1
|
Yamada M. Perspectives on push-pull chromophores derived from click-type [2 + 2] cycloaddition-retroelectrocyclization reactions of electron-rich alkynes and electron-deficient alkenes. Beilstein J Org Chem 2024; 20:125-154. [PMID: 38292046 PMCID: PMC10825803 DOI: 10.3762/bjoc.20.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Various push-pull chromophores can be synthesized in a single and atom-economical step through [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) reactions involving diverse electron-rich alkynes and electron-deficient alkenes. In this review, a comprehensive investigation of the recent and noteworthy advancements in the research on push-pull chromophores prepared via the [2 + 2] CA-RE reaction is conducted. In particular, an overview of the physicochemical properties of the family of these compounds that have been investigated is provided to clarify their potential for future applications.
Collapse
Affiliation(s)
- Michio Yamada
- Department of Chemistry, Tokyo Gakugei University, Nukuikitamachi 4-1-1, Koganei, Tokyo 184-8501, Japan
| |
Collapse
|
2
|
Patil Y, Butenschön H, Misra R. Tetracyanobutadiene Bridged Push-Pull Chromophores: Development of New Generation Optoelectronic Materials. CHEM REC 2023; 23:e202200208. [PMID: 36202630 DOI: 10.1002/tcr.202200208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Indexed: 01/21/2023]
Abstract
This review describes the design strategies used for the synthesis of various tetracyanobutadiene bridged donor-acceptor molecular architectures by a click type [2+2] cycloaddition-retroelectrocyclization (CA-RE) reaction sequence. The photophysical and electrochemical properties of the tetracyanobutadiene bridged molecular architectures based on various moieties including diketopyrrolopyrrole, isoindigo, benzothiadiazole, pyrene, pyrazabole, truxene, boron dipyrromethene (BODIPY), phenothiazine, triphenylamine, thiazole and bisthiazole are summarized. Further, we discuss some important applications of the tetracyanobutadiene bridged derivatives in dye sensitized solar cells, bulk heterojunction solar cells and photothermal cancer therapy.
Collapse
Affiliation(s)
- Yuvraj Patil
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India.,Present Address: Institut des Sciences Chimiques de Rennes (ISCR) -, Université de Rennes 1, Rennes, 35700, France
| | - Holger Butenschön
- Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| |
Collapse
|
3
|
Zhang Z, Gou G, Wan J, Li H, Wang M, Li L. Synthesis, Structure, and Significant Energy Gap Modulation of Symmetrical Silafluorene-Cored Tetracyanobutadiene and Tetracyanoquinodimethane Derivatives. J Org Chem 2022; 87:2470-2479. [PMID: 35080882 DOI: 10.1021/acs.joc.1c02382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of symmetrical tetracyanobutadiene and tetracyanoquinodimethane derivatives with a D-A-D'-A-D structural configuration and silafluorene core (D') were designed and readily synthesized via a [2+2] cycloaddition-retroelectrocyclization (CA-RE) reaction. We found that the photophysical properties and HOMO and LUMO energy levels and gaps of the silafluorene derivatives could be profoundly remolded through CA-RE reactions and modulated by varying the peripheral donor units from phenyl, m-dimethoxyphenyl, and N,N-dimethylaniline to triphenylamine groups. After CA-RE reactions, the HOMO-LUMO gaps of 1a-1j are in the range of 1.75-2.78 eV, with significant decreases of 0.52-1.46 eV compared to those of the parent silafluorene compounds 2a-2j. The intriguing crystal structures of 1f and 1j were analyzed and elucidated to show their unique potential porosity. The stability, electrochemical, and computational studies were systematically performed to unveil the reshaped electron-donating and -withdrawing nature in one molecular system. 1h-1j with peripherally strong amino donors exhibit an intense and broad intramolecular charge transfer absorption band in the near-infrared region from 550 to 900 nm. The molecular design and synthesis reported here broaden the types and fields of D-A molecular systems for potential applications in organic optoelectronic devices.
