1
|
Álvarez-Constantino AM, Chaves-Pouso A, Fañanás-Mastral M. Enantioselective Allylboration of Acetylene: A Versatile Tool for the Stereodivergent Synthesis of Natural Products. Angew Chem Int Ed Engl 2024; 63:e202407813. [PMID: 38860849 DOI: 10.1002/anie.202407813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
Efficient catalytic methods that allow the use of simple and abundant chemical feedstocks for the preparation of synthetically versatile compounds are central to modern synthetic chemistry. Acetylene is a basic feedstock with a remarkable production over one million tons per year, although it is underutilized in the stereoselective synthesis of fine chemicals. Here we report a facile catalytic multicomponent reaction that allows for the enantio- and diastereoselective allylboration of acetylene gas. This process is catalyzed by a chiral copper catalyst, operates without specialized equipment or pressurization, and provides chiral skipped dienes bearing stereodefined and orthogonally functionalized olefins with excellent levels of chemo-, regio-, enantio- and diastereoselectivity. The combined stereochemical features and orthogonal functionalization make the products privileged structural scaffolds to access the complete set of stereoisomers of the chiral skipped diene core through simple enantio- and diastereodivergent pathways. The utility of the method is demonstrated with the enantioselective synthesis of three bioactive natural skipped diene products, namely (+)-Nyasol, (+)-Hinokiresinol and Phorbasin C, and other related synthetically relevant chiral molecules.
Collapse
Affiliation(s)
- Andrés M Álvarez-Constantino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Andrea Chaves-Pouso
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Martín Fañanás-Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Remy-Speckmann I, Zimmermann BM, Gorai M, Lerch M, Teichert JF. Mechanochemical solid state synthesis of copper(I)/NHC complexes with K 3PO 4. Beilstein J Org Chem 2023; 19:440-447. [PMID: 37091734 PMCID: PMC10113518 DOI: 10.3762/bjoc.19.34] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
A protocol for the mechanochemical synthesis of copper(I)/N-heterocyclic carbene complexes using cheap and readily available K3PO4 as base has been developed. This method employing a ball mill is amenable to typical simple copper(I)/NHC complexes but also to a sophisticated copper(I)/N-heterocyclic carbene complex bearing a guanidine moiety. In this way, the present approach circumvents commonly employed silver(I) complexes which are associated with significant and undesired waste formation and the excessive use of solvents. The resulting bifunctional catalyst has been shown to be active in a variety of reduction/hydrogenation transformations employing dihydrogen as terminal reducing agent.
Collapse
Affiliation(s)
- Ina Remy-Speckmann
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Birte M Zimmermann
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Mahadeb Gorai
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Martin Lerch
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Johannes F Teichert
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| |
Collapse
|
3
|
Ruiz J, Mateo MA. The first synthesis of an isocyanide-functionalized imidazolium salt and transition metal complexes thereof. Dalton Trans 2022; 51:13199-13203. [PMID: 36043364 DOI: 10.1039/d2dt02119f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An isocyanide-functionalized imidazole was obtained from 4-(1H-imidazol-1-yl)aniline by the Ugi method and subsequently transformed into the corresponding imidazolium salt by treatment with MeI. Coordination of the isocyanide residue allowed the synthesis of several transition metal complexes containing a peripheral imidazolium cation, which are suitable starting materials for the formation of mixed ligand isocyanide-NHC heterometallic complexes.
Collapse
Affiliation(s)
- Javier Ruiz
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain.
| | - María A Mateo
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain.
