1
|
Qin X, Xu W, Hu J, Dong Y, Ding R, Huang S, Zhao Z, Chang H, Wang X, Dong S. Structure-activity relationship study of Pseudellone C as anti-glioma agents by targeting TNF/TNFR signaling pathway. Eur J Med Chem 2024; 278:116799. [PMID: 39213937 DOI: 10.1016/j.ejmech.2024.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Glioma, a common primary brain tumor, is highly infiltrative and invasive, often leading to drug resistance and recurrence. Therefore, the development of novel therapeutic agents is urgently needed. Pseudellone C is a novel marine triindole alkaloid. Screening of its antiproliferative activity against 55 cell lines revealed its anti-CNS cancer potential. A total of 42 derivatives of Pseudellone C were designed and synthesized, and their inhibitory activities against two human glioma cell lines (U-87MG and LN-229) were evaluated using the CCK-8 assay. Ten derivatives exhibited potent antiproliferative activity with IC50 values below 10 μmol, which are 18- to 39- fold more potent than Pseudellone C. Among these, derivative 4o demonstrated favorable blood-brain barrier permeability. Mechanistic studies revealed that 4o induces apoptosis primarily by activating the downstream caspase 3 cascade via the TNF/TNFR pathway. Structure-activity relationship correlations were systematically analyzed, and a pharmacophore model for further rational design was constructed.
Collapse
Affiliation(s)
- Xufeng Qin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Weifeng Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Jiangnan Hu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yong Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Renbo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Shuheng Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zhendong Zhao
- Analytical & Testing Center, Center for Advanced Studies in Precision Instruments, Hainan University, Haikou 570228, China
| | - Hong Chang
- Hainan Academy of Inspection and Testing, Haikou 570311, China
| | - Xiaokun Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Holland DC, Hayton JB, Kiefel MJ, Carroll AR. Synthesis and Cheminformatics-Directed Antibacterial Evaluation of Echinosulfonic Acid-Inspired Bis-Indole Alkaloids. Molecules 2024; 29:2806. [PMID: 38930871 PMCID: PMC11206493 DOI: 10.3390/molecules29122806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Synthetic efforts toward complex natural product (NP) scaffolds are useful ones, particularly those aimed at expanding their bioactive chemical space. Here, we utilised an orthogonal cheminformatics-based approach to predict the potential biological activities for a series of synthetic bis-indole alkaloids inspired by elusive sponge-derived NPs, echinosulfone A (1) and echinosulfonic acids A-D (2-5). Our work includes the first synthesis of desulfato-echinosulfonic acid C, an α-hydroxy bis(3'-indolyl) alkaloid (17), and its full NMR characterisation. This synthesis provides corroborating evidence for the structure revision of echinosulfonic acids A-C. Additionally, we demonstrate a robust synthetic strategy toward a diverse range of α-methine bis(3'-indolyl) acids and acetates (11-16) without the need for silica-based purification in either one or two steps. By integrating our synthetic library of bis-indoles with bioactivity data for 2048 marine indole alkaloids (reported up to the end of 2021), we analyzed their overlap with marine natural product chemical diversity. Notably, the C-6 dibrominated α-hydroxy bis(3'-indolyl) and α-methine bis(3'-indolyl) analogues (11, 14, and 17) were found to contain significant overlap with antibacterial C-6 dibrominated marine bis-indoles, guiding our biological evaluation. Validating the results of our cheminformatics analyses, the dibrominated α-methine bis(3'-indolyl) alkaloids (11, 12, 14, and 15) were found to exhibit antibacterial activities against methicillin-sensitive and -resistant Staphylococcus aureus. Further, while investigating other synthetic approaches toward bis-indole alkaloids, 16 incorrectly assigned synthetic α-hydroxy bis(3'-indolyl) alkaloids were identified. After careful analysis of their reported NMR data, and comparison with those obtained for the synthetic bis-indoles reported herein, all of the structures have been revised to α-methine bis(3'-indolyl) alkaloids.
Collapse
Affiliation(s)
- Darren C. Holland
- School of Environment and Science, Griffith University, Southport, QLD 4222, Australia; (J.B.H.); (M.J.K.)
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Joshua B. Hayton
- School of Environment and Science, Griffith University, Southport, QLD 4222, Australia; (J.B.H.); (M.J.K.)
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Milton J. Kiefel
- School of Environment and Science, Griffith University, Southport, QLD 4222, Australia; (J.B.H.); (M.J.K.)
- Institute for Glycomics, Griffith University, Southport, QLD 4221, Australia
| | - Anthony R. Carroll
- School of Environment and Science, Griffith University, Southport, QLD 4222, Australia; (J.B.H.); (M.J.K.)
