1
|
Yang X, Zhang H, Zhao Q, Li Q, Li T, Gao J. Total Synthesis of the Repeating Units of Highly Functionalized O-Antigens of Pseudomonas aeruginosa ATCC 27577, O10, and O19. JACS AU 2024; 4:2351-2362. [PMID: 38938791 PMCID: PMC11200240 DOI: 10.1021/jacsau.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
The first total synthesis of the repeating units of the O-antigens of Pseudomonas aeruginosa ATCC 27577, O10, and O19 was achieved via a linear glycosylation strategy. This also represents the first synthesis of an oligosaccharide containing an α-linked N-acetyl-l-galactosaminuronic acid (l-GalpNAcA) unit. All of the glycosyl linkages, including three challenging 1,2-cis-glycosidic bonds of amino sugars, were effectively constructed with high to exclusive stereoselectivity, while orthogonal protection tactics were employed to facilitate regioselective glycosylations and the introduction of a variety of functionalities. An acetyl group migration phenomenon was found during the synthesis of the O-acylated repeating unit of the P. aeruginosa ATCC 27577 antigen. All synthetic targets carried an amino functional group in the linker at the reducing end, thus facilitating further regioselective elaboration and biological studies. The synthetic strategy established here should be useful for the preparation of other similar oligosaccharides.
Collapse
Affiliation(s)
- Xiaoyu Yang
- National
Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate
Chemistry and Glycobiology, Shandong University, Qingdao ,Shandong 266237, China
- NMPA
Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based
Medicine, Shandong University, Qingdao ,Shandong 266237, China
| | - Han Zhang
- Department
of Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan ,Shandong 250355, China
| | - Qingpeng Zhao
- National
Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate
Chemistry and Glycobiology, Shandong University, Qingdao ,Shandong 266237, China
- NMPA
Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based
Medicine, Shandong University, Qingdao ,Shandong 266237, China
| | - Qingjiang Li
- Department
of Chemistry, University of Massachusetts
Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Tiehai Li
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Gao
- National
Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate
Chemistry and Glycobiology, Shandong University, Qingdao ,Shandong 266237, China
- NMPA
Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based
Medicine, Shandong University, Qingdao ,Shandong 266237, China
| |
Collapse
|
2
|
Yao W, Ye XS. Donor Preactivation-Based Glycan Assembly: from Manual to Automated Synthesis. Acc Chem Res 2024; 57:1577-1594. [PMID: 38623919 DOI: 10.1021/acs.accounts.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Carbohydrates are called the third chain of life. Carbohydrates participate in many important biochemical functions in living species, and the biological information carried by them is several orders of magnitude larger than that of nucleic acids and proteins. However, due to the intrinsic complexity and heterogeneity of carbohydrate structures, furnishing pure and structurally well-defined glycans for functional studies is a formidable task, especially for homogeneous large-size glycans. To address this issue, we have developed a donor preactivation-based one-pot glycosylation strategy enabling multiple sequential glycosylations in a single reaction vessel.The donor preactivation-based one-pot glycosylation refers to the strategy in which the glycosyl donor is activated in the absence of a glycosyl acceptor to generate a reactive intermediate. Subsequently, the glycosyl acceptor with the same anomeric leaving group is added, leading to a glycosyl coupling reaction, which is then iterated to rapidly achieve the desired glycan in the same reactor. The advantages of this strategy include the following: (1) unique chemoselectivity is obtained after preactivation; (2) it is independent of the reactivity of glycosyl donors; (3) multiple-step glycosylations are enabled without the need for intermediate purification; (4) only stoichiometric building blocks are required without complex protecting group manipulations. Using this protocol, a range of glycans including tumor-associated carbohydrate antigens, various glycosaminoglycans, complex N-glycans, and diverse bacterial glycans have been synthesized manually. Gratifyingly, the synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units has been achieved, which created a precedent in the field of polysaccharide synthesis. Recently, the synthesis of a highly branched arabinogalactan from traditional Chinese medicine featuring 140 monosaccharide units has been also accomplished to evaluate its anti-pancreatic-cancer activity. In the spirit of green and sustainable chemistry, this strategy can also be applied to light-driven glycosylation reactions, where either UV or visible light can be used for the activation of glycosyl donors.Automated synthesis is an advanced approach to the construction of complex glycans. Based on the two preactivation modes (general promoter activation mode and light-induced activation mode), a universal and highly efficient automated solution-phase synthesizer was further developed to drive glycan assembly from manual to automated synthesis. Using this synthesizer, a library of oligosaccharides covering various glycoforms and glycosidic linkages was assembled rapidly, either in a general promoter-activation mode or in a light-induced-activation mode. The automated synthesis of a fully protected fondaparinux pentasaccharide was realized on a gram scale. Furthermore, the automated synthesis of large-size polysaccharides was performed, allowing the assembly of arabinans up to an astonishing 1080-mer using the automated multiplicative synthesis strategy, taking glycan synthesis to a new height far beyond the synthesis of nucleic acids (up to 200-mer) and proteins (up to 472-mer).