Collapse
Affiliation(s)
- Zhaoling Zhang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Gaozhang Gou
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jun Wan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Hui Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Man Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
4
|
Khan F, Jang Y, Patil Y, Misra R, D'Souza F. Photoinduced Charge Separation Prompted Intervalence Charge Transfer in a Bis(thienyl)diketopyrrolopyrrole Bridged Donor‐TCBD Push‐Pull System. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Faizal Khan
- Department of Chemistry Indian Institute of Technology Indore 453552 India
| | - Youngwoo Jang
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Yuvraj Patil
- Department of Chemistry Indian Institute of Technology Indore 453552 India
| | - Rajneesh Misra
- Department of Chemistry Indian Institute of Technology Indore 453552 India
| | - Francis D'Souza
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| |
Collapse
|
5
|
Khan F, Jang Y, Patil Y, Misra R, D'Souza F. Photoinduced Charge Separation Prompted Intervalence Charge Transfer in a Bis(thienyl)diketopyrrolopyrrole Bridged Donor-TCBD Push-Pull System. Angew Chem Int Ed Engl 2021; 60:20518-20527. [PMID: 34258866 DOI: 10.1002/anie.202108293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/10/2021] [Indexed: 11/10/2022]
Abstract
Intervalence charge transfer (IVCT), a phenomenon observed in molecular systems comprised of two redox centers differing in oxidation states by one unit, is reported in a novel, newly synthesized, multi-modular donor-acceptor system comprised of central bis(thienyl)diketopyrrolopyrrole (TDPP) hosting two phenothiazine-tetracyanobutadiene (PTZ-TCBD) entities on the opposite sides. One-electron reduction of TCBD promoted electron exchange between the two TCBD resulting in IVCT transition in the near-infrared region. The stabilization energy, -ΔGcom and comproportionation equilibrium constant, Kcom calculated from peak potentials of the split reduction waves were found to be 1.06×104 J mol-1 , and 72.3 M-1 , respectively. Further, the IVCT transition was also witnessed during the process of thermodynamically feasible electron transfer upon excitation of the TDPP entity in the system, and served as a diagnostic marker to characterize the electron transfer product. Subsequent transient absorption spectral studies and data analysis by Global and Target analyses revealed occurrence of ultrafast charge separation (kcs ≈1010 s-1 ) owing to the close proximity and good communication between the entities of the multi-modular donor-acceptor system. The role of central TDPP in promoting IVCT is borne out from the present investigation.
Collapse
Affiliation(s)
- Faizal Khan
- Department of Chemistry, Indian Institute of Technology, Indore, 453552, India
| | - Youngwoo Jang
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, USA
| | - Yuvraj Patil
- Department of Chemistry, Indian Institute of Technology, Indore, 453552, India
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology, Indore, 453552, India
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, USA
| |
Collapse
|
6
|
Eichhorn SH, El-Ballouli AO, Cassar A, Kaafarani BR. Columnar Mesomorphism of Board-Shaped Perylene, Diketopyrrolopyrrole, Isoindigo, Indigo, and Quinoxalino-Phenanthrophenazine Dyes. Chempluschem 2021; 86:319-339. [PMID: 33624951 DOI: 10.1002/cplu.202100024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/11/2021] [Indexed: 12/12/2022]
Abstract
The properties of organic dyes depend as much on their intermolecular interactions as on their molecular structure. While it is generally predictable what supramolecular structure would be ideal for a specific application, the generation of specific supramolecular structures by molecular design and suitable processing methods remains to be a challenge. A versatile approach to different supramolecular structures has been the application of mesomorphism in conjunction with alignment techniques and self-assembly at interfaces. Reviewed here is the columnar mesomorphism of board-shaped dyes perylene, indigo, isoindigo, diketopyrrolopyrrole, and quinoxalinophenanthrophenazine. They generate a larger number of different supramolecular structures than conventional disc-shaped (discotic) mesogens because of their non-circular shape and directional intermolecular interactions. The mesomorphism of all but the perylene derivatives is systematically and comprehensively covered for the first time.