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
3
|
Mello TP, Barcellos IC, Aor AC, Branquinha MH, Santos ALS. Extracellularly Released Molecules by the Multidrug-Resistant Fungal Pathogens Belonging to the Scedosporium Genus: An Overview Focused on Their Ecological Significance and Pathogenic Relevance. J Fungi (Basel) 2022; 8:1172. [PMID: 36354939 PMCID: PMC9693033 DOI: 10.3390/jof8111172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 09/10/2024] Open
Abstract
The multidrug-resistant species belonging to the Scedosporium genus are well recognized as saprophytic filamentous fungi found mainly in human impacted areas and that emerged as human pathogens in both immunocompetent and immunocompromised individuals. It is well recognized that some fungi are ubiquitous organisms that produce an enormous amount of extracellular molecules, including enzymes and secondary metabolites, as part of their basic physiology in order to satisfy their several biological processes. In this context, the molecules secreted by Scedosporium species are key weapons for successful colonization, nutrition and maintenance in both host and environmental sites. These biologically active released molecules have central relevance on fungal survival when colonizing ecological places contaminated with hydrocarbons, as well as during human infection, particularly contributing to the invasion/evasion of host cells and tissues, besides escaping from the cellular and humoral host immune responses. Based on these relevant premises, the present review compiled the published data reporting the main secreted molecules by Scedosporium species, which operate important physiopathological events associated with pathogenesis, diagnosis, antimicrobial activity and bioremediation of polluted environments.
Collapse
Affiliation(s)
- Thaís P. Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Iuri C. Barcellos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Ana Carolina Aor
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
4
|
Sathieshkumar PP, Anand Saibabu MD, Nagarajan R. A Cascade Approach for the Synthesis of 5-(Indol-3-yl)hydantoin: An Application to the Total Synthesis of (±)-Oxoaplysinopsin B. J Org Chem 2021; 86:3730-3740. [PMID: 33599509 DOI: 10.1021/acs.joc.0c02435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A cascade approach to the synthesis of 5-(indol-3-yl)hydantoin framework has been developed by the reaction of indole with glyoxylic acid/pyruvic acid under a deep eutectic solution, (+)-tartaric acid-dimethylurea. N,N'-Dimethylurea from a deep eutectic solution functions as a reactant as well as a solvent mixture. Isolation of the intermediate, 5-hydroxyhydantoin, and its reaction with indole provides the mechanistic evidence for this reaction. This method was successfully applied in the first total synthesis of an alkaloid, (±)-oxoaplysinopsin B, with an overall yield of 48%.
Collapse
Affiliation(s)
| | | | - Rajagopal Nagarajan
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
5
|
Liu X, Ma S, Toy PH. Halogen Bond-Catalyzed Friedel–Crafts Reactions of Aldehydes and Ketones Using a Bidentate Halogen Bond Donor Catalyst: Synthesis of Symmetrical Bis(indolyl)methanes. Org Lett 2019; 21:9212-9216. [DOI: 10.1021/acs.orglett.9b03578] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xuelei Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. of China
| | - Shuang Ma
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. of China
| | - Patrick H. Toy
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. of China
| |
Collapse
|
6
|
Wang D, Neupane P, Ragnarsson L, Capon RJ, Lewis RJ. Synthesis of Pseudellone Analogs and Characterization as Novel T-type Calcium Channel Blockers. Mar Drugs 2018; 16:md16120475. [PMID: 30487473 PMCID: PMC6315694 DOI: 10.3390/md16120475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 11/16/2022] Open
Abstract
T-type calcium channel (CaV3.x) blockers are receiving increasing attention as potential therapeutics for the treatment of pathophysiological disorders and diseases, including absence epilepsy, Parkinson's disease (PD), hypertension, cardiovascular diseases, cancers, and pain. However, few clinically approved CaV3.x blockers are available, and selective pharmacological tools are needed to further unravel the roles of individual CaV3.x subtypes. In this work, through an efficient synthetic route to the marine fungal product pseudellone C, we obtained bisindole alkaloid analogs of pseudellone C with a modified tryptophan moiety and identified two CaV3.2 (2, IC50 = 18.24 µM; 3, IC50 = 6.59 µM) and CaV3.3 (2, IC50 = 7.71 µM; 3, IC50 = 3.81 µM) selective blockers using a FLIPR cell-based assay measuring CaV3.x window currents. Further characterization by whole-cell patch-clamp revealed a preferential block of CaV3.1 activated current (2, IC50 = 5.60 µM; 3, IC50 = 9.91 µM), suggesting their state-dependent block is subtype specific.
Collapse
Affiliation(s)
- Dan Wang
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane, Qld 4072, Australia.
| | - Pratik Neupane
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane, Qld 4072, Australia.
| | - Lotten Ragnarsson
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane, Qld 4072, Australia.
| | - Robert J Capon
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane, Qld 4072, Australia.
| | - Richard J Lewis
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane, Qld 4072, Australia.
| |
Collapse
|