Collapse
Affiliation(s)
- Wenlong Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
3
|
López M, Huelgas G, Sánchez M, Armenta A, Mendoza A, Lozada-Ramírez JD, Anaya de Parrodi C. Use of Novel Homochiral Thioureas Camphor Derived as Asymmetric Organocatalysts in the Stereoselective Formation of Glycosidic Bonds. Molecules 2024; 29:811. [PMID: 38398563 PMCID: PMC10893146 DOI: 10.3390/molecules29040811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
We synthesized six new camphor-derived homochiral thioureas 1-6, from commercially available (1R)-(-)-camphorquinone. These new compounds 1-6 were evaluated as asymmetric organocatalysts in the stereoselective formation of glycosidic bonds, with 2,3,4,6-tetra-O-benzyl-D-glucopyranosyl and 2,3,4,6-tetra-O-benzyl-D-galactopyranosyl trichloroacetimidates as donors, and several alcohols as glycosyl acceptors, such as methanol, ethanol, 1-propanol, 1-butanol, 1-octanol, iso-propanol, tert-butanol, cyclohexanol, phenol, 1-naphtol, and 2-naphtol. Optimization of the asymmetric glycosylation reaction was achieved by modifying reaction conditions such as solvent, additive, loading of catalyst, temperature, and time of reaction. The best result was obtained with 2,3,4,6-tetra-O-benzyl-D-galactopyranosyl trichloroacetimidates, using 15 mol% of organocatalyst 1, in the presence of 2 equiv of MeOH in solvent-free conditions at room temperature for 1.5 h, affording the glycosidic compound in a 99% yield and 1:73 α:β stereoselectivity; under the same reaction conditions, without using a catalyst, the obtained stereoselectivity was 1:35 α:β. Computational calculations prior to the formation of the products were modeled, using density functional theory, M06-2X/6-31G(d,p) and M06-2X/6-311++G(2d,2p) methods. We observed that the preference for β glycoside formation, through a stereoselective inverted substitution, relies on steric effects and the formation of hydrogen bonds between thiourea 1 and methanol in the complex formed.
Collapse
Affiliation(s)
- Mildred López
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Puebla 72810, Mexico; (M.L.); (G.H.); (J.D.L.-R.)
| | - Gabriela Huelgas
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Puebla 72810, Mexico; (M.L.); (G.H.); (J.D.L.-R.)
| | - Mario Sánchez
- Centro de Investigación en Materiales Avanzados S.C., Alianza Norte 202, PIIT, Apodaca 66628, Mexico; (M.S.); (A.A.)
| | - Adalid Armenta
- Centro de Investigación en Materiales Avanzados S.C., Alianza Norte 202, PIIT, Apodaca 66628, Mexico; (M.S.); (A.A.)
| | - Angel Mendoza
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - José Daniel Lozada-Ramírez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Puebla 72810, Mexico; (M.L.); (G.H.); (J.D.L.-R.)
| | - Cecilia Anaya de Parrodi
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Puebla 72810, Mexico; (M.L.); (G.H.); (J.D.L.-R.)
| |
Collapse
|
4
|
Das P, Thakur R. Amino-Acid-Derived Amides as Stereodirecting Leaving Groups for Ferrier Rearrangement via Pd(0)-Catalyzed Tsuji-Trost Reactions. Org Lett 2023; 25:6046-6051. [PMID: 37556780 DOI: 10.1021/acs.orglett.3c02226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Ferrier rearrangement on glycals is an efficient tool to form 2,3-dideoxy glycosides that provide access to various sugar derivatives through olefin functionalization. The classical acid-mediated transformation delivers the α-O-glycosides selectively. In this protocol, amides obtained from amino acids, glycine and proline, have been utilized as sustainable β-directing leaving groups on glycal substrates. The directing groups facilitate β-selective Ferrier rearrangements for hard alcohol nucleophiles by following the Pd(0)-catalyzed Tsuji-Trost inner sphere pathway.