| |
Collapse
|
4
|
Bisamidate-functionalized NHC ligands: Electronic and steric influences of N-substituents on the bisamidate moieties. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
5
|
Matsuki T, Teramoto H, Ichihara R, Inui K, Sakaguchi S. Asymmetric silane reduction of ketones and β-Keto esters catalyzed by a chiral azolium/iridium system in the presence of a base in methanol at room temperature. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
6
|
Süsse L, Stoltz BM. Enantioselective Formation of Quaternary Centers by Allylic Alkylation with First-Row Transition-Metal Catalysts. Chem Rev 2021; 121:4084-4099. [DOI: 10.1021/acs.chemrev.0c01115] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Lars Süsse
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Brian M. Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
7
|
Guérin V, Legault CY. Synthesis of NHC-Iridium(III) Complexes Based on N-Iminoimidazolium Ylides and Their Use for the Amine Alkylation by Borrowing Hydrogen Catalysis. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00726] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Vincent Guérin
- University of Sherbrooke, Department of Chemistry, Centre in Green Chemistry and Catalysis,2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Claude Y. Legault
- University of Sherbrooke, Department of Chemistry, Centre in Green Chemistry and Catalysis,2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
8
|
Teichert JF, Brechmann LT. Catch It If You Can: Copper-Catalyzed (Transfer) Hydrogenation Reactions and Coupling Reactions by Intercepting Reactive Intermediates Thereof. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The key reactive intermediate of copper(I)-catalyzed alkyne semihydrogenations is a vinylcopper(I) complex. This intermediate can be exploited as a starting point for a variety of trapping reactions. In this manner, an alkyne semihydrogenation can be turned into a dihydrogen-mediated coupling reaction. Therefore, the development of copper-catalyzed (transfer) hydrogenation reactions is closely intertwined with the corresponding reductive trapping reactions. This short review highlights and conceptualizes the results in this area so far, with H2-mediated carbon–carbon and carbon–heteroatom bond-forming reactions emerging under both a transfer hydrogenation setting as well as with the direct use of H2. In all cases, highly selective catalysts are required that give rise to atom-economic multicomponent coupling reactions with rapidly rising molecular complexity. The coupling reactions are put into perspective by presenting the corresponding (transfer) hydrogenation processes first.1 Introduction: H2-Mediated C–C Bond-Forming Reactions2 Accessing Copper(I) Hydride Complexes as Key Reagents for Coupling Reactions; Requirements for Successful Trapping Reactions 3 Homogeneous Copper-Catalyzed Transfer Hydrogenations4 Trapping of Reactive Intermediates of Alkyne Transfer Semihydrogenation Reactions: First Steps Towards Hydrogenative Alkyne Functionalizations 5 Copper(I)-Catalyzed Alkyne Semihydrogenations6 Copper(I)-Catalyzed H2-Mediated Alkyne Functionalizations; Trapping of Reactive Intermediates from Catalytic Hydrogenations6.1 A Detour: Copper(I)-Catalyzed Allylic Reductions, Catalytic Generation of Hydride Nucleophiles from H2
6.2 Trapping with Allylic Electrophiles: A Copper(I)-Catalyzed Hydroallylation Reaction of Alkynes 6.3 Trapping with Aryl Iodides7 Conclusion
Collapse
|
9
|
Evans KJ, Mansell SM. Functionalised N-Heterocyclic Carbene Ligands in Bimetallic Architectures. Chemistry 2020; 26:5927-5941. [PMID: 31981386 PMCID: PMC7317719 DOI: 10.1002/chem.201905510] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Indexed: 12/18/2022]
Abstract
N-Heterocyclic carbenes (NHCs) have become immensely successful ligands in coordination chemistry and homogeneous catalysis due to their strong terminal σ-donor properties. However, by targeting NHC ligands with additional functionalisation, a new area of NHC coordination chemistry has developed that has enabled NHCs to be used to build up bimetallic and multimetallic architectures. This minireview covers the development of functionalised NHC ligands that incorporate additional donor sites in order to coordinate two or more metal atoms. This can be through the N-atom of the NHC ring, through a donor group attached to the N-atom or the carbon backbone, coordination of the π-bond or an annulated π-donor on the backbone, or through direct metalation of the backbone.
Collapse
Affiliation(s)
- Kieren J. Evans
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | | |
Collapse
|
10
|
Taakili R, Canac Y. NHC Core Pincer Ligands Exhibiting Two Anionic Coordinating Extremities. Molecules 2020; 25:molecules25092231. [PMID: 32397416 PMCID: PMC7248942 DOI: 10.3390/molecules25092231] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023] Open
Abstract
The chemistry of NHCcore pincer ligands of LX2 type bearing two pending arms, identical or not, whose coordinating center is anionic in nature, is here reviewed. In this family, the negative charge of the coordinating atoms can be brought either by a carbon atom via a phosphonium ylide (R3P+-CR2-) or by a heteroatom through amide (R2N-), oxide (RO-), or thio(seleno)oxide (RS-, RSe-) donor functionalities. Through selected examples, the synthetic methods, coordination properties, and applications of such tridentate systems are described. Particular emphasis is placed on the role of the donor ends in the chemical behavior of these species.
