1
|
Mubashra S, Rafiq A, Aslam S, Rasool N, Ahmad M. Recent synthetic strategies for N-arylation of pyrrolidines: a potential template for biologically active molecules. Mol Divers 2024:10.1007/s11030-024-10924-7. [PMID: 39048884 DOI: 10.1007/s11030-024-10924-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
The chemistry of nitrogen-containing heterocyclic compounds has been a multifaceted area of research for an extended period due to their varied therapeutic and biological significance. N-Aryl pyrrolidine formed by condensation of aryl group with nitrogen atom of pyrrolidine is present in a wide array of compounds. Various significant activities shown by N-arylated pyrrolidine include anti-Alzheimer, antihypoxic, anticancer, plant activator, analgesic effect, and hepatitis C inhibitor. This review summarizes different synthetic approaches, e.g., transition-metal catalyzed and transition-metal-free synthesis, decarboxylation reaction, reductive amination, nucleophilic cyclization, Ullmann-Goldberg amidation, Buchwald-Hartwig reaction, Chan-Evans-Lam coupling, addition to benzyne, multistep reaction, green synthesis, rearrangement reaction, and multicomponent reaction, to afford the derivatives of N-aryl pyrrolidine. It encompasses synthetic strategies documented from 2015 to 2023.
Collapse
Affiliation(s)
- Saeeda Mubashra
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ayesha Rafiq
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Nasir Rasool
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| |
Collapse
|
2
|
Zhu W, Wei M, Wang Y, Wang G, Wang J, Rao H. Oxidative Nickel-Catalyzed ortho-C-H Amination of (Iso)quinolines with Alicyclic Amines Directed by a Sacrificial N-Oxide Group. Org Lett 2024; 26:912-916. [PMID: 38270506 DOI: 10.1021/acs.orglett.3c04193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Transition metal (TM)-catalyzed direct amination of C-H bonds on free or fused pyridine (Py) rings with free amines still remains scarce because amines and the Py ring tend to adopt a nonproductive N-bound coordination with many TMs, leading to a significant decrease of catalytic reactivity. We herein disclose a nickel-catalyzed and a sacrificial N-oxide group directed oxidative coupling of (iso)quinolyl C-H bonds and alicyclic amines, which furnishes bioimportant amino(iso)quinolines efficiently and selectively in a single step. Noteworthy, this protocol avoids the use of aggressive reactants and very strong bases usually required when aminating on nonoxidized Py rings.
Collapse
Affiliation(s)
- Weiqi Zhu
- Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China
| | - Min Wei
- Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China
| | - Yanrui Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China
| | - Jianchun Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China
| | - Honghua Rao
- Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
3
|
Feng YL, Shi BF. Recent Advances in Base Metal (Copper, Cobalt and Nickel)-Catalyzed Directed C—H Amination. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Li X, Zhang R, Qi Y, Zhao Q, Yao T. Rhodium( iii)-catalyzed C–H activation/annulation of N-iminopyridinium ylides with alkynes and diazo compounds. Org Chem Front 2021. [DOI: 10.1039/d0qo01333a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rh(iii)-Catalyzed C–H activation/annulation of N-iminopyridinium ylides with alkynes and diazo compounds has been realized for the synthesis of isoquinolones and isocoumarins.
Collapse
Affiliation(s)
- Xiang Li
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an
- China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| | - Ruihong Zhang
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an
- China
| | - Yaoting Qi
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an
- China
| | - Qing Zhao
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an
- China
| | - Tuanli Yao
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an
- China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| |
Collapse
|
5
|
Nanaji Y, Kirar S, Pawar SV, Yadav AK. A mild and metal-free synthesis of 2- and 1-alkyl/aryl/dialkyl-aminoquinolines and isoquinolines. RSC Adv 2020; 10:7628-7634. [PMID: 35492149 PMCID: PMC9049819 DOI: 10.1039/c9ra10397j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/30/2020] [Indexed: 11/21/2022] Open
Abstract
A simple synthetic strategy has been developed for the synthesis of 2- and 1-alkyl/aryl/dialkylaminoquinolines and isoquinolines from the easily available quinoline and isoquinoline-N-oxides, different amines, triflic anhydride as activating agent and acetonitrile as solvent in a one-pot reaction under metal-free conditions at 0 °C to room temperature.
Collapse
Affiliation(s)
- Yerramsetti Nanaji
- Texas Tech University Health Sciences Center, Ophthalmology Department Lubbock General 3601 4th Street Lubbock TX 79430 USA
| | - Seema Kirar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) Sector-67, S. A. S. Nagar-160062 Punjab India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University Chandigarh-160014 India
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences, Panjab University Chandigarh-160014 India
| |
Collapse
|
6
|
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. 3d Transition Metals for C-H Activation. Chem Rev 2018; 119:2192-2452. [PMID: 30480438 DOI: 10.1021/acs.chemrev.8b00507] [Citation(s) in RCA: 1482] [Impact Index Per Article: 211.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C-H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Daniel Zell
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Gianpiero Cera
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
7
|
Wang Z, Han MY, Li P, Wang L. Copper-Catalyzed Deoxygenative C-2 Amination of Quinoline N
-Oxides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800963] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Zhihui Wang
- Department of Chemistry; Huaibei Normal University; 235000 Huaibei Anhui P. R. China
| | - Man-Yi Han
- Department of Chemistry; Huaibei Normal University; 235000 Huaibei Anhui P. R. China
| | - Pinhua Li
- Department of Chemistry; Huaibei Normal University; 235000 Huaibei Anhui P. R. China
| | - Lei Wang
- Department of Chemistry; Huaibei Normal University; 235000 Huaibei Anhui P. R. China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 200032 Shanghai P. R. China
| |
Collapse
|
8
|
Kumar R, Chaudhary S, Kumar R, Upadhyay P, Sahal D, Sharma U. Catalyst and Additive-Free Diastereoselective 1,3-Dipolar Cycloaddition of Quinolinium Imides with Olefins, Maleimides, and Benzynes: Direct Access to Fused N,N'-Heterocycles with Promising Activity against a Drug-Resistant Malaria Parasite. J Org Chem 2018; 83:11552-11570. [PMID: 30160960 DOI: 10.1021/acs.joc.8b01520] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A convenient and eco-friendly synthesis of various fused N-heterocyclic compounds through catalyst and additive-free 1,3 dipolar cycloadditions of quinolinium imides with olefins, maleimides, and benzynes in excellent yields and diastereoselectivities is reported. The thermally controlled diastereoselective [3 + 2] cycloaddition reaction between quinolinium imides and olefins provided cis-isomers at low temperature and trans-isomers at high temperature. A reaction between quinolinium imides with substituted maleimides gave four-ring-fused N-heterocyclic compounds in high yields as a single diastereomer. The aryne precursors also provided four-ring-fused N,N'-heterocyclic compounds in high yields. The in vitro antiplasmodial activity of selected molecules revealed that this class of molecules possesses potential for ongoing studies against malaria.
Collapse
Affiliation(s)
- Rakesh Kumar
- Natural Product Chemistry and Process Development Division and AcSIR , CSIR-IHBT , Palampur 176061 , India
| | - Sandeep Chaudhary
- Natural Product Chemistry and Process Development Division and AcSIR , CSIR-IHBT , Palampur 176061 , India
| | - Rohit Kumar
- Natural Product Chemistry and Process Development Division and AcSIR , CSIR-IHBT , Palampur 176061 , India
| | - Pooja Upadhyay
- Malaria Drug Discovery Laboratory , International Centre for Genetic Engineering and Biotechnology , Aruna Asaf Ali Marg , New Delhi , 110067 , India
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory , International Centre for Genetic Engineering and Biotechnology , Aruna Asaf Ali Marg , New Delhi , 110067 , India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division and AcSIR , CSIR-IHBT , Palampur 176061 , India
| |
Collapse
|
9
|
Liang Y, Jiang H, Tan Z, Zhang M. Direct α-C-H amination using various amino agents by selective oxidative copper catalysis: a divergent access to functional quinolines. Chem Commun (Camb) 2018; 54:10096-10099. [PMID: 30124228 DOI: 10.1039/c8cc06079g] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we present, for the first time, direct dehydrogenative α-C-H amination of tetrahydroquinolines (THQs) using various amino agents by selective aerobic copper catalysis, which enables divergent access to 2-aminoquinolines, the core structures of numerous functional products. In which, the catalyst system preferentially oxidizes the tetrahydroquinolines between two amino reactants, and the presence of TEMPO significantly enhances the capability of the first oxidation of THQs and makes it a kinetically controlled process, thus favoring the C-N bond-forming step. The developed chemistry features broad substrates, excellent functional tolerance, high chemo-selectivity, and no need for pre-preparation of specific aminating agents, which offers a practical way for diverse and atom-economic synthesis of 2-aminoquinolines that are difficult to prepare or inaccessible with the existing C-H amination approaches.
Collapse
Affiliation(s)
- Yantang Liang
- School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China.
| | | | | | | |
Collapse
|
10
|
Zhao H, Chen X, Jiang H, Zhang M. Copper-catalysed dehydrogenative α-C(sp3)–H amination of tetrahydroquinolines with O-benzoyl hydroxylamines. Org Chem Front 2018. [DOI: 10.1039/c7qo00794a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper-catalysed dehydrogenative α-C(sp3)–H amination of tetrahydroquinolines with O-benzoyl hydroxylamines has been demonstrated, which enables direct access to 2-alkylaminoquinolines in efficient manner.
Collapse
Affiliation(s)
- He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Xiuwen Chen
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| |
Collapse
|