Collapse
Affiliation(s)
- Pradip Das
- Department of Chemistry, National Institute of Technology Patna, Patna 800 005, India
| | - Rima Thakur
- Department of Chemistry, National Institute of Technology Patna, Patna 800 005, India
| |
Collapse
|
5
|
Asano T, Udagawa T, Komura N, Imamura A, Ishida H, Ando H, Tanaka HN. Unprecedented neighboring group participation of C2 N-imidoxy functionalities for 1,2-trans-selective glycosylation. Carbohydr Res 2023; 527:108808. [PMID: 37068315 DOI: 10.1016/j.carres.2023.108808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Stereoselective glycosylation reactions are important in carbohydrate chemistry. The most used method for 1,2-trans(β)-selective glycosylation involves the neighboring group participation (NGP) of the 2-O-acyl protecting group; nevertheless, an alternative stereoselective method independent of classical NGP would contribute to carbohydrate chemistry, despite being challenging to achieve. Herein, a β-selective glycosylation reaction employing unprecedented NGP of the C2 N-succinimidoxy and phthalimidoxy functionalities is reported. The C2 functionalities provided the glycosylated products in high yields with β-selectivity. The participation of the functionalities from the α face of the glycosyl oxocarbenium ions gives stable six-membered intermediates and is supported by density functional theory calculations. The applicability of the phthalimidoxy functionality for hydroxyl protection is also demonstrated. This work expands the scope of functionalities tolerated in carbohydrate chemistry to include O-N moieties.
Collapse
|
6
|
Zhao Q, Zhou S, Wang Y, Yang X, Meng Y, Zhang Y, Gao J. Stereoselective synthesis of the 3,6-branched Fuzi α-glucans up to 15-mer via a one-pot and convergent glycosylation strategy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Mukherjee MM, Ghosh R, Hanover JA. Recent Advances in Stereoselective Chemical O-Glycosylation Reactions. Front Mol Biosci 2022; 9:896187. [PMID: 35775080 PMCID: PMC9237389 DOI: 10.3389/fmolb.2022.896187] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 12/26/2022] Open
Abstract
Carbohydrates involving glycoconjugates play a pivotal role in many life processes. Better understanding toward glycobiological events including the structure–function relationship of these biomolecules and for diagnostic and therapeutic purposes including tailor-made vaccine development and synthesis of structurally well-defined oligosaccharides (OS) become important. Efficient chemical glycosylation in high yield and stereoselectivity is however challenging and depends on the fine tuning of a protection profile to get matching glycosyl donor–acceptor reactivity along with proper use of other important external factors like catalyst, solvent, temperature, activator, and additive. So far, many glycosylation methods have been reported including several reviews also. In the present review, we will concentrate our discussion on the recent trend on α- and β-selective glycosylation reactions reported during the past decade.
Collapse
Affiliation(s)
- Mana Mohan Mukherjee
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, India
- *Correspondence: John A. Hanover, ; Rina Ghosh,
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: John A. Hanover, ; Rina Ghosh,
| |
Collapse
|
8
|
Liu X, Song Y, Liu A, Zhou Y, Zhu Q, Lin Y, Sun H, Zhu K, Liu W, Ding N, Xie W, Sun H, Yu B, Xu P, Li W. More than a Leaving Group: N-Phenyltrifluoroacetimidate as a Remote Directing Group for Highly α-Selective 1,2-cis Glycosylation. Angew Chem Int Ed Engl 2022; 61:e202201510. [PMID: 35266604 DOI: 10.1002/anie.202201510] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 12/31/2022]
Abstract
The anomeric configuration can greatly affect the biological functions and activities of carbohydrates. Herein, we report that N-phenyltrifluoroacetimidoyl (PTFAI), a well-known leaving group for catalytic glycosylation, can act as a stereodirecting group for the challenging 1,2-cis α-glycosylation. Utilizing rapidly accessible 1,6-di-OPTFAI glycosyl donors, TMSOTf-catalyzed glycosylation occurred with excellent α-selectivity and broad substrate scope, and the remaining 6-OPTFAI group can be cleaved chemoselectively. The remote participation of 6-OPTFAI is supported by the first characterization of the crucial 1,6-bridged bicyclic oxazepinium ion intermediates by low-temperature NMR spectroscopy. These cations were found to be relatively stable and mainly responsible for the present stereoselectivities. Further application is highlighted in glycosylation reactions toward trisaccharide heparins as well as the convergent synthesis of chacotriose derivatives using a bulky 2,4-di-O-glycosylated donor.
