1
|
Nájera C, Foubelo F, Sansano JM, Yus M. Enantioselective desymmetrization reactions in asymmetric catalysis. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
2
|
Ouellette ET, Lougee MG, Bucknam AR, Endres PJ, Kim JY, Lynch EJ, Sisko EJ, Sculimbrene BR. Desymmetrization of Diols by Phosphorylation with a Titanium-BINOLate Catalyst. J Org Chem 2021; 86:7450-7459. [PMID: 33999638 DOI: 10.1021/acs.joc.1c00414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The desymmetrization of ten prochiral diols by phosphoryl transfer with a titanium-BINOLate complex is discussed. The phosphorylation of nine 1,3-propane diols is achieved in yields of 50-98%. Enantiomeric ratios as high as 92:8 are achieved with diols containing a quaternary C-2 center incorporating a protected amine. The chiral ligand, base, solvent, and stoichiometry are evaluated along with a nonlinear effect study to support an active catalyst species that is oligomeric in chiral ligand. The use of pyrophosphates as the phosphorylating agent in the desymmetrization facilitates a user-friendly method for enantioselective phosphorylation with desirable protecting groups (benzyl, o-nitrobenzyl) on the phosphate product.
Collapse
Affiliation(s)
- Erik T Ouellette
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| | - Marshall G Lougee
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| | - Andrea R Bucknam
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| | - Paul J Endres
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| | - John Y Kim
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| | - Emma J Lynch
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| | - Elizabeth J Sisko
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| | - Bianca R Sculimbrene
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| |
Collapse
|
3
|
Wagener T, Lückemeier L, Daniliuc CG, Glorius F. Interrupted Pyridine Hydrogenation: Asymmetric Synthesis of δ-Lactams. Angew Chem Int Ed Engl 2021; 60:6425-6429. [PMID: 33460521 PMCID: PMC7986189 DOI: 10.1002/anie.202016771] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 12/22/2022]
Abstract
Metal-catalyzed hydrogenation is an effective method to transform readily available arenes into saturated motifs, however, current hydrogenation strategies are limited to the formation of C-H and N-H bonds. The stepwise addition of hydrogen yields reactive unsaturated intermediates that are rapidly reduced. In contrast, the interruption of complete hydrogenation by further functionalization of unsaturated intermediates offers great potential for increasing chemical complexity in a single reaction step. Overcoming the tenet of full reduction in arene hydrogenation has been seldom demonstrated. In this work we report the synthesis of sought-after, enantioenriched δ-lactams from oxazolidinone-substituted pyridines and water by an interrupted hydrogenation mechanism.
Collapse
Affiliation(s)
- Tobias Wagener
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Lukas Lückemeier
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Frank Glorius
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| |
Collapse
|
4
|
Wagener T, Lückemeier L, Daniliuc CG, Glorius F. Unterbrochene Pyridin‐Hydrierung: asymmetrische Synthese von δ‐Lactamen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tobias Wagener
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Lukas Lückemeier
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
5
|
Breaking Molecular Symmetry through Biocatalytic Reactions to Gain Access to Valuable Chiral Synthons. Symmetry (Basel) 2020. [DOI: 10.3390/sym12091454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this review the recent reports of biocatalytic reactions applied to the desymmetrization of meso-compounds or symmetric prochiral molecules are summarized. The survey of literature from 2015 up to date reveals that lipases are still the most used enzymes for this goal, due to their large substrate tolerance, stability in different reaction conditions and commercial availability. However, a growing interest is focused on the use of other purified enzymes or microbial whole cells to expand the portfolio of exploitable reactions and the molecular diversity of substrates to be transformed. Biocatalyzed desymmetrization is nowadays recognized as a reliable and efficient approach for the preparation of pharmaceuticals or natural bioactive compounds and many processes have been scaled up for multigram preparative purposes, also in continuous-flow conditions.
Collapse
|
6
|
Pinto GB, Mendes FML, Antunes AMDS. Technological Profile of Lipases in the Pharmaceutical Industry. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190913181530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In recent decades, enzymes have been the target of considerable research, development,
and innovation. This paper presents an up-to-date overview of the technological application of lipases
in the pharmaceutical industry. Lipases have been used in a variety of ways in the pharmaceutical
industry, both for obtaining bioactive molecules to overcome limitations in the formulation of medicines
and in drug design. This is possible from alternative technologies, such as immobilization and
the use of non-aqueous solvents that allow the use of lipases in commercial-scale processes. In addition,
other technologies have provided the emergence of differentiated and more specific lipases in
order to meet the perspectives of industrial processes. The research indicates that the following years
should be promising for the application of lipase in the industrial biocatalysis and in drug design.
Collapse
|
7
|
Tomer SO, Soni HP. Enzymatic monoesterification of symmetric diols: restriction of molecular conformations influences selectivity. Org Biomol Chem 2017; 15:8990-8997. [PMID: 29044278 DOI: 10.1039/c7ob01951c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have experimentally demonstrated that by 'locking' the molecular conformation through the introduction of a double or triple bond in the center of a symmetric diol, enzymatic monoesterification can be achieved selectively. The enzyme Candida antarctica lipase B, generally used for the transesterification of diols, can be effectively used for the monoesterification of symmetrical diols in an unbuffered system also. By varying the chain length of a carboxylic acid moiety, we have established that optimum selectivity and efficiency can be achieved in the range of 4.8 to 5.0 pKa values. Selectivity can be improved up to 98.75% for a monoester in an overall 73% yield (mixture of a monoester and a diester) when but-2-yne-1,4-diol reacted with hexanoic acid. Water, a by-product, provides an interfacial environment for the enzyme to work in the organic reaction medium. The uniqueness of the reported monoesterification protocol is that it involves only the mechanical stirring of the reaction mixture at room temperature in the presence of the enzyme for 24 h. High percentage yield with selectivity for a monoester, easier product isolation and overall, environmental sustainability are added advantages. The synthesized monoesters are characterized by using HNMR and high resolution mass spectrometry (HRMS).
Collapse
Affiliation(s)
- Sanjiv O Tomer
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390 002, Gujarat, India.
| | | |
Collapse
|
8
|
Lipases in asymmetric transformations: Recent advances in classical kinetic resolution and lipase–metal combinations for dynamic processes. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.08.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Albarrán-Velo J, González-Martínez D, Gotor-Fernández V. Stereoselective biocatalysis: A mature technology for the asymmetric synthesis of pharmaceutical building blocks. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1340457] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jesús Albarrán-Velo
- Organic and Inorganic Chemistry Department, Biotechnology Institute of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Daniel González-Martínez
- Organic and Inorganic Chemistry Department, Biotechnology Institute of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, Biotechnology Institute of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
10
|
Khong DT, Judeh ZM. Short synthesis of phenylpropanoid glycosides calceolarioside-B and eutigoside-A. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2016.11.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Campello HR, Parker J, Perry M, Ryberg P, Gallagher T. Asymmetric Reduction of Lactam-Based β-Aminoacrylates. Synthesis of Heterocyclic β2-Amino Acids. Org Lett 2016; 18:4124-7. [DOI: 10.1021/acs.orglett.6b02074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Jeremy Parker
- AstraZeneca, Pharmaceutical Development, Silk Road Business Park, Macclesfield SK10 2NA U.K
| | - Matthew Perry
- AstraZeneca, Innovative Medicines, R&I Chemistry, AstraZeneca R&D Mölndal, Peparedsleden, SE-431 83 Mölndal, Sweden
| | - Per Ryberg
- AstraZeneca, PR&D Södertälje, S-151 85 Södertälje, Sweden
| | | |
Collapse
|