Collapse
Affiliation(s)
- S Holger Eichhorn
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
| | - A O El-Ballouli
- College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 11481, Kingdom of Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, 11426, Kingdom of Saudi Arabia
| | - Adam Cassar
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
| | - Bilal R Kaafarani
- Department of Chemistry, American University of Beirut, Beirut, 1107-2020, Lebanon
| |
Collapse
|
7
|
Srinivasa Rao P, Brixi S, Shaikh DB, Al Kobaisi M, Lessard BH, Bhosale SV, Bhosale SV. The Effect of TCNE and TCNQ Acceptor Units on Triphenylamine‐Naphthalenediimide Push‐Pull Chromophore Properties. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pedada Srinivasa Rao
- Polymers and Functional Materials Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad 201 002, Uttar Pradesh India
| | - Samantha Brixi
- Department of Chemical and Biological Engineering University of Ottawa 161 Louis Pasteur Ottawa Ontario Canada
| | - Dada B. Shaikh
- Polymers and Functional Materials Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad 201 002, Uttar Pradesh India
| | - Mohammad Al Kobaisi
- School of Science, Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn Australia
| | - Benoît H. Lessard
- Department of Chemical and Biological Engineering University of Ottawa 161 Louis Pasteur Ottawa Ontario Canada
| | - Sidhanath V. Bhosale
- Polymers and Functional Materials Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad 201 002, Uttar Pradesh India
| | | |
Collapse
|
8
|
Popli C, Jang Y, Patil Y, Misra R, D'Souza F. Formation of Highly Efficient, Long‐Lived Charge Separated States in Star‐Shaped Ferrocene‐Diketopyrrolopyrrole‐Triphenylamine Donor–Acceptor–Donor Conjugates. Chemistry 2020; 26:15109-15115. [DOI: 10.1002/chem.202002851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/25/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Charu Popli
- Department of Chemistry Indian Institute of Technology Indore 453552 India
| | - Youngwoo Jang
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Yuvraj Patil
- Department of Chemistry Indian Institute of Technology Indore 453552 India
| | - Rajneesh Misra
- Department of Chemistry Indian Institute of Technology Indore 453552 India
| | - Francis D'Souza
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| |
Collapse
|
9
|
Patil Y, Misra R. Metal Functionalized Diketopyrrolopyrroles: A Promising Class of Materials for Optoelectronic Applications. CHEM REC 2019; 20:596-603. [PMID: 31833617 DOI: 10.1002/tcr.201900061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 11/11/2022]
Abstract
After first report on diketopyrrolopyrrole in 1974 by Farnum et al., a wide variety of its derivatives have been reported for material and biological applications. In this review we discuss various design strategies used for the synthesis of metal functionalized diketopyrrolopyrrole derivatives along with their photophysical and electrochemical studies with respect to material and biological applications. Some exciting applications of ferrocenyl functionalized diketopyrrolopyrrole derivatives such as non-linear optics, organic solar cells and photothermal therapy were recently reported, which are also discussed in this review.
Collapse
Affiliation(s)
- Yuvraj Patil
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| |
Collapse
|
10
|
Kumar C, Raheem AA, Pandian K, Nandakumar V, Shanmugam R, Praveen C. Fine-tuning the optoelectronic chattels of fluoreno-thiophene centred molecular semiconductors through symmetric and asymmetric push–pull switch. NEW J CHEM 2019. [DOI: 10.1039/c9nj00775j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optoelectronic properties of symmetrical and unsymmetrical fluoreno-thienyl π-semiconductors were studied.