Collapse
Affiliation(s)
- Xianglai Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yingying Song
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Ao Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yueer Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Qian Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yetong Lin
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Kaidi Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wei Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ning Ding
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 200032, China
| | - Weijia Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| |
Collapse
|
9
|
Liu X, Song Y, Liu A, Zhou Y, Zhu Q, Lin Y, Sun H, Zhu K, Liu W, Ding N, Xie W, Sun H, Yu B, Xu P, Li W. More than a Leaving Group: N‐Phenyltrifluoroacetimidate as a Remote Directing Group for Highly α‐Selective 1,2‐cis Glycosylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xianglai Liu
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Yingying Song
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Ao Liu
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Yueer Zhou
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Qian Zhu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Yetong Lin
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Huiyong Sun
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Kaidi Zhu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Wei Liu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Ning Ding
- Fudan University Department of Medicinal Chemistry CHINA
| | - Weijia Xie
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Haopeng Sun
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Biao Yu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Peng Xu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Wei Li
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry 639 Longmian Avenue 211198 Nanjing CHINA
| |
Collapse
|
10
|
Synthesis of the pentasaccharide repeating unit of the O-antigenic polysaccharide of enteroaggregative Escherichia coli O44:H18 strain. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Tokatly AI, Vinnitskiy DZ, Ustuzhanina NE, Nifantiev NE. Protecting Groups as a Factor of Stereocontrol in Glycosylation Reactions. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Escopy S, Singh Y, Stine KJ, Demchenko AV. A Streamlined Regenerative Glycosylation Reaction: Direct, Acid-Free Activation of Thioglycosides. Chemistry 2021; 27:354-361. [PMID: 32804435 DOI: 10.1002/chem.202003479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 01/12/2023]
Abstract
Our group has previously reported that 3,3-difluoroxindole (HOFox) is able to mediate glycosylations via intermediacy of OFox imidates. Thioglycoside precursors were first converted into the corresponding glycosyl bromides that were then converted into the OFox imidates in the presence of Ag2 O followed by the activation with catalytic Lewis acid in a regenerative fashion. Reported herein is a direct conversion of thioglycosides via the regenerative approach that bypasses the intermediacy of bromides and eliminates the need for heavy-metal-based promoters. The direct regenerative activation of thioglycosides is achieved under neutral reaction conditions using only 1 equiv. NIS and catalytic HOFox without the acidic additives.
Collapse
Affiliation(s)
- Samira Escopy
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| |
Collapse
|
13
|
Talasila DS, Bauer EB. Ferrocenium complex aided O-glycosylation of glycosyl halides. RSC Adv 2021; 11:36814-36820. [PMID: 35494397 PMCID: PMC9043573 DOI: 10.1039/d1ra05788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/06/2021] [Indexed: 11/21/2022] Open
Abstract
A new strategy for the activation of glycosyl halide donors to be utilized in glycosylation reactions is presented, utilizing the ferrocenium (Fc) complexes [FcB(OH)2]SbF6 and FcBF4 as promoters. The scope of the new system has been investigated using glycosyl chloride and glycosyl fluoride donors in combination with common glycosyl acceptors, such as protected glucose. The corresponding glycosylation products were formed in 95 to 10% isolated yields with α/β ratios ranging from 1/1 to β only (2 to 14 h reaction time at room temperature, 40 to 100% ferrocenium promoter load). Ferrocenium complexes as a new, tunable platform for O-glycosylation reactions are introduced.![]()
Collapse
Affiliation(s)
- Deva Saroja Talasila
- University of Missouri – St. Louis, Department of Chemistry and Biochemistry, One University Boulevard, St. Louis, MO 63121, USA
| | - Eike B. Bauer
- University of Missouri – St. Louis, Department of Chemistry and Biochemistry, One University Boulevard, St. Louis, MO 63121, USA
| |
Collapse
|
14
|
Cai L, Meng L, Zeng J, Wan Q. Sequential activation of thioglycosides enables one-pot glycosylation. Org Chem Front 2021. [DOI: 10.1039/d0qo01414a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review describes recent developments in relative reactivity value (RRV) controlled sequential glycosylation, pre-activation based iterative glycosylation, and sulfoxide activation initiated one-pot glycosylation.
Collapse
Affiliation(s)
- Lei Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| |
Collapse
|
15
|
Abstract
Carbohydrates are a large class of natural products that play key roles in a number of biological processes such as in cellular communication or disease progression. Carbohydrates are also used as vaccines and pharmaceuticals. Their synthesis through glycosylation reactions is challenging, and often stoichiometric amounts of promoters are required. Transition metal catalyzed glycosylation reactions are far less common, but can have advantages with respect to reaction conditions and selectivity. The review intends to approach the topic from the catalysis and carbohydrate perspective to encourage researchers from both the fields to perform research in the area. The article covers the basics in glycosylation and catalysis chemistry. The catalysts for the reaction can be roughly divided into two groups. In one group, the catalysts serve as Lewis acids. In the other group, the catalysts play a higher sophisticated role, are involved in all elementary steps of the mechanism and remain coordinated to the substrate throughout the whole catalytic cycle. Based on selected examples, the main trends in transition metal catalyzed glycosylation reactions are explained. Lewis acid catalysts tend to require a somewhat higher catalyst load compared to other organometallic catalysts. The reaction conditions such as the temperature and time depend in many cases on the leaving group employed. An outlook is also presented. The article is not meant to be comprehensive; it outlines the most common transition metal catalyzed processes with the intention to bring the catalysis and carbohydrate communities together and to inspire research activities in both areas.
