, mild and efficient method is developed for the synthesis of N-substituted ureas by nucleophilic addition of amines to potassium isocyanate in water without organic co-solvent. Using this methodology, a variety of N-substituted ureas (mono-, di- and cyclic-) were synthesized in good to excellent yields with high chemical purity by applying simple filtration or routine extraction procedures avoiding silica gel purification. The developed methodology was also found to be suitable for gram scale synthesis of molecules having commercial application in large volumes. The identified reaction conditions were found to promote a unique substrate selectivity from a mixture of two amines.
Collapse
Affiliation(s)
- Lata Tiwari
- Drug Discovery Research Center, Translational Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway Faridabad-121001 India
| | - Varun Kumar
- Drug Discovery Research Center, Translational Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway Faridabad-121001 India
| | - Bhuvesh Kumar
- Drug Discovery Research Center, Translational Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway Faridabad-121001 India
| | - Dinesh Mahajan
- Drug Discovery Research Center, Translational Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway Faridabad-121001 India
| |
Collapse
|
5
|
Belfrage AK, Abdurakhmanov E, Åkerblom E, Brandt P, Alogheli H, Neyts J, Danielson UH, Sandström A. Pan-NS3 protease inhibitors of hepatitis C virus based on an R3-elongated pyrazinone scaffold. Eur J Med Chem 2018; 148:453-464. [DOI: 10.1016/j.ejmech.2018.02.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 01/20/2018] [Accepted: 02/10/2018] [Indexed: 02/07/2023]
|
6
|
Abstract
![]()
Pd-catalyzed
cross-coupling reactions that form C–N bonds
have become useful methods to synthesize anilines and aniline derivatives,
an important class of compounds throughout chemical research. A key
factor in the widespread adoption of these methods has been the continued
development of reliable and versatile catalysts that function under
operationally simple, user-friendly conditions. This review provides
an overview of Pd-catalyzed N-arylation reactions found in both basic
and applied chemical research from 2008 to the present. Selected examples
of C–N cross-coupling reactions between nine classes of nitrogen-based
coupling partners and (pseudo)aryl halides are described for the synthesis
of heterocycles, medicinally relevant compounds, natural products,
organic materials, and catalysts.
Collapse
Affiliation(s)
- Paula Ruiz-Castillo
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Affiliation(s)
- Xingxing Wu
- Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan, People’s Republic of China
| | - Qingfen Niu
- Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan, People’s Republic of China
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan, People’s Republic of China
| |
Collapse
|
8
|
Belfrage AK, Abdurakhmanov E, Kerblom E, Brandt P, Oshalim A, Gising J, Skogh A, Neyts J, Danielson UH, Sandström A. Discovery of pyrazinone based compounds that potently inhibit the drug-resistant enzyme variant R155K of the hepatitis C virus NS3 protease. Bioorg Med Chem 2016; 24:2603-20. [PMID: 27160057 DOI: 10.1016/j.bmc.2016.03.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 01/15/2023]
Abstract
Herein, we present the design and synthesis of 2(1H)-pyrazinone based HCV NS3 protease inhibitors with variations in the C-terminus. Biochemical evaluation was performed using genotype 1a, both the wild-type and the drug resistant enzyme variant, R155K. Surprisingly, compounds without an acidic sulfonamide retained good inhibition, challenging our previous molecular docking model. Moreover, selected compounds in this series showed nanomolar potency against R155K NS3 protease; which generally confer resistance to all HCV NS3 protease inhibitors approved or in clinical trials. These results further strengthen the potential of this novel substance class, being very different to the approved drugs and clinical candidates, in the development of inhibitors less sensitive to drug resistance.
Collapse
Affiliation(s)
- Anna Karin Belfrage
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, Box 574, SE-75123 Uppsala, Sweden
| | - Eldar Abdurakhmanov
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-75123 Uppsala, Sweden
| | - Eva Kerblom
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, Box 574, SE-75123 Uppsala, Sweden
| | - Peter Brandt
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, Box 574, SE-75123 Uppsala, Sweden
| | - Anna Oshalim
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, Box 574, SE-75123 Uppsala, Sweden
| | - Johan Gising
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, Box 574, SE-75123 Uppsala, Sweden
| | - Anna Skogh
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, Box 574, SE-75123 Uppsala, Sweden
| | - Johan Neyts
- Rega Institute, Department of Microbiology and Immunology, University of Leuven, B-3000 Leuven, Belgium
| | - U Helena Danielson
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-75123 Uppsala, Sweden
| | - Anja Sandström
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, Box 574, SE-75123 Uppsala, Sweden.
| |
Collapse
|