Collapse
Affiliation(s)
- Chitra Kumar
- Functional Materials Division
- Central Electrochemical Research Institute (CSIR Laboratory)
- Karaikudi-630003
- India
| | - Abbasriyaludeen Abdul Raheem
- Functional Materials Division
- Central Electrochemical Research Institute (CSIR Laboratory)
- Karaikudi-630003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Karpagam Pandian
- Functional Materials Division
- Central Electrochemical Research Institute (CSIR Laboratory)
- Karaikudi-630003
- India
| | - Vrinda Nandakumar
- Functional Materials Division
- Central Electrochemical Research Institute (CSIR Laboratory)
- Karaikudi-630003
- India
| | | | - Chandrasekar Praveen
- Functional Materials Division
- Central Electrochemical Research Institute (CSIR Laboratory)
- Karaikudi-630003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
11
|
Patil Y, Misra R. Small Molecule Based Non-Fullerene Acceptors: A Comparative Study. CHEM REC 2018; 18:1350-1364. [DOI: 10.1002/tcr.201800037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/24/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Yuvraj Patil
- Department of Chemistry; Indian Institute of Technology Indore; Indore 453552 India
| | - Rajneesh Misra
- Department of Chemistry; Indian Institute of Technology Indore; Indore 453552 India
| |
Collapse
|
12
|
Shoji T, Miura K, Araki T, Maruyama A, Ohta A, Sekiguchi R, Ito S, Okujima T. Synthesis of 2-Methyl-1-azulenyl Tetracyanobutadienes and Dicyanoquinodimethanes: Substituent Effect of 2-Methyl Moiety on the Azulene Ring toward the Optical and Electrochemical Properties. J Org Chem 2018; 83:6690-6705. [DOI: 10.1021/acs.joc.8b01067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Taku Shoji
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
| | - Kota Miura
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
| | - Takanori Araki
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
| | - Akifumi Maruyama
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
| | - Akira Ohta
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
| | - Ryuta Sekiguchi
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
| | - Shunji Ito
- Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
| | - Tetsuo Okujima
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
13
|
Michinobu T, Diederich F. The [2+2] Cycloaddition-Retroelectrocyclization (CA-RE) Click Reaction: Facile Access to Molecular and Polymeric Push-Pull Chromophores. Angew Chem Int Ed Engl 2018; 57:3552-3577. [DOI: 10.1002/anie.201711605] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Tsuyoshi Michinobu
- Department of Materials Science and Engineering; Tokyo Institute of Technology; 2-12-1 Ookayama, Meguro-ku Tokyo 1 52-8552 Japan
| | - François Diederich
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| |
Collapse
|
14
|
Michinobu T, Diederich F. Die [2+2]-Cycloadditions-Retroelektrocyclisierungs(CA-RE)-Klick-Reaktion: ein einfacher Zugang zu molekularen und polymeren Push-pull-Chromophoren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711605] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tsuyoshi Michinobu
- Department of Materials Science and Engineering; Tokyo Institute of Technology; 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
| | - François Diederich
- Laboratorium für Organische Chemie; ETH-Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| |
Collapse
|
15
|
Patil Y, Misra R. Diketopyrrolopyrrole-Based and Tetracyano-Bridged Small Molecules for Bulk Heterojunction Organic Solar Cells. Chem Asian J 2018; 13:220-229. [PMID: 29219247 DOI: 10.1002/asia.201701493] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/08/2017] [Indexed: 11/11/2022]
Abstract
Research on bulk heterojunction organic solar cells has rapidly grown over the past two decades, and device performance has reached power conversion efficiencies over 13 %. In this focus review, we highlight design strategies used for the development of diketopyrrolopyrrole- and tetracyano-based molecular donors. We also describe how tetracyano-bridged non-fullerene acceptors can be developed by a click-type [2+2]-cycloaddition-electrocyclic ring-opening reaction of acetylene-bridged small molecules with tetracyanoethylene by simple modification.
Collapse
Affiliation(s)
- Yuvraj Patil
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| |
Collapse
|
16
|
Ren X, Liu Z, Dong L, Miao G, Liao N, Li Z, Xiao J. Dynamic catalytic adsorptive desulfurization of real diesel over ultra-stable and low-cost silica gel-supported TiO2. AIChE J 2018. [DOI: 10.1002/aic.16055] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaoling Ren
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Zewei Liu
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Lei Dong
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Guang Miao
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Neng Liao
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Zhong Li
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Jing Xiao
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
17
|
Patil Y, Popli C, Misra R. Near-infrared absorbing tetracyanobutadiene-bridged diketopyrrolopyrroles. NEW J CHEM 2018. [DOI: 10.1039/c7nj05162j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we have synthesized near-infra red absorbing TCBD bridged diketopyrrolopyrroles by a [2+2] cycloaddition–retroelectrocyclization reaction in order to see the effects of end capping donors and electron-withdrawing TCBD on the optical and electrochemical properties.