Collapse
Affiliation(s)
- Eike B Bauer
- University of Missouri - St Louis, Department of Chemistry and Biochemistry, One University Boulevard, St Louis, MO 63121, USA.
| |
Collapse
|
16
|
Santana AG, Montalvillo‐Jiménez L, Díaz‐Casado L, Mann E, Jiménez‐Barbero J, Gómez AM, Asensio JL. Single‐Step Glycosylations with
13
C‐Labelled Sulfoxide Donors: A Low‐Temperature NMR Cartography of the Distinguishing Mechanistic Intermediates. Chemistry 2020; 27:2030-2042. [DOI: 10.1002/chem.202003850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/18/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Andrés G. Santana
- Glycochemistry and Molecular Recognition group, Dpt. Bio-Organic Chemistry Instituto de Química Orgánica General (IQOG-CSIC) Juan de la Cierva 3. 28006 Madrid Spain
| | - Laura Montalvillo‐Jiménez
- Glycochemistry and Molecular Recognition group, Dpt. Bio-Organic Chemistry Instituto de Química Orgánica General (IQOG-CSIC) Juan de la Cierva 3. 28006 Madrid Spain
| | - Laura Díaz‐Casado
- Glycochemistry and Molecular Recognition group, Dpt. Bio-Organic Chemistry Instituto de Química Orgánica General (IQOG-CSIC) Juan de la Cierva 3. 28006 Madrid Spain
| | - Enrique Mann
- Glycochemistry and Molecular Recognition group, Dpt. Bio-Organic Chemistry Instituto de Química Orgánica General (IQOG-CSIC) Juan de la Cierva 3. 28006 Madrid Spain
| | - Jesús Jiménez‐Barbero
- Center for Cooperative Research in Biosciences (CIC-bioGUNE) 48160 Derio Spain
- Basque Foundation for Science 48013 Bilbao Spain
| | - Ana M. Gómez
- Oligosaccharide and Glycosystems group Dpt. Bio-Organic Chemistry Instituto de Química Orgánica General (IQOG-CSIC) Juan de la Cierva 3. 28006 Madrid Spain
| | - Juan Luis Asensio
- Glycochemistry and Molecular Recognition group, Dpt. Bio-Organic Chemistry Instituto de Química Orgánica General (IQOG-CSIC) Juan de la Cierva 3. 28006 Madrid Spain
| |
Collapse
|
17
|
Hettikankanamalage AA, Lassfolk R, Ekholm FS, Leino R, Crich D. Mechanisms of Stereodirecting Participation and Ester Migration from Near and Far in Glycosylation and Related Reactions. Chem Rev 2020; 120:7104-7151. [PMID: 32627532 PMCID: PMC7429366 DOI: 10.1021/acs.chemrev.0c00243] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review is the counterpart of a 2018 Chemical Reviews article (Adero, P. O.; Amarasekara, H.; Wen, P.; Bohé, L.; Crich, D. Chem. Rev. 2018, 118, 8242-8284) that examined the mechanisms of chemical glycosylation in the absence of stereodirecting participation. Attention is now turned to a critical review of the evidence in support of stereodirecting participation in glycosylation reactions by esters from either the vicinal or more remote positions. As participation by esters is often accompanied by ester migration, the mechanism(s) of migration are also reviewed. Esters are central to the entire review, which accordingly opens with an overview of their structure and their influence on the conformations of six-membered rings. Next the structure and relative energetics of dioxacarbeniun ions are covered with emphasis on the influence of ring size. The existing kinetic evidence for participation is then presented followed by an overview of the various intermediates either isolated or characterized spectroscopically. The evidence supporting participation from remote or distal positions is critically examined, and alternative hypotheses for the stereodirecting effect of such esters are presented. The mechanisms of ester migration are first examined from the perspective of glycosylation reactions and then more broadly in the context of partially acylated polyols.
Collapse
Affiliation(s)
- Asiri A. Hettikankanamalage
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
| | - Robert Lassfolk
- Johan Gadolin Process Chemistry Centre, Laboratory of Molecular Science and Technology, Åbo Akademi University, 20500 Åbo, Finland
| | - Filip S. Ekholm
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Reko Leino
- Johan Gadolin Process Chemistry Centre, Laboratory of Molecular Science and Technology, Åbo Akademi University, 20500 Åbo, Finland
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
18
|
Pospelov EV, Golovanov IS, Ioffe SL, Sukhorukov AY. The Cyclic Nitronate Route to Pharmaceutical Molecules: Synthesis of GSK's Potent PDE4 Inhibitor as a Case Study. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25163613. [PMID: 32784502 PMCID: PMC7464803 DOI: 10.3390/molecules25163613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 01/02/2023]
Abstract
An efficient asymmetric synthesis of GlaxoSmithKline’s potent PDE4 inhibitor was accomplished in eight steps from a catechol-derived nitroalkene. The key intermediate (3-acyloxymethyl-substituted 1,2-oxazine) was prepared in a straightforward manner by tandem acylation/(3,3)-sigmatropic rearrangement of the corresponding 1,2-oxazine-N-oxide. The latter was assembled by a (4 + 2)-cycloaddition between the suitably substituted nitroalkene and vinyl ether. Facile acetal epimerization at the C-6 position in 1,2-oxazine ring was observed in the course of reduction with NaBH3CN in AcOH. Density functional theory (DFT) calculations suggest that the epimerization may proceed through an unusual tricyclic oxazolo(1,2)oxazinium cation formed via double anchimeric assistance from a distant acyloxy group and the nitrogen atom of the 1,2-oxazine ring.
Collapse
Affiliation(s)
- Evgeny V. Pospelov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.P.); (I.S.G.); (S.L.I.)
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ivan S. Golovanov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.P.); (I.S.G.); (S.L.I.)
| | - Sema L. Ioffe
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.P.); (I.S.G.); (S.L.I.)
| | - Alexey Yu. Sukhorukov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.P.); (I.S.G.); (S.L.I.)
- Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-499-135-53-29
| |
Collapse
|
19
|
Kobayashi Y, Takemoto Y. Regio- and stereoselective glycosylation of 1,2-O-unprotected sugars using organoboron catalysts. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Underlin EN, d'Errico C, Böhm M, Madsen R. Synthesis of Glucuronoxylan Hexasaccharides by Preactivation-Based Glycosylations. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Emilie N. Underlin
- Department of Chemistry; Technical University of Denmark; 2800 Kgs. Lyngby Denmark
| | - Clotilde d'Errico
- Department of Chemistry; Technical University of Denmark; 2800 Kgs. Lyngby Denmark
| | - Maximilian Böhm
- Department of Chemistry; Technical University of Denmark; 2800 Kgs. Lyngby Denmark
| | - Robert Madsen
- Department of Chemistry; Technical University of Denmark; 2800 Kgs. Lyngby Denmark
| |
Collapse
|
21
|
Yu EJ, Yamaguchi T, Lee JH, Lim AR, Lee JH, Park H, Oh TJ. Enzymatic Synthesis of Anabolic Steroid Glycosides by Glucosyltransferase from Terribacillus sp. PAMC 23288. J Microbiol Biotechnol 2020; 30:604-614. [PMID: 31893610 PMCID: PMC9728329 DOI: 10.4014/jmb.1911.11057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The application of steroids has steadily increased thanks to their therapeutic effects. However, alternatives are required due their severe side effects; thus, studies on the activities of steroid derivatives are underway. Sugar derivatives of nandrolone, which is used to treat breast cancer, as well as cortisone and prednisone, which reduce inflammation, pain, and edema, are unknown. We linked O-glucose to nandrolone and testosterone using UDP-glucosyltransferase (UGT-1) and, then, tested their bioactivities in vitro. Analysis by NMR showed that the derivatives were 17β-nandrolone β-D-glucose and 17β-testosterone β-D-glucose, respectively. The viability was higher and cytotoxicity was evident in PC12 cells incubated with rotenone and, testosterone derivatives, compared to the controls. SH-SY5Y cells incubated with H2O2 and nandrolone derivatives remained viable and cytotoxicity was attenuated. Both derivatives enhanced neuronal protective effects and increased the amounts of cellular ATP.
Collapse
Affiliation(s)
- Eun-Ji Yu
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
| | - Tokutaro Yamaguchi
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea,Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea,Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea
| | - Joo-Ho Lee
- Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea
| | - A-Rang Lim
- Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Jun Hyuck Lee
- Unit of Research for Practical Application, Korea Polar Research Institute, Incheon 21990, Republic of Korea,Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea,Corresponding authors H.P. Phone: +82 2 3290 3051 E-mail: T.-J.O. Phone: +82 41 530 2677 E-mail:
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea,Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea,Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea,Corresponding authors H.P. Phone: +82 2 3290 3051 E-mail: T.-J.O. Phone: +82 41 530 2677 E-mail:
| |
Collapse
|
22
|
Aher UP, Srivastava D, Jadhav HS, Singh GP, B. S. J, Shenoy GG. Large-Scale Stereoselective Synthesis of 1,3-Oxathiolane Nucleoside, Lamivudine, via ZrCl4-Mediated N-Glycosylation. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Umesh P. Aher
- Chemical Research Department, Lupin Research Park, Lupin Limited, 46A/47A, Village Nande, Taluka Mulshi, Pune, Maharashtra 412115, India
| | - Dhananjai Srivastava
- Chemical Research Department, Lupin Research Park, Lupin Limited, 46A/47A, Village Nande, Taluka Mulshi, Pune, Maharashtra 412115, India
| | - Harishchandra S. Jadhav
- Chemical Research Department, Lupin Research Park, Lupin Limited, 46A/47A, Village Nande, Taluka Mulshi, Pune, Maharashtra 412115, India
| | - Girij P. Singh
- Chemical Research Department, Lupin Research Park, Lupin Limited, 46A/47A, Village Nande, Taluka Mulshi, Pune, Maharashtra 412115, India
| | - Jayashree B. S.
- Department of Pharmaceutical Chemistry, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Gautham G. Shenoy
- Department of Pharmaceutical Chemistry, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| |
Collapse
|
23
|
Hoffmann M, Gau E, Braun S, Pich A, Elling L. Enzymatic Synthesis of 2-(β-Galactosyl)-ethyl Methacrylate by β-Galactosidase from Pyrococcus woesei and Application for Glycopolymer Synthesis and Lectin Studies. Biomacromolecules 2020; 21:974-987. [DOI: 10.1021/acs.biomac.9b01647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marius Hoffmann
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße. 20, 52074 Aachen, Germany
| | - Elisabeth Gau
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- DWI—Leibniz-Institute for Interactive Materials e.V., RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Susanne Braun
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- DWI—Leibniz-Institute for Interactive Materials e.V., RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- DWI—Leibniz-Institute for Interactive Materials e.V., RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße. 20, 52074 Aachen, Germany
| |
Collapse
|
24
|
Underlin EN, Böhm M, Madsen R. Synthesis of Arabinoxylan Oligosaccharides by Preactivation-Based Iterative Glycosylations. J Org Chem 2019; 84:16036-16054. [PMID: 31762276 DOI: 10.1021/acs.joc.9b02529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A concise synthetic strategy has been developed for assembling densely substituted arabinoxylan oligosaccharides, which are valuable substrates for characterizing hemicellulose-degrading enzymes. The xylan backbone has been prepared by an iterative preactivation-based glycosylation approach with phenyl thioglycosides. The preactivation has been performed with in situ generated p-nitrobenzenesulfenyl triflate prior to addition of the acceptor. The glycosylation temperature was shown to have an important impact on the yield of the coupling. The arabinose substituents have been introduced in one high-yielding glycosylation with an N-phenyl trifluoroacetimidate donor. The strategy has been successfully employed for the synthesis of three heptasaccharides in seven steps and overall yields of 24-36% from the corresponding monosaccharide building blocks.
Collapse
Affiliation(s)
- Emilie N Underlin
- Department of Chemistry , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Maximilian Böhm
- Department of Chemistry , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Robert Madsen
- Department of Chemistry , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| |
Collapse
|
25
|
Cai L, Zeng J, Li T, Xiao Y, Ma X, Xiao X, Zhang Q, Meng L, Wan Q. Dehydrative Glycosylation Enabled by a Comproportionation Reaction of 2‐Aryl‐1,3‐dithiane 1‐Oxide
†. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lei Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Ting Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Ying Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Xiang Ma
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Xiong Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Qin Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
- Institute of Brain Research, Huazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| |
Collapse
|
26
|
Kurfiřt M, Červenková Št’astná L, Dračínský M, Müllerová M, Hamala V, Cuřínová P, Karban J. Stereoselectivity in Glycosylation with Deoxofluorinated Glucosazide and Galactosazide Thiodonors. J Org Chem 2019; 84:6405-6431. [DOI: 10.1021/acs.joc.9b00705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Martin Kurfiřt
- Institute of Chemical Process Fundamentals of the CAS, v. v. i, Rozvojová 135, 16502 Praha, Czech Republic
| | - Lucie Červenková Št’astná
- Institute of Chemical Process Fundamentals of the CAS, v. v. i, Rozvojová 135, 16502 Praha, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 542/2, 16610 Praha, Czech Republic
| | - Monika Müllerová
- Institute of Chemical Process Fundamentals of the CAS, v. v. i, Rozvojová 135, 16502 Praha, Czech Republic
| | - Vojtěch Hamala
- Institute of Chemical Process Fundamentals of the CAS, v. v. i, Rozvojová 135, 16502 Praha, Czech Republic
| | - Petra Cuřínová
- Institute of Chemical Process Fundamentals of the CAS, v. v. i, Rozvojová 135, 16502 Praha, Czech Republic
| | - Jindřich Karban
- Institute of Chemical Process Fundamentals of the CAS, v. v. i, Rozvojová 135, 16502 Praha, Czech Republic
| |
Collapse
|
27
|
Zhang H, Shao L, Wang X, Zhang Y, Guo Z, Gao J. One-Pot Synthesis of the Repeating Unit of Type VII Group B Streptococcus Polysaccharide and the Dimer. Org Lett 2019; 21:2374-2377. [DOI: 10.1021/acs.orglett.9b00653] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Han Zhang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Liming Shao
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaohan Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Yanxin Zhang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Zhongwu Guo
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Jian Gao
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
28
|
Zhang H, Zhou S, Zhao Y, Gao J. Chemical synthesis of the dimeric repeating unit of type Ia group BStreptococcuscapsular polysaccharide. Org Biomol Chem 2019; 17:5839-5848. [DOI: 10.1039/c9ob01024f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first synthesis of the dimeric repeating unit of type Ia GBS CPS containing two sialotrisaccharide side chains and adjacent 3,4-di-branched Gal motifs was achieved.
Collapse
Affiliation(s)
- Han Zhang
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Shihao Zhou
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Ying Zhao
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Jian Gao
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| |
Collapse
|
29
|
Zhang Y, Zhou S, Wang X, Zhang H, Guo Z, Gao J. A new method for α-specific glucosylation and its application to the one-pot synthesis of a branched α-glucan. Org Chem Front 2019. [DOI: 10.1039/c8qo01177j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have developed a new and highly efficient α-specific glucosylation method based on the synergistic α-directing effects of a TolSCl/AgOTf promoter system and the steric β-shielding or the remote participation of protecting groups at the donor 6-O-position.
Collapse
Affiliation(s)
- Yanxin Zhang
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Shihao Zhou
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Xiaohan Wang
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Han Zhang
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Zhongwu Guo
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Jian Gao
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| |
Collapse
|
30
|
Panza M, Pistorio SG, Stine KJ, Demchenko AV. Automated Chemical Oligosaccharide Synthesis: Novel Approach to Traditional Challenges. Chem Rev 2018; 118:8105-8150. [PMID: 29953217 PMCID: PMC6522228 DOI: 10.1021/acs.chemrev.8b00051] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Advances in carbohydrate chemistry have certainly made common oligosaccharides much more accessible. However, many current methods still rely heavily upon specialized knowledge of carbohydrate chemistry. The application of automated technologies to chemical and life science applications such as genomics and proteomics represents a vibrant field. These automated technologies also present opportunities for their application to organic synthesis, including that of the synthesis of oligosaccharides. However, application of automated methods to the synthesis of carbohydrates is an underdeveloped area as compared to other classes of biomolecules. The overarching goal of this review article is to present the advances that have been made at the interface of carbohydrate chemistry and automated technology.
Collapse
Affiliation(s)
- Matteo Panza
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Salvatore G. Pistorio
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Keith J. Stine
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
31
|
Mestre J, Collado D, Benito-Alifonso D, Rodríguez MA, Matheu MI, Díaz Y, Castillón S, Boutureira O. Highly reactive 2-deoxy-2-iodo-d- allo and d- gulo pyranosyl sulfoxide donors ensure β-stereoselective glycosylations with steroidal aglycones. RSC Adv 2018; 8:30076-30079. [PMID: 35546863 PMCID: PMC9085402 DOI: 10.1039/c8ra06619a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/11/2018] [Indexed: 12/31/2022] Open
Abstract
The preparation of well-defined d-xylo and d-ribo glycosides represents a synthetic challenge due to the limited configurational availability of starting materials and the laborious synthesis of homogeneous 2-deoxy-β-glycosidic linkages, in particular that of the sugar-steroid motif, which represents the "stereoselective determining step" of the overall synthesis. Herein we describe the use of 2-deoxy-2-iodo-glycopyranosyl sulfoxides accessible from widely available d-xylose and d-ribose monosaccharides as privileged glycosyl donors that permit activation at very low temperature. This ensures a precise kinetic control for a complete 1,2-trans stereoselective glycosylation of particularly challenging steroidal aglycones.
Collapse
Affiliation(s)
- Jordi Mestre
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - David Collado
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - David Benito-Alifonso
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - Miguel A Rodríguez
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - M Isabel Matheu
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - Yolanda Díaz
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - Sergio Castillón
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - Omar Boutureira
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| |
Collapse
|