Collapse
|
11
|
Evans KJ, Campbell CL, Haddow MF, Luz C, Morton PA, Mansell SM. Lithium Complexes with Bridging and Terminal NHC Ligands: The Decisive Influence of an Anionic Tether. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201901003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kieren J. Evans
- Institute of Chemical Sciences Heriot‐Watt University EH14 4AS Edinburgh UK
| | | | - Mairi F. Haddow
- Institute of Chemical Sciences Heriot‐Watt University EH14 4AS Edinburgh UK
| | - Christian Luz
- Institute of Chemical Sciences Heriot‐Watt University EH14 4AS Edinburgh UK
| | - Paul A. Morton
- Institute of Chemical Sciences Heriot‐Watt University EH14 4AS Edinburgh UK
| | - Stephen M. Mansell
- Institute of Chemical Sciences Heriot‐Watt University EH14 4AS Edinburgh UK
| |
Collapse
|
12
|
Pretorius R, McDonald A, Regueira Beltrão da Costa L, Müller‐Bunz H, Albrecht M. Palladium(II), Rhodium(I), and Iridium(I) Complexes Containing
O
‐Functionalized 1,2,3‐Triazol‐5‐ylidene Ligands. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- René Pretorius
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
- School of Chemistry and Chemical Biology University College Dublin 4 Dublin Ireland
| | - Ava McDonald
- School of Chemistry and Chemical Biology University College Dublin 4 Dublin Ireland
| | | | - Helge Müller‐Bunz
- School of Chemistry and Chemical Biology University College Dublin 4 Dublin Ireland
| | - Martin Albrecht
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
- School of Chemistry and Chemical Biology University College Dublin 4 Dublin Ireland
| |
Collapse
|
13
|
Chiral N-heterocyclic carbene ligands with additional chelating group(s) applied to homogeneous metal-mediated asymmetric catalysis. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Evans KJ, Mansell SM. Synergic Deprotonation Generates Alkali-Metal Salts of Tethered Fluorenide-NHC Ligands Co-Complexed to Alkali-Metal Amides. Chemistry 2019; 25:3766-3769. [PMID: 30667554 PMCID: PMC6492165 DOI: 10.1002/chem.201806278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Indexed: 11/23/2022]
Abstract
Synergic combinations of alkali-metal hydrocarbyl/amide reagents were used to synthesise saturated N-heterocyclic carbene (NHC) ligands tethered to a fluorenide anion through deprotonation of a spirocyclic precursor, whereas conventional bases were not successful. The Li2 derivatives displayed a bridging amide between two Li atoms within the fluorenide-NHC pocket, whereas the Na2 and K2 analogues displayed extended solid-state structures with the fluorenide-NHC ligand chelating one alkali metal centre.
Collapse
Affiliation(s)
- Kieren J. Evans
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | | |
Collapse
|
15
|
Kumbhar A. Functionalized nitrogen ligands (C N) for palladium catalyzed cross-coupling reactions (part II). J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Pape F, Brechmann LT, Teichert JF. Catalytic Generation and Chemoselective Transfer of Nucleophilic Hydrides from Dihydrogen. Chemistry 2019; 25:985-988. [PMID: 30407666 DOI: 10.1002/chem.201805530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Indexed: 11/06/2022]
Abstract
Copper(I)-N-heterocyclic-carbene (NHC) complexes enabled the catalytic generation of nucleophilic hydrides from dihydrogen (H2 ) and their subsequent transfer to allylic chlorides. The highly chemoselective catalyst displayed no concomitant hydrogenation reactivity; in fact, the terminal double bond formed in the hydride transfer remained intact. Switching to deuterium gas (D2 ) allowed for regioselective monodeuteration with excellent isotope incorporation.
Collapse
Affiliation(s)
- Felix Pape
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Lea T Brechmann
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Johannes F Teichert
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| |
Collapse
|
17
|
Guérin V, Ménard A, Guernon H, Moutounet O, Legault CY. From Chelating to Bridging Ligands: N-Sulfonyliminoimidazolium Ylides as Precursors to Anionic N-Heterocyclic Carbene Ligands. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vincent Guérin
- Department of Chemistry, Centre in Green Chemistry and Catalysis, University of Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Alain Ménard
- Department of Chemistry, Centre in Green Chemistry and Catalysis, University of Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Hannah Guernon
- Department of Chemistry, Centre in Green Chemistry and Catalysis, University of Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Odile Moutounet
- Department of Chemistry, Centre in Green Chemistry and Catalysis, University of Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Claude Y. Legault
- Department of Chemistry, Centre in Green Chemistry and Catalysis, University of Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
18
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Özbozkurt İK, Gülcemal D, Günnaz S, Gökçe AG, Çetinkaya B, Gülcemal S. Enhanced Catalytic Activity of Oxygen-Tethered IrIII
NHC Complexes in Aqueous Transfer Hydrogenative Reductive Amination Reactions: Experimental Kinetic and Mechanistic Study. ChemCatChem 2018. [DOI: 10.1002/cctc.201800558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Derya Gülcemal
- Department of Chemistry; Ege University; 35100 Bornova, Izmir Turkey
| | - Salih Günnaz
- Department of Chemistry; Ege University; 35100 Bornova, Izmir Turkey
| | - Aytaç Gürhan Gökçe
- Department of Physics; Adnan Menderes University; 09010 Efeler, Aydın Turkey
| | - Bekir Çetinkaya
- Department of Chemistry; Ege University; 35100 Bornova, Izmir Turkey
| | - Süleyman Gülcemal
- Department of Chemistry; Ege University; 35100 Bornova, Izmir Turkey
| |
Collapse
|
20
|
Esteruelas MA, Gay MP, Oñate E. Conceptual Extension of the Degradation–Transformation of N-Heterocyclic Carbenes: Unusual Rearrangements on Osmium. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miguel A. Esteruelas
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - M. Pilar Gay
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
21
|
Singh C, Prakasham AP, Gangwar MK, Butcher RJ, Ghosh P. One-Pot Tandem Hiyama Alkynylation/Cyclizations by Palladium(II) Acyclic Diaminocarbene (ADC) Complexes Yielding Biologically Relevant Benzofuran Scaffolds. ACS OMEGA 2018; 3:1740-1756. [PMID: 31458491 PMCID: PMC6641338 DOI: 10.1021/acsomega.7b01974] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/23/2018] [Indexed: 06/10/2023]
Abstract
A series of palladium acyclic diaminocarbene (ADC) complexes of the type cis-[(R1NH)(R2)methylidene]PdCl2(CNR1) [R1 = 2,4,6-(CH3)3C6H2: R2 = NC5H10 (2); NC4H8 (3); NC4H8O (4)] were used not only to perform the Csp2 -Csp Hiyama coupling between aryl iodide and triethoxysilylalkynes but also to subsequently carry out the one-pot tandem Hiyama alkynylation/cyclization reaction between 2-iodophenol and triethoxysilylalkynes, giving a convenient time-efficient access to the biologically relevant benzofuran compounds. The palladium ADC complexes (2-4) were conveniently synthesized by the nucleophilic addition of secondary amines, namely, piperidine, pyrrolidine, and morpholine on the cis-{(2,4,6-(CH3)3C6H2)NC}2PdCl2 in moderate yields (ca. 61-66%).
Collapse
Affiliation(s)
- Chandan Singh
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400 076, India
| | - A. P. Prakasham
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400 076, India
| | - Manoj Kumar Gangwar
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400 076, India
| | - Raymond J. Butcher
- Department
of Chemistry, Howard University, Washington DC 20059, United States
| | - Prasenjit Ghosh
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
22
|
Nugent JW, Espinosa Martinez G, Gray DL, Fout AR. Synthesis and Characterization of Bidentate NHC-CAryl Nickel(II) Complexes: Isocyanide Insertion To Form NHC-η2-iminoacyl Complexes. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joseph W. Nugent
- School of Chemical Sciences, University of Illinois at Urbana—Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Gabriel Espinosa Martinez
- School of Chemical Sciences, University of Illinois at Urbana—Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Danielle L. Gray
- School of Chemical Sciences, University of Illinois at Urbana—Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Alison R. Fout
- School of Chemical Sciences, University of Illinois at Urbana—Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|