Collapse
Affiliation(s)
- Yuvraj Patil
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Charu Popli
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Rajneesh Misra
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| |
Collapse
|
18
|
Patil Y, Shinde J, Misra R. Near-infrared absorbing metal functionalized diketopyrrolopyrroles. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Misra R, Jadhav T, Nevonen D, Monzo EM, Mobin SM, Nemykin VN. Synthesis, Structures, and Redox Properties of Tetracyano-Bridged Diferrocene Donor–Acceptor–Donor Systems. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rajneesh Misra
- Discipline
of Chemistry, Indian Institute of Technology, Indore, 453 552, India
| | - Thaksen Jadhav
- Discipline
of Chemistry, Indian Institute of Technology, Indore, 453 552, India
| | - Dustin Nevonen
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ellen M. Monzo
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Shaikh M. Mobin
- Discipline
of Chemistry, Indian Institute of Technology, Indore, 453 552, India
| | - Victor N. Nemykin
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
20
|
Poddar M, Misra R. NIR-Absorbing Donor-Acceptor Based 1,1,4,4-Tetracyanobuta-1,3-Diene (TCBD)- and Cyclohexa-2,5-Diene-1,4-Ylidene-Expanded TCBD-Substituted Ferrocenyl Phenothiazines. Chem Asian J 2017; 12:2908-2915. [PMID: 28901716 DOI: 10.1002/asia.201700879] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/11/2017] [Indexed: 11/11/2022]
Abstract
A series of unsymmetrical (D-A-D1 , D1 -π-D-A-D1 , and D1 -A1 -D-A2 -D1 ; A=acceptor, D=donor) and symmetrical (D1 -A-D-A-D1 ) phenothiazines (4 b, 4 c, 4 c', 5 b, 5 c, 5 d, 5 d', 5 e, 5 e', 5 f, and 5 f') were designed and synthesized by a [2+2] cycloaddition-electrocyclic ring-opening reaction of ferrocenyl-substituted phenothiazines with tetracyanoethylene (TCNE) and 7,7,8,8-tetracyanoquinodimethane (TCNQ). The photophysical, electrochemical, and computational studies show a strong charge-transfer (CT) interaction in the phenothiazine derivatives that can be tuned by varying the number of TCNE/TCNQ acceptors. Phenothiazines 4 b, 4 c, 4 c', 5 b, 5 c, 5 d, 5 d', 5 e, 5 e', 5 f and 5 f' show redshifted absorption in the λ=400 to 900 nm region, as a result of a low HOMO-LUMO gap, which is supported by TD-DFT calculations. The electrochemical study exhibits reduction waves at low potential due to strong 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) and cyclohexa-2,5-diene-1,4-ylidene-expanded TCBD acceptors. The incorporation of cyclohexa-2,5-diene-1,4-ylidene-expanded TCBD stabilized the LUMO energy level to a greater extent than TCBD.
Collapse
Affiliation(s)
- Madhurima Poddar
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| |
Collapse
|
21
|
Patil Y, Misra R. Tetracyanobutadiene bridged ferrocene and triphenylamine functionalized pyrazabole dimers. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.03.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Patil Y, Jadhav T, Dhokale B, Butenschön H, Misra R. Donor Substituted Pyrazabole Monomers and Dimers: Design, Synthesis and Properties. ChemistrySelect 2017. [DOI: 10.1002/slct.201601704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuvraj Patil
- Department of Chemistry; Indian Institute of Technology Indore; Indore 453552 India
| | - Thaksen Jadhav
- Department of Chemistry; Indian Institute of Technology Indore; Indore 453552 India
| | - Bhausaheb Dhokale
- Department of Chemistry; Indian Institute of Technology Indore; Indore 453552 India
| | - Holger Butenschön
- Institutfür Organische Chemie; Leibniz Universität Hannover; Schneiderberg 1B, D- 30167 Hannover
| | - Rajneesh Misra
- Department of Chemistry; Indian Institute of Technology Indore; Indore 453552 India
| |
Collapse
|
23
|
Patil Y, Misra R, Singh MK, Sharma GD. Ferrocene-diketopyrrolopyrrole based small molecule donors for bulk heterojunction solar cells. Phys Chem Chem Phys 2017; 19:7262-7269. [DOI: 10.1039/c7cp00231a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Patil Y, Jadhav T, Dhokale B, Misra R. Design and Synthesis of Low HOMO-LUMO GapN-Phenylcarbazole-Substituted Diketopyrrolopyrroles. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600194] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuvraj Patil
- Department of Chemistry; Indian Institute of Technology Indore; Indore 452020 India
| | - Thaksen Jadhav
- Department of Chemistry; Indian Institute of Technology Indore; Indore 452020 India
| | - Bhausaheb Dhokale
- Department of Chemistry; Indian Institute of Technology Indore; Indore 452020 India
| | - Rajneesh Misra
- Department of Chemistry; Indian Institute of Technology Indore; Indore 452020 India
| |
Collapse
|
25
|
Patil Y, Misra R, Chen FC, Keshtov ML, Sharma GD. Symmetrical and unsymmetrical triphenylamine based diketopyrrolopyrroles and their use as donors for solution processed bulk heterojunction organic solar cells. RSC Adv 2016. [DOI: 10.1039/c6ra10442h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two small molecules DPP3 (D–π–A) and DPP4 (D–π–A–π–D) with triphenylamine (TPA) donors and diketopyrrolopyrrole (DPP) acceptors linked with ethyne linkers were designed and synthesized by the Pd-catalyzed Sonogashira cross-coupling reaction.
Collapse
Affiliation(s)
- Yuvraj Patil
- Department of Chemistry
- Indian Institute of Technology
- Indore
- India
| | - Rajneesh Misra
- Department of Chemistry
- Indian Institute of Technology
- Indore
- India
| | - F. C. Chen
- Department of Photonics
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - M. L. Keshtov
- A. N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Ganesh D. Sharma
- Department of Physics
- The LNM Institute of Information Technology
- Jaipur
- India
| |
Collapse
|
26
|
Patil Y, Misra R, Sharma A, Sharma GD. D–A–D–π–D–A–D type diketopyrrolopyrrole based small molecule electron donors for bulk heterojunction organic solar cells. Phys Chem Chem Phys 2016; 18:16950-7. [DOI: 10.1039/c6cp02700h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two organic small molecules based on diketopyrrolopyrrole (DPP) units having a D–A–D–π–D–A–D structure denoted as DPP-DPP and DPPTDPP were synthesized.
Collapse
Affiliation(s)
- Yuvraj Patil
- Department of Chemistry
- Indian Institute of Technology
- Indore (MP) 452020
- India
| | - Rajneesh Misra
- Department of Chemistry
- Indian Institute of Technology
- Indore (MP) 452020
- India
| | - Abhishek Sharma
- Department of Electronics and Communication Engineering
- The LNM Institute of Information Technology (Deemed University)
- Jaipur (Raj.)
- India
| | - Ganesh D. Sharma
- Department of Physics
- The LNM Institute of Information Technology (Deemed University)
- Jaipur (Raj.)
- India
| |
Collapse
|
27
|
Patil Y, Misra R, Chen FC, Sharma GD. Small molecule based N-phenyl carbazole substituted diketopyrrolopyrroles as donors for solution-processed bulk heterojunction organic solar cells. Phys Chem Chem Phys 2016; 18:22999-3005. [DOI: 10.1039/c6cp03767d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report two acetylene-bridged small molecules DPP5 and DPP6 with low HOMO–LUMO gaps as donors along with PC71BM as an acceptor for the fabrication of solution-processed bulk heterojunction solar cells.
Collapse
Affiliation(s)
- Yuvraj Patil
- Department of Chemistry
- Indian Institute of Technology
- Indore (MP) 452020
- India
| | - Rajneesh Misra
- Department of Chemistry
- Indian Institute of Technology
- Indore (MP) 452020
- India
| | - F. C. Chen
- Department of Photonics
- National Chiao Tung University
- Taiwan 300
- Republic of China
| | - Ganesh D. Sharma
- Department of Physics
- The LNM Institute of Information Technology (Deemed University)
- Jaipur (Raj.)
- India
| |
